• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Rapid Non-destructive Detection for Molds Colony of Paddy Rice Based on Near Infrared Spectroscopy

    2014-07-02 01:22:36ZhangQiangLiuChenghaiSunJingkunCuiYijuanLiQunJiaFuguoandZhengXianzhe

    Zhang Qiang, Liu Cheng-hai, Sun Jing-kun, Cui Yi-juan, Li Qun, Jia Fu-guo, and Zheng Xian-zhe*

    1 College of Engineering, Northeast Agricultural University, Harbin 150030, China

    2 Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China

    Introduction

    Paddy rice is susceptible to contamination by moulds during storage due to factors affecting storage temperature and moisture. Certain moulds can produce mycotoxins, including the very harmful Aflatoxin B1, which is common in paddy rice (Binder, 2007;Shephard, 2008; Ni et al., 2011). Therefore, it is necessary to establish a rapid, simple and effective method for detection of total number colony of moulds in paddy rice.

    A variety of well-established methodologies for analyzing moulds in cereal grains have been tested by American Association of Cereal Chemists (AACC)and the United States Department of Agriculture(USDA)(AACC International, 2000; USDA, 2004).These existing methods include plate culture method.These chemical-based laboratory methods have the advantage of being precise and accurate. However,they are time-consuming, laborious, expensive,and require a well-equipped laboratory and skilled laboratory personnel to perform and interpret these tests. The lengthy process precludes rapid and real-time detection of moulds in grains.

    Near infrared spectroscopy (NIRS)is an excellent candidate for measurements of the chemical components in complex materials including cereals, fruits and vegetables (Millar et al., 1996). It has been used to measure the content of water, oil, fi ber, starch, and protein in cereals and grains (McClure, 2003). More recently, NIRS has also been successfully applied to predict fumonisin B1in maize, deoxynivalenol in wheat and Aflatoxin B1in paddy rice (Beardo et al.,2005; Abramovic et al., 2007; Zhang et al., 2014).Tripathi and Mishra (2009)observed that Fourier transform near infrared spectroscopy could be used for rapid, non-destructive quantification of AFB1in red chili powder. Sirisomboon et al. (2013)found that NIRS could accurately detect the incidence of rice infected by aflatoxigenic fungi. Hu et al. (2014)observed that near infrared spectroscopy could be used for rapid and non-destructive quantif i cation of yeast in fresh jujube.

    However, very few studies have applied NIRS technology to detect and quantify total number colony of mould contamination in paddy rice. Therefore, the objectives of the present research were to assess the feasibility of using NIRS to detect total number colony of mould concentration in artificially contaminated paddy rice samples and to explore the potential of the method for the prediction of contamination in unknown paddy rice.

    Materials and Methods

    Paddy rice samples

    In this study, paddy rice samples were collected at the experiment station of the Northeast Agricultural University, Harbin, China. The paddy rice samples were harvested in October in 2013. The collected paddy rice was stored for 3 months at temperature of(20±3)℃ and in relative humidity of 55%-65%. The initial moisture content was 10.0% (w.b.). Moisture content of paddy rice samples was measured based on AOAC (1995b)off i cial method (oven dry method,135℃, 3 h).

    Equipments

    Humidity chamber (CTHI-150(A)B type, temperature fluctuation ±0.2℃, Shi Dukai Equipment Co., Ltd.,Shanghai, China); super clean bench (SE-CJ-10 type,Suzhou Jinghua Equipment Co., Ltd., Suzhou, China);Near infrared spectrometer (ZX-888 type, Osbert International Co., Ltd., San Francisco, USA).

    Artificially induced infection in paddy rice samples

    Storage experimentations were carried out to obtain moulds contaminated samples. Artificially contaminated paddy rice samples containing different moisture levels (10%-22%)(w.b.)were obtained by adding water to induce the growth of moulds for 3 months in a room at a controlled temperature of 5℃, 15℃, and 25℃. All the tests were performed in triplicate. Data were expressed as mean of triplicate determinations.

    Near infrared scanning

    A total of 121 samples were selected. The set of samples was divided into two subsets. The larger set(90 samples)was used to calibrate NIRS analysis and to cross-validate the derived equation. The smaller set (31 samples)was used to test the goodness of fit of the calibration model. All paddy rice samples were measured in duplicate. The paddy rice samples were fi rst used for NIR analysis. Then these samples were used in the reference method. Each scan consisted of a sample of 45 g being placed in a quartz cup and the samples were then scanned using a near infrared spectrometer (ZX-888 type, Osbert International Co.,Ltd., San Francisco, USA)in diffuse ref l ection mode.NIR was in a range of wavelengths of 918-1 045 nm.Spectra of each sample were automatically recorded as Absorbance (A)corresponding to log (1/R). The scanning time of each sample was approximately 30 s. Each sample was scanned three times and the average spectrum of the sample was employed for data analysis.

    Reference method

    The detection of total number colony of moulds was based on the national standard method. 25 g of paddy rice samples were weighed and put into the conical fl ask with 225 mL of sterilized distilled water. It was fully shaken up to dilution of 1 : 10; then 1 mL dilution of 1/10 was poured into the test tube with 9 mL of sterilized distilled water. Another sterilized distilled pipette of 1 mL was taken for suction and blowing for 3-5 times. It was dilution of 1 : 100; fi ve gradient levels were made, including 1 : 10, 1 : 100, 1 : 1 000,1 : 10 000 and 1 : 100 000; with 10 times of increasing dilution, every gradient drew 1 mL of samples antigrading liquid and was put in two sterilized distilled plate; 15-20 mL of the potato dextrose agar was cooled to 46℃ and poured into the plate. The petri dish was turned for even mixing, after the agar solidified, the petri dish was inverted. It was incubated for 5 days at(28±1)℃, observed and recorded.

    NIRS data analysis

    All spectral analyses were conducted using the Unscrambler 10.3 (Camo Technologies, Woodbridge,NJ, USA)and SPSS software (Ver. 8.2, SPSS Institute,INC., Cary, NC). The spectral data were analyzed using Unscrambler 10.3 software and principal component regression (PCR)method to remove spectral outliers. Then, the reference data were combined with NIR reflection spectra. The total spectra data were divided into calibration and prediction sets in a 3 : 1 ratio. The calibration sets were used to develop PCR and multiple linear regression (MLR)models. In this study, a chemometric model for the total number colony of the moulds in paddy rice was constructed.

    The optimal discriminant model for paddy rice was selected by using the highest coeff i cient of determination (R2), the lowest standard error of calibration (SEC),and the lowest standard error of prediction (SEP).

    Results and Discussion

    Characteristics of reference data sets

    The reference data obtained from natural infection and artificial infection are presented in Table 1. The paddy rice samples (n=121)were distributed in the total number colony of moulds range of 450-690 000 cfu · g-1with a mean value of 37 410 cfu · g-1and a standard deviation of 99 331 cfu · g-1. Table 1 showed the statistical values of total number colony of moulds(cfu · g-1)within the calibration and prediction sets. The distribution of the total number colony of moulds in samples had a mean of 38 568 cfu · g-1for the calibration set and 34 051 cfu · g-1for the prediction set.

    Table 1 Total number colony of moulds in samples of paddy rice

    Furthermore, few samples with extremely high total number colony of mould were observed, due to the low moisture content of paddy rice sampled during artificial infection with moisture level below 16%.The uneven distribution of the data was helpful in improving the prediction performance of the model.The moisture content of paddy rice is one of the most important factors governing the fungal growth and their mycotoxin production (AL-warshan and ALHadethy). Abdullah et al. (2000)also noted that the critical moisture content for rice grains maintained at 25℃ without fungal growth was 13%. Therefore, the low-moisture-content storage can be recognized as a safe storage system (Genkawa et al., 2008).

    Spectral characteristics

    Fig. 1 showed the average NIRS (raw absorption spectra)of the paddy rice samples obtained over a wavelength between 918-1 045 nm. From Fig. 1,it could be observed that the overlapping peaks of the spectra were distinctly shown and showed more detail in the spectral characteristics of the paddy rice samples.

    The spectra of mould infection were measured and analyzed to demonstrate correlation to some of the bands observed in the infected samples (Fig. 1).This experiment collected the absorbance value at 12 wavelengths. The wavelengths were 918, 928, 940,950, 968, 975, 985, 998, 1 010, 1 023, 1 037 and 1 045 nm. The wavelength interval was 10 nm. From Fig. 1, it could be seen that most maps of the 121 samples were similar. That's because the chemical constituent species of each sample were basically the same. In the spectroscopy map of the fi gure, the absorbance of the samples at 12 wavelengths was different.It showed that near infrared spectroscopy could ref l ect the differences of the chemical constituents between the samples. The spectral information that modeling needed was easily identif i ed. The absorbance value of every wavelength could be the interaction results of the absorption of multi-class moulds. Several bands in Fig. 1 were suitable for the determination of colony of mould in the paddy rice samples distinguished from the uninfected one. Based on Fig. 1, the peak at 740-1 080 nm could be assigned to the 2nd overtone, the 3rd overtone, and the 4th overtone from C-H groups and O-H groups. The peak at 960 and 967 nm could be assigned to the 2nd overtone from O-H stretching mode groups. The peak at wavelength of 972, 996 and 1 009 nm corresponded to a 2nd overtone of 3vO-H stretching modes of carbohydrate. The peak at 1 040 nm can be attributed to the 2nd overtone from N-H stretching mode groups of protein. From Fig. 1,this particular absorbance region correlated most strongly with the colony of mould infection. This appeared to confirm that the moisture, carbohydrate,starch content and protein in paddy rice affected the overall extent of mould infection.

    Fig. 1 NIR raw spectra of samples of paddy rice based on colony of mould infection in samples

    Spectral preprocessing and model development

    Table 2 expressed absorbance of near infrared diffuse transmission spectrometer and total number colony of moulds in calibration set. The absorbance of near infrared diffuse transmission spectrometer and the total number colony of moulds in prediction set are shown in Table 3. x1, x2, x3, x4, x5, x6, x7, x8, x9,x10, x11and x12were the spectrometer absorbance of the samples at 918, 928, 940, 950, 968, 975, 985, 998,1 010, 1 023, 1 037 and 1 045 nm. y1represented the total number colony of moulds. MLR and PCR for mould infection are presented in Table 4. The best preprocessing method and calibration model were selected on the basis of the highest value of correlation coefficient of determination (R2)and the lowest SEC and SEP values. Table 4 showed that prepro-cessing greatly improved the quality of a model. The best model obtained used MLR method processing.The values obtained for R2and SEC were 0.943 and 26 327, respectively. R2and SEP found on the independent prediction set were 0.897 and 33 393,respectively.

    Table 2 Spectrometer data in calibration set for contaminated with colony of moulds

    Table 3 Spectrometer data in prediction set for contaminated with colony of moulds

    Table 4 Regression results using MLR and PCR discriminant models for paddy rice contaminated with colony of moulds

    Results of multiple linear regressions

    After the treatment of the spectral data, the analysis data results of the total number colony of moulds and the absorbance of the 12 wavelengths are shown in Table 5. Variance analysis of multiple element linear regression is shown in Tables 6 and 7.

    Therefore, the behaviors of the input variables on the total number colony of moulds were reasonably described by equation (1).

    The signif i cance test of each parameter item in the equation is shown in Table 5. Except the constant term, term x6, term x8, and term x12, the regression coefficient test of each term was significant in different degrees. The regression equation (2)was obtained by rejecting the non-signif i cant term.

    Table 6 showed that the freedom degree of the re

    gression equation was 12. F value was 108.063,which was greater than its critical value at P<0.0001.Therefore, this model was signif i cant. Table 7 showed that R2value of the regression equation was 0.943 according to the multiple element linear regression.This indicated that the value of absorbance of the 12 wavelengths determined the total number of the colony of the moulds.

    Therefore, the calibration model built by using the multiple element linear regression had a good effect,which could be used for rapid detection of the total number of the moulds colony on the grain surface.

    Table 5 Results of multiple element linear regression analysis

    Table 6 Variance analysis of effects of process variables on total number colony of moulds

    Table 7 Variance analysis of effects of process variables on total number colony of moulds

    Verif i cation of accuracy of prediction model

    The calibration model was established by using the multiple element linear regression for optimization.The total number of the moulds colony of the 31 paddy rice samples in the prediction set was predicted. The prediction accuracy and robustness of the calibration model were investigated. The relevance of the actual data and the prediction data is shown in Fig. 2.

    Fig. 2 Measured versus predicted total number colony of moulds at prediction

    The equation of the straight line for the correlation plots of the prediction data sets was as equation (3).

    Y=1.2717X-9030.2 (3)

    Where, the coeff i cient of the determination (R2)was 0.897. The residual average was 173. The prediction accuracy could meet the demands of the detection precision of the agricultural products. The established near infrared prediction model was robust.

    Conclusions

    A feasible method applied for the detection of total number colony of mould in paddy rice by NIRS was studied in this research. Compared with traditional techniques, NIRS method might predicate the quantifi cation of total number colony of mould in paddy rice with rapid, simple and non-destructive advantages.NIRS technique might have practical applications for monitoring fungal contamination in postharvest paddy rice during storage.

    AACC International. 2000. Approved methods of the American Association of Cereal Chemists (10th ed.). Methods 39-70 A, 44-15 A,and 46-10. The Association, St. Paul, MN.

    Abramovic B, Jajic I, Abramovic B, et al. 2007. Detection of deoxynivalenol in wheat by fourier transform infrared spectroscopy. Acta Chim Slov, 54: 859-867.

    AL-warshan S H S, AL-Hadethy O N. 2012. Effect of container,medium weight, and moisture content on af l atoxin B1production on rice. Al-Anbar J Agr Sci, 10(1): 11-17.

    Abdullah N, Nawawi A, Othman I. 2000. Fungal spoilage of starchbased foods in relation to its water activity (aw). J Stored Prod Res,36: 47-54.

    Binder E M. 2007. Managing the risk of mycotoxins in modern feed production. Anim Feed Sci Tech, 133: 149-166.

    Berardo N, Pisacane V, Battilani P, et al. 2005. Rapid detection of kernel rots and mycotoxins in maize by near-infrared reflectance spectroscopy. J Agr Food Chem, 53: 8128-8134.

    Genkawa T, Uchino T, Inoue A, et al. 2008. Development of a lowmoisture-content storage system for brown rice: storability at decreased moisture contents. Biosyst Eng, 99: 515-522.

    Hu Y, Liu C, He Y. 2014. Kinetic models for determination of yeast in fresh jujube using near infrared spectroscopy. Spectrosc Spect Anal,34(4): 922-926.

    Millar S, Robert P, Devaux M F, et al. 1996. Near-infrared spectroscopic measurements of structural changes in starch-containing extruded products. Appl Spectrosc, 50: 1134-1139.

    McClure W F. 2003. Review: 204 years of near infrared technology:1800-2003. J Near Infrared Spec, 11: 487-518.

    Ni X Z, Wilson J P, Buntin G D, et al. 2011. Spatial patterns of af l atoxin levels in relation to ear-feeding insect damage in pre-harvest corn.Toxins, 3: 920-931.

    Shephard G S. 2008. Impact of mycotoxins on human health in developing countries. Food Addit Comtam, 25: 146-151.

    Sirisomboon C D, Putthang R, Sirisomboon P. 2013. Application of near infrared spectroscopy to detect af l atoxigenic fungal contamination in rice. Food Control, 33: 207-214.

    Tripathi S, Mishra H N. 2009. A rapid FT-NIR method for estimation of af l atoxin B1in red chili powder. Food Control, 20: 840-846.

    USDA. 2004. Grain inspection handbook. Grainbook II. Grain Inspection, Packers and Stockyard Administration, Washington DC.

    Zhang Q, Jia F G, Liu C H, et al. 2014. Rapid detection of aflatoxin B1in paddy rice as analytical quality assessment by near infrared spectroscopy. Int J Agric Biol, 7(4): 127-133.

    日本精品一区二区三区蜜桃| 日本三级黄在线观看| 免费女性裸体啪啪无遮挡网站| 国产精品,欧美在线| 精品国产一区二区三区四区第35| 97人妻天天添夜夜摸| 精品久久久久久久久久免费视频| 国产国语露脸激情在线看| av超薄肉色丝袜交足视频| 久久久精品欧美日韩精品| 男女做爰动态图高潮gif福利片 | 可以在线观看毛片的网站| 国产成人欧美在线观看| 又大又爽又粗| 大陆偷拍与自拍| 久久久久久国产a免费观看| 亚洲久久久国产精品| 久久精品国产亚洲av香蕉五月| 日韩成人在线观看一区二区三区| 国产亚洲精品av在线| 色哟哟哟哟哟哟| 国产伦一二天堂av在线观看| 成人国语在线视频| 婷婷精品国产亚洲av在线| √禁漫天堂资源中文www| 久久性视频一级片| а√天堂www在线а√下载| 国产欧美日韩精品亚洲av| 日本欧美视频一区| 亚洲精品在线美女| 天天一区二区日本电影三级 | 18禁观看日本| 无限看片的www在线观看| 天堂影院成人在线观看| 制服诱惑二区| 男女下面插进去视频免费观看| 国产精品二区激情视频| 亚洲第一av免费看| 伊人久久大香线蕉亚洲五| 看黄色毛片网站| 午夜精品在线福利| 国产一卡二卡三卡精品| 国产一级毛片七仙女欲春2 | 精品久久久久久久毛片微露脸| 亚洲自拍偷在线| 国产成+人综合+亚洲专区| 免费久久久久久久精品成人欧美视频| 两个人视频免费观看高清| 欧美成人午夜精品| 可以免费在线观看a视频的电影网站| 91av网站免费观看| 一区二区日韩欧美中文字幕| 91在线观看av| 成人亚洲精品av一区二区| 一本久久中文字幕| 久久人妻福利社区极品人妻图片| 一进一出好大好爽视频| 神马国产精品三级电影在线观看 | 丝袜人妻中文字幕| avwww免费| 老熟妇仑乱视频hdxx| 精品国产超薄肉色丝袜足j| 欧美一级a爱片免费观看看 | 日韩欧美一区二区三区在线观看| 国产精品国产高清国产av| 亚洲国产中文字幕在线视频| videosex国产| 国产精品久久久久久精品电影 | 国产成人av激情在线播放| 熟女少妇亚洲综合色aaa.| 一进一出抽搐动态| 国产成人影院久久av| 19禁男女啪啪无遮挡网站| 色综合站精品国产| 美女高潮喷水抽搐中文字幕| av在线播放免费不卡| 亚洲一区二区三区色噜噜| 色老头精品视频在线观看| 欧美日韩亚洲国产一区二区在线观看| 久久久久九九精品影院| а√天堂www在线а√下载| 18禁国产床啪视频网站| 亚洲欧美日韩无卡精品| 动漫黄色视频在线观看| 757午夜福利合集在线观看| 91老司机精品| 精品日产1卡2卡| 一级作爱视频免费观看| 一个人观看的视频www高清免费观看 | 熟妇人妻久久中文字幕3abv| 精品欧美一区二区三区在线| 色精品久久人妻99蜜桃| 亚洲性夜色夜夜综合| 久久精品人人爽人人爽视色| 国产成人系列免费观看| 12—13女人毛片做爰片一| 亚洲午夜精品一区,二区,三区| 久久影院123| 视频在线观看一区二区三区| АⅤ资源中文在线天堂| 亚洲自拍偷在线| 国产一区二区三区视频了| 亚洲va日本ⅴa欧美va伊人久久| 两个人看的免费小视频| 欧美成人免费av一区二区三区| 亚洲人成电影观看| a级毛片在线看网站| 大陆偷拍与自拍| 99在线人妻在线中文字幕| avwww免费| 无遮挡黄片免费观看| 激情视频va一区二区三区| 一边摸一边抽搐一进一出视频| 中文字幕av电影在线播放| 人人澡人人妻人| 欧美国产日韩亚洲一区| 极品人妻少妇av视频| tocl精华| 午夜福利视频1000在线观看 | 免费久久久久久久精品成人欧美视频| 69精品国产乱码久久久| 国产精品久久视频播放| 亚洲aⅴ乱码一区二区在线播放 | 精品欧美国产一区二区三| 日韩视频一区二区在线观看| 国产黄a三级三级三级人| 亚洲激情在线av| 国产91精品成人一区二区三区| 日本欧美视频一区| 男女午夜视频在线观看| 身体一侧抽搐| 久久香蕉精品热| 精品福利观看| 伦理电影免费视频| 90打野战视频偷拍视频| 国产精品香港三级国产av潘金莲| 99国产极品粉嫩在线观看| 神马国产精品三级电影在线观看 | 国产精品乱码一区二三区的特点 | 亚洲精品一区av在线观看| 黑人巨大精品欧美一区二区mp4| 9热在线视频观看99| 亚洲成av片中文字幕在线观看| 亚洲第一av免费看| 岛国在线观看网站| 欧美 亚洲 国产 日韩一| 亚洲午夜理论影院| 亚洲自偷自拍图片 自拍| 亚洲av成人一区二区三| www.精华液| 日本在线视频免费播放| 18禁裸乳无遮挡免费网站照片 | 成人欧美大片| 制服人妻中文乱码| 色尼玛亚洲综合影院| 一卡2卡三卡四卡精品乱码亚洲| 亚洲免费av在线视频| 日韩有码中文字幕| 亚洲一码二码三码区别大吗| 俄罗斯特黄特色一大片| 成在线人永久免费视频| 久久精品人人爽人人爽视色| 国产蜜桃级精品一区二区三区| 在线观看免费视频网站a站| avwww免费| 欧美日本亚洲视频在线播放| 国产男靠女视频免费网站| 精品电影一区二区在线| 女人被躁到高潮嗷嗷叫费观| 精品高清国产在线一区| 丝袜美足系列| 国产亚洲精品综合一区在线观看 | 国产伦一二天堂av在线观看| 中文字幕精品免费在线观看视频| 99国产精品一区二区三区| 曰老女人黄片| 手机成人av网站| 中文字幕高清在线视频| 黑人操中国人逼视频| 免费在线观看视频国产中文字幕亚洲| 熟妇人妻久久中文字幕3abv| 色婷婷久久久亚洲欧美| 亚洲专区字幕在线| netflix在线观看网站| 老司机深夜福利视频在线观看| 久久精品亚洲熟妇少妇任你| 在线观看舔阴道视频| 亚洲专区字幕在线| 美国免费a级毛片| 一本综合久久免费| 欧美乱码精品一区二区三区| 超碰成人久久| 精品福利观看| 在线观看免费视频日本深夜| 久久香蕉精品热| 国产一区二区三区视频了| 黑人操中国人逼视频| 亚洲午夜精品一区,二区,三区| 亚洲精品一卡2卡三卡4卡5卡| 亚洲一区中文字幕在线| 美女国产高潮福利片在线看| 欧美日韩精品网址| 国产精品99久久99久久久不卡| 悠悠久久av| 一区二区三区高清视频在线| 亚洲全国av大片| 纯流量卡能插随身wifi吗| 韩国精品一区二区三区| 婷婷精品国产亚洲av在线| 欧美一区二区精品小视频在线| 国产精品亚洲一级av第二区| 久久香蕉精品热| 国产视频一区二区在线看| 麻豆成人av在线观看| 精品一区二区三区视频在线观看免费| 久久婷婷成人综合色麻豆| 一区二区三区激情视频| 91字幕亚洲| 国产三级在线视频| 日韩 欧美 亚洲 中文字幕| 日韩 欧美 亚洲 中文字幕| 91麻豆精品激情在线观看国产| 老汉色av国产亚洲站长工具| 亚洲av电影在线进入| 精品久久久久久久毛片微露脸| 色综合亚洲欧美另类图片| 在线免费观看的www视频| 99国产精品免费福利视频| 叶爱在线成人免费视频播放| av视频在线观看入口| 日韩视频一区二区在线观看| 18禁裸乳无遮挡免费网站照片 | 在线播放国产精品三级| 91老司机精品| 最近最新中文字幕大全电影3 | 午夜福利欧美成人| 国产男靠女视频免费网站| av欧美777| 欧美激情 高清一区二区三区| 天堂动漫精品| 亚洲五月天丁香| 操出白浆在线播放| 午夜福利成人在线免费观看| 十分钟在线观看高清视频www| 99国产综合亚洲精品| 日本 欧美在线| 亚洲五月婷婷丁香| 母亲3免费完整高清在线观看| 一级,二级,三级黄色视频| 狠狠狠狠99中文字幕| 视频在线观看一区二区三区| 操出白浆在线播放| 日本撒尿小便嘘嘘汇集6| 中出人妻视频一区二区| www.精华液| √禁漫天堂资源中文www| 中文字幕久久专区| 国产熟女xx| 亚洲欧美精品综合一区二区三区| 97碰自拍视频| 97人妻精品一区二区三区麻豆 | 中亚洲国语对白在线视频| 两人在一起打扑克的视频| 久久国产亚洲av麻豆专区| 免费观看精品视频网站| 9色porny在线观看| 成人永久免费在线观看视频| 日韩精品中文字幕看吧| 999久久久精品免费观看国产| 亚洲精品一区av在线观看| 精品国产美女av久久久久小说| 中文字幕人成人乱码亚洲影| 天堂动漫精品| 男女下面插进去视频免费观看| 免费搜索国产男女视频| 亚洲熟妇中文字幕五十中出| 成在线人永久免费视频| 91国产中文字幕| 国内精品久久久久久久电影| 久久影院123| 精品久久久精品久久久| 国产一区二区三区视频了| 亚洲国产精品sss在线观看| 日韩欧美一区二区三区在线观看| 黑丝袜美女国产一区| 亚洲国产欧美一区二区综合| 国产欧美日韩综合在线一区二区| 色尼玛亚洲综合影院| 人人澡人人妻人| 免费在线观看日本一区| 少妇熟女aⅴ在线视频| 一级a爱视频在线免费观看| 伊人久久大香线蕉亚洲五| 在线永久观看黄色视频| 黄色视频,在线免费观看| 亚洲国产精品成人综合色| 非洲黑人性xxxx精品又粗又长| 欧美成人免费av一区二区三区| av电影中文网址| 精品福利观看| 一本大道久久a久久精品| 国产麻豆69| 99久久久亚洲精品蜜臀av| av片东京热男人的天堂| 午夜精品国产一区二区电影| 国产精品亚洲一级av第二区| 色播在线永久视频| 美女扒开内裤让男人捅视频| 亚洲精品在线观看二区| 欧美一区二区精品小视频在线| 欧美av亚洲av综合av国产av| 一进一出好大好爽视频| 成在线人永久免费视频| 亚洲精品中文字幕一二三四区| 这个男人来自地球电影免费观看| 欧美人与性动交α欧美精品济南到| 九色国产91popny在线| 亚洲专区字幕在线| ponron亚洲| 日韩精品青青久久久久久| 99国产极品粉嫩在线观看| 国产欧美日韩一区二区三| 色综合站精品国产| 日本 欧美在线| 久久精品国产亚洲av高清一级| 日韩大码丰满熟妇| 无人区码免费观看不卡| 亚洲国产中文字幕在线视频| 黑人操中国人逼视频| 成年版毛片免费区| 此物有八面人人有两片| 国产蜜桃级精品一区二区三区| 91av网站免费观看| www.www免费av| 亚洲成a人片在线一区二区| 国产片内射在线| 激情在线观看视频在线高清| 好男人电影高清在线观看| 亚洲,欧美精品.| 亚洲av熟女| 国产亚洲欧美98| 高潮久久久久久久久久久不卡| 成人永久免费在线观看视频| 欧美不卡视频在线免费观看 | svipshipincom国产片| 99国产精品99久久久久| 黄色成人免费大全| av天堂在线播放| 精品国产美女av久久久久小说| 亚洲无线在线观看| cao死你这个sao货| 如日韩欧美国产精品一区二区三区| 亚洲av电影不卡..在线观看| 精品久久久久久久久久免费视频| 亚洲 欧美一区二区三区| 成人国产综合亚洲| 日本五十路高清| 久久中文看片网| 日韩欧美免费精品| 嫁个100分男人电影在线观看| 老司机福利观看| 91麻豆av在线| 可以在线观看毛片的网站| 757午夜福利合集在线观看| 亚洲专区中文字幕在线| 国产私拍福利视频在线观看| 午夜免费激情av| 黄色丝袜av网址大全| 一级a爱视频在线免费观看| 欧美午夜高清在线| 十八禁人妻一区二区| 亚洲在线自拍视频| 国产精品综合久久久久久久免费 | 国产视频一区二区在线看| 无遮挡黄片免费观看| 黄色视频,在线免费观看| 欧美日韩福利视频一区二区| 亚洲av电影不卡..在线观看| 色尼玛亚洲综合影院| 看片在线看免费视频| 亚洲色图av天堂| 国产成人系列免费观看| 一二三四社区在线视频社区8| 免费搜索国产男女视频| 老司机午夜十八禁免费视频| 国产成人av激情在线播放| 激情视频va一区二区三区| 国产又色又爽无遮挡免费看| 中文字幕人妻丝袜一区二区| 久久精品91无色码中文字幕| 首页视频小说图片口味搜索| 50天的宝宝边吃奶边哭怎么回事| 欧美日韩精品网址| 国产一区在线观看成人免费| 欧美黄色片欧美黄色片| 一夜夜www| 三级毛片av免费| 成人18禁高潮啪啪吃奶动态图| 午夜激情av网站| 美女免费视频网站| 亚洲狠狠婷婷综合久久图片| 午夜精品在线福利| www.熟女人妻精品国产| 国产精品一区二区精品视频观看| 国产精品久久久久久亚洲av鲁大| 丁香欧美五月| 亚洲aⅴ乱码一区二区在线播放 | 99riav亚洲国产免费| 欧美另类亚洲清纯唯美| 国产亚洲精品综合一区在线观看 | 好男人电影高清在线观看| 免费在线观看完整版高清| 视频在线观看一区二区三区| 国产精品一区二区在线不卡| 欧美日本视频| 91字幕亚洲| 大陆偷拍与自拍| 久99久视频精品免费| 热re99久久国产66热| 国产av在哪里看| 久久香蕉国产精品| 精品熟女少妇八av免费久了| 亚洲午夜理论影院| 免费在线观看影片大全网站| 国产蜜桃级精品一区二区三区| 母亲3免费完整高清在线观看| 亚洲av电影不卡..在线观看| 欧美乱色亚洲激情| av电影中文网址| 伊人久久大香线蕉亚洲五| 黄色片一级片一级黄色片| 99久久国产精品久久久| 丁香六月欧美| 国产一区二区三区视频了| 午夜福利,免费看| 99精品久久久久人妻精品| 91大片在线观看| 悠悠久久av| 国产一区二区在线av高清观看| x7x7x7水蜜桃| 亚洲中文日韩欧美视频| 99精品久久久久人妻精品| 亚洲人成伊人成综合网2020| 黑人操中国人逼视频| 日本欧美视频一区| 免费人成视频x8x8入口观看| 午夜久久久久精精品| 亚洲中文字幕一区二区三区有码在线看 | 在线观看午夜福利视频| 色综合欧美亚洲国产小说| 精品国产乱子伦一区二区三区| 国产亚洲精品久久久久久毛片| 亚洲九九香蕉| 黑人欧美特级aaaaaa片| 亚洲精品在线观看二区| 电影成人av| 精品国产乱子伦一区二区三区| 亚洲成人精品中文字幕电影| 这个男人来自地球电影免费观看| 精品国产国语对白av| 一进一出好大好爽视频| 国产成人av教育| 国产精品一区二区精品视频观看| 免费高清视频大片| 国产区一区二久久| 久久香蕉精品热| 色综合站精品国产| 老司机午夜十八禁免费视频| 久热爱精品视频在线9| 亚洲久久久国产精品| e午夜精品久久久久久久| 老司机在亚洲福利影院| 国产午夜精品久久久久久| 亚洲成a人片在线一区二区| 国产精品98久久久久久宅男小说| 18禁国产床啪视频网站| 日本撒尿小便嘘嘘汇集6| 在线观看www视频免费| 久久中文字幕人妻熟女| 亚洲第一电影网av| 天天躁夜夜躁狠狠躁躁| 搡老妇女老女人老熟妇| 亚洲精品国产色婷婷电影| 国产精品久久久久久亚洲av鲁大| 最近最新中文字幕大全免费视频| 亚洲欧洲精品一区二区精品久久久| 乱人伦中国视频| 国产精品久久视频播放| 国产1区2区3区精品| 国产真人三级小视频在线观看| 大香蕉久久成人网| 91九色精品人成在线观看| 亚洲激情在线av| 亚洲人成电影免费在线| 午夜激情av网站| 女生性感内裤真人,穿戴方法视频| 欧美另类亚洲清纯唯美| 亚洲专区中文字幕在线| 国产精品久久久久久人妻精品电影| 国内精品久久久久精免费| 国产xxxxx性猛交| 免费在线观看黄色视频的| 手机成人av网站| 一区二区日韩欧美中文字幕| 亚洲人成电影免费在线| 777久久人妻少妇嫩草av网站| 视频区欧美日本亚洲| 色av中文字幕| 午夜视频精品福利| 亚洲五月天丁香| 国产免费男女视频| 91精品三级在线观看| aaaaa片日本免费| 999久久久精品免费观看国产| 久久人妻福利社区极品人妻图片| 日韩大尺度精品在线看网址 | 日韩欧美免费精品| 午夜久久久久精精品| 日韩 欧美 亚洲 中文字幕| 国产国语露脸激情在线看| 欧美精品亚洲一区二区| 国产一区二区三区在线臀色熟女| 国产人伦9x9x在线观看| 国产成人系列免费观看| 在线观看免费午夜福利视频| 亚洲专区国产一区二区| 叶爱在线成人免费视频播放| 免费观看精品视频网站| 亚洲片人在线观看| 两人在一起打扑克的视频| 午夜精品国产一区二区电影| 欧美在线一区亚洲| 国产精品电影一区二区三区| 国产精品久久久久久精品电影 | 亚洲精品久久国产高清桃花| 国产熟女xx| 亚洲熟妇中文字幕五十中出| 亚洲男人的天堂狠狠| 啦啦啦免费观看视频1| 午夜老司机福利片| 在线观看www视频免费| 少妇裸体淫交视频免费看高清 | 亚洲精品在线美女| 免费人成视频x8x8入口观看| 看黄色毛片网站| 欧美黑人欧美精品刺激| 国产日韩一区二区三区精品不卡| 午夜福利欧美成人| 久久精品国产99精品国产亚洲性色 | 色av中文字幕| 色在线成人网| 性少妇av在线| 亚洲av成人不卡在线观看播放网| 成人手机av| 亚洲五月色婷婷综合| 亚洲精品中文字幕一二三四区| 午夜日韩欧美国产| 怎么达到女性高潮| av视频免费观看在线观看| 亚洲国产精品久久男人天堂| 国产又色又爽无遮挡免费看| 亚洲第一欧美日韩一区二区三区| 国产精品久久久久久亚洲av鲁大| 在线观看免费午夜福利视频| 精品不卡国产一区二区三区| 日韩av在线大香蕉| 黄色成人免费大全| 一级,二级,三级黄色视频| 久久久久国产精品人妻aⅴ院| 精品免费久久久久久久清纯| 久久精品亚洲熟妇少妇任你| 久久中文字幕一级| 亚洲专区字幕在线| 搡老妇女老女人老熟妇| 亚洲最大成人中文| 制服丝袜大香蕉在线| 欧美日本视频| or卡值多少钱| 在线观看舔阴道视频| 90打野战视频偷拍视频| 亚洲精品av麻豆狂野| videosex国产| 真人做人爱边吃奶动态| 老汉色av国产亚洲站长工具| 最近最新中文字幕大全电影3 | 亚洲一区二区三区不卡视频| 亚洲人成77777在线视频| 亚洲精品av麻豆狂野| 国产精品日韩av在线免费观看 | 亚洲片人在线观看| 精品久久久久久成人av| 久久精品aⅴ一区二区三区四区| 国产麻豆69| 免费看a级黄色片| 欧美黄色淫秽网站| 国产精品影院久久| 欧美色欧美亚洲另类二区 | 国产精品美女特级片免费视频播放器 | 黄色丝袜av网址大全| 国产精品久久久人人做人人爽| 欧美另类亚洲清纯唯美| 国产精品久久久av美女十八| 成人国语在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 日本vs欧美在线观看视频| 久久久久久人人人人人| 久久香蕉激情| 日韩欧美国产一区二区入口| 久久这里只有精品19| 每晚都被弄得嗷嗷叫到高潮| 99在线视频只有这里精品首页| 亚洲三区欧美一区| 免费看十八禁软件| 中文亚洲av片在线观看爽| 久久精品成人免费网站|