任娜娜, 謝 苗, 尤燕春, 尤民生
(1.福建農(nóng)林大學(xué)應(yīng)用生態(tài)研究所;2.農(nóng)業(yè)部閩臺(tái)作物有害生物綜合治理重點(diǎn)實(shí)驗(yàn)室;3.福建省昆蟲(chóng)生態(tài)學(xué)重點(diǎn)實(shí)驗(yàn)室,福建 福州 350002)
羧酸酯酶及其介導(dǎo)昆蟲(chóng)抗藥性的研究進(jìn)展
任娜娜, 謝 苗, 尤燕春, 尤民生
(1.福建農(nóng)林大學(xué)應(yīng)用生態(tài)研究所;2.農(nóng)業(yè)部閩臺(tái)作物有害生物綜合治理重點(diǎn)實(shí)驗(yàn)室;3.福建省昆蟲(chóng)生態(tài)學(xué)重點(diǎn)實(shí)驗(yàn)室,福建 福州 350002)
本文從分類、結(jié)構(gòu)和水解作用機(jī)制、抗藥性以及抗藥機(jī)理等方面綜述了昆蟲(chóng)羧酸酯酶的研究進(jìn)展,旨在為進(jìn)一步深入研究羧酸酯酶介導(dǎo)昆蟲(chóng)抗藥性提供參考和奠定基礎(chǔ).
羧酸酯酶; 亞家族分類; 介導(dǎo)抗性; 代謝解毒
昆蟲(chóng)的抗藥性問(wèn)題一直是困擾農(nóng)業(yè)、林業(yè)、衛(wèi)生等領(lǐng)域的重要難題.根據(jù)密歇根州立大學(xué)的Arthropod Pesticide Resistance Database (APRD)(http://www.pesticideresistance.com),目前已有21個(gè)目,586種昆蟲(chóng)對(duì)各種殺蟲(chóng)劑產(chǎn)生了不同程度的抗藥性,抗性發(fā)生的事件多達(dá)11692件,每年造成世界各國(guó)的巨大經(jīng)濟(jì)損失.
昆蟲(chóng)對(duì)殺蟲(chóng)劑的抗藥性機(jī)理主要包括兩類:代謝抗性和靶標(biāo)抗性.其中代謝抗性主要是由于解毒酶活性提高,導(dǎo)致對(duì)殺蟲(chóng)劑的解毒能力增強(qiáng)[1].關(guān)于代謝抗性的研究主要集中在3大解毒酶家族:羧酸酯酶系(COEs)、谷胱甘肽S-轉(zhuǎn)移酶系(GSTs)和細(xì)胞色素P450氧化酶系(P450s).
羧酸酯酶作為重要的解毒酶,在昆蟲(chóng)頭部、中腸、馬氏管等組織中都有存在,其功能也十分多樣.除了在昆蟲(chóng)的解毒代謝中起作用外,羧酸酯酶的功能還包括:植物次生物質(zhì)代謝、信息素降解、生長(zhǎng)發(fā)育調(diào)節(jié)、神經(jīng)發(fā)育調(diào)節(jié)等,并在昆蟲(chóng)的生殖過(guò)程中也發(fā)揮一定的作用.昆蟲(chóng)羧酸酯酶抗藥性的研究主要集中在生理生化水平上,分子水平的研究主要集中在基因克隆與功能預(yù)測(cè),基因突變調(diào)節(jié),基因表達(dá)變化等.本文從羧酸酯酶的分類、結(jié)構(gòu)、水解作用機(jī)制,及其介導(dǎo)昆蟲(chóng)抗藥性和抗性機(jī)理等方面綜述了該領(lǐng)域的研究進(jìn)展,討論了目前存在的問(wèn)題和今后的研究方向,旨在為進(jìn)一步挖掘和驗(yàn)證羧酸酯酶的功能,深入開(kāi)展抗藥性機(jī)理研究和指導(dǎo)新農(nóng)藥的開(kāi)發(fā)提供參考和借鑒.
1.1 羧酸酯酶的分類
羧酸酯酶(carboxylesterases, COEs, EC3.1.1.1)又稱脂族酯酶,通常屬于酯酶B[2],是多功能超家族酶系.它廣泛分布于動(dòng)植物和微生物體內(nèi)[3,4].根據(jù)序列的相似性和底物的特異性,羧酸酯酶基因通??梢苑譃?個(gè)亞族:α-酯酶(α-esterase, ae)、β-酯酶(β-esterase, be)、保幼激素酯酶(juvenile hormone esterase, jhe)、乙酰膽堿酯酶(acetylcholinesterase, ace, AChE)、神經(jīng)趨化蛋白(neurotactin, nrt),神經(jīng)連接蛋白(neuroligin, nlg),膠質(zhì)接觸蛋白(gliotactin, gli)和glutactin (glt)[5].這8個(gè)亞族根據(jù)功能又可以歸為3大類:胞內(nèi)催化、分泌催化和神經(jīng)發(fā)育相關(guān)蛋白.此外,在進(jìn)化樹(shù)分析時(shí)往往將分泌催化酶類中的表皮酯酶(integument esterase, ie)單獨(dú)歸為1個(gè)亞類.而將不能歸為上述8個(gè)亞族和表皮酯酶中的羧酸酯酶歸為未分類[5-14](表1).進(jìn)化樹(shù)的結(jié)果表明,保幼激素酯酶、α-酯酶和β-酯酶亞族形成原始分支,羧酸酯酶大多數(shù)的催化功能都與這3種酶有關(guān)[5].神經(jīng)趨化蛋白、神經(jīng)連接蛋白、膠質(zhì)接觸蛋白和glutactin屬于細(xì)胞表面蛋白,一般認(rèn)為它們屬于無(wú)催化作用蛋白,在神經(jīng)發(fā)育調(diào)節(jié)中具有重要作用[5].乙酰膽堿酯酶則兼具催化作用和神經(jīng)發(fā)育調(diào)節(jié)兩種功能,但分類時(shí)多歸于神經(jīng)發(fā)育類蛋白[6].
表1 不同物種昆蟲(chóng)羧酸酯酶的類別及數(shù)量1)Table 1 Category and number of the carboxylesterases in different species of insects
1)ae:α-酯酶;be:β-酯酶;ace:乙酰膽堿酯酶;jhe:保幼激素酯酶;nlg:神經(jīng)連接蛋白;gli:膠質(zhì)接觸蛋白;glt:Glutactin;nrt:神經(jīng)趨化蛋白;ie:表皮酯酶.
近年來(lái),隨著昆蟲(chóng)全基因組測(cè)序、表達(dá)序列標(biāo)簽(Expressed Sequence Tag, EST)測(cè)序以及轉(zhuǎn)錄組測(cè)序等一系列研究的開(kāi)展,羧酸酯酶基因家族也得到了廣泛的認(rèn)識(shí).目前已有研究報(bào)道,黑腹果蠅(Drosophilamelanogaster)中羧酸酯酶基因數(shù)目為35個(gè)[6]、岡比亞按蚊(Anophelesgambiae)51個(gè)[5]、埃及伊蚊(Aedesaegypti)54個(gè)[7]、意大利蜜蜂(Apismellifera)24個(gè)[8]、麗蠅蛹集金小蜂(Nasoniavitripennis)41個(gè)[9]、豌豆蚜(Acyrthosiphonpisum)28個(gè)[10]、桃蚜(Myzuspersicae)22個(gè)[11]、赤擬谷盜(Triboliumcastaneum)49個(gè)[12]、家蠶(Bombyxmori)76個(gè)[13].同時(shí)本實(shí)驗(yàn)室從小菜蛾(Plutellaxylostella)基因組數(shù)據(jù)分析預(yù)測(cè)得到羧酸酯酶基因家族成員有64個(gè)(表1),其中α-酯酶有43個(gè),表現(xiàn)出明顯的擴(kuò)張現(xiàn)象,此前的研究表明α-酯酶在異源物質(zhì)解毒如有機(jī)磷殺蟲(chóng)劑抗性中具有重要的作用[15].我們對(duì)小菜蛾部分α酯酶基因的實(shí)時(shí)熒光定量PCR(real time quantitative PCR, RT-qPCR)分析發(fā)現(xiàn),它們?cè)谥心c、馬氏管、脂肪體、頭部、表皮中都有表達(dá),而這些組織均與異源物質(zhì)代謝、信息素降解等過(guò)程有關(guān).盡管昆蟲(chóng)中β酯酶基因數(shù)目很少,它們的功能卻十分多樣:介導(dǎo)多種殺蟲(chóng)劑及其它異源物質(zhì)的代謝[6];在昆蟲(chóng)信息素信號(hào)傳導(dǎo)過(guò)程中發(fā)揮作用[10];參與昆蟲(chóng)的生殖過(guò)程,如果蠅的β-酯酶EST6蛋白主要分布在血淋巴和雄成蟲(chóng)的射精管,該蛋白可以在交配時(shí)轉(zhuǎn)移到雌蟲(chóng)體內(nèi),進(jìn)而刺激產(chǎn)卵和誘導(dǎo)接受再交配[16].
保幼激素是昆蟲(chóng)發(fā)育和繁殖過(guò)程中的關(guān)鍵激素,會(huì)由于保幼激素酯酶的水解作用而影響其濃度高低,因此保幼激素酯酶在節(jié)肢動(dòng)物變態(tài)發(fā)育中起重要的調(diào)節(jié)作用.保幼激素酯酶有7個(gè)高度保守的氨基酸基序:RF, DQ, GQSAG, E, GxxHxxD/E, R/Kx, R/KxxxR和一個(gè)信號(hào)肽[17],對(duì)保幼激素酯酶基因功能的研究有助于新型殺蟲(chóng)劑的開(kāi)發(fā)和應(yīng)用.乙酰膽堿酯酶主要作為靶標(biāo)酶進(jìn)行研究,分子水平的研究則主要以點(diǎn)突變和基因表達(dá)調(diào)節(jié)為主.它主要存在于膽堿激性突觸的前膜、后膜以及突觸間隙[18],能夠催化神經(jīng)遞質(zhì)乙酰膽堿的水解,從而終止神經(jīng)沖動(dòng)在突觸后膜的傳遞,是有機(jī)磷類和氨基甲酸酯類殺蟲(chóng)劑的主要作用靶標(biāo).絕大多數(shù)的昆蟲(chóng)有兩種乙酰膽堿酯酶:AChE1和AChE2,分別由ace1和ace2基因編碼,但在果蠅以及一些雙翅目昆蟲(chóng)中只有AChE1存在[19].這兩種基因都與昆蟲(chóng)的抗性相關(guān),通過(guò)基因突變導(dǎo)致乙酰膽堿酯酶結(jié)構(gòu)改變,靶標(biāo)敏感性降低進(jìn)而對(duì)殺蟲(chóng)劑產(chǎn)生抗藥性[20].此外,乙酰膽堿酯酶還具有促進(jìn)神經(jīng)突的延長(zhǎng),突觸形成等非催化功能[21].序列比對(duì)發(fā)現(xiàn)它與神經(jīng)趨化蛋白、神經(jīng)連接蛋白、膠質(zhì)接觸蛋白和glutactin等細(xì)胞表面蛋白的胞外域表現(xiàn)出相當(dāng)大的序列一致性[5].小菜蛾中AChE1在水解殺蟲(chóng)劑過(guò)程中起主要作用,表達(dá)水平遠(yuǎn)高于AChE2[20],AChE2還具有胞間連接的功能[6],因此認(rèn)為由于glutactin基因的缺乏,AChE2可能部分替補(bǔ)了它們的功能[13].
神經(jīng)趨化蛋白在昆蟲(chóng)中數(shù)目較少,是在神經(jīng)系統(tǒng)中表達(dá)的跨膜蛋白.它在細(xì)胞與細(xì)胞接觸位點(diǎn)存在并能夠調(diào)節(jié)異嗜細(xì)胞的聚集[22],昆蟲(chóng)中的研究對(duì)象以果蠅為主.膠質(zhì)接觸蛋白是一種跨膜蛋白,可以在胚胎外圍神經(jīng)膠質(zhì)細(xì)胞中瞬間表達(dá),目前已知它是果蠅外圍血腦屏障形成所必需的,基本只在胚胎表達(dá),幼蟲(chóng)期不表達(dá)或很少表達(dá)[23].神經(jīng)連接蛋白在昆蟲(chóng)中的研究同樣非常有限,通過(guò)比對(duì)發(fā)現(xiàn),與哺乳動(dòng)物的序列存在很高的一致性[5].Glutactin是一種中央神經(jīng)系統(tǒng)黏附蛋白,Olson[24]利用熒光免疫測(cè)定技術(shù)將它定位于果蠅胚胎基底膜.目前,在家蠶、意大利蜜蜂中均未發(fā)現(xiàn)該基因,其功能目前尚不明確[13],對(duì)小菜蛾羧酸酯酶家族分析也未發(fā)現(xiàn)該基因的存在.
1.2 羧酸酯酶的結(jié)構(gòu)和水解機(jī)制
羧酸酯酶蛋白家族的基本結(jié)構(gòu)包括:α/β水解酶折疊結(jié)構(gòu)域、催化三聯(lián)體、酰基結(jié)合域等,其特征基序是Gly-X1-Ser-X2-Gly,活性位點(diǎn)的Ser殘基是保守三聯(lián)體中的親核殘基.在一些酯酶的多肽鏈中有的還存在His和Asp等殘基[25].盡管羧酸酯酶家族基因序列不盡相同,底物特異性也存在很大差別,但由于它們結(jié)構(gòu)的相似性和催化位點(diǎn)氨基酸序列的保守性,通常認(rèn)為它們具有共同的起源[26].關(guān)于各亞族結(jié)構(gòu)的研究除乙酰膽堿酯酶和保幼激素酯酶的結(jié)構(gòu)已經(jīng)較為清楚外,其他亞族結(jié)構(gòu)研究較少.在果蠅中DmAChE的α/β折疊結(jié)構(gòu)域由11條β片層和位于β片層之間的14個(gè)α螺旋環(huán)組成,此外,還包括酰基結(jié)合域和氧離子洞[6].銅綠蠅(Luciliacuprina)羧酸酯酶LcαE7的結(jié)構(gòu)包括保守的催化三聯(lián)體Ser-His-Glu,6個(gè)典型的α-螺旋和8個(gè)典型的β鏈,中間的β片層包含起始的兩條反向平行β鏈和末端的兩條平行β鏈[27](圖1).此外,比較LcαE7與LcAChE的結(jié)構(gòu),結(jié)果表明,它們?cè)诨钚晕稽c(diǎn)和底物結(jié)合位點(diǎn)存在高度的保守性[27].除膠質(zhì)接觸蛋白、glutactin和神經(jīng)趨化蛋白外,絕大多數(shù)的羧酸酯酶都存在催化三聯(lián)體Ser-His-Glu(Asp)[28],因此具有水解酯鍵的能力.
圖1 銅綠蠅?mèng)人狨ッ窵cαE7結(jié)構(gòu)拓?fù)鋱DFig.1 Topological diagram of the COE-LcαE7 in Lucilia cuprina
羧酸酯酶對(duì)殺蟲(chóng)劑的代謝主要通過(guò)增強(qiáng)對(duì)殺蟲(chóng)劑的水解作用來(lái)實(shí)現(xiàn).有關(guān)羧酸酯酶催化殺蟲(chóng)劑水解過(guò)程主要分為兩步:(1)COEs的Ser-OH進(jìn)攻親核試劑酯鍵的羰基碳,形成四聚體中間產(chǎn)物,釋放醇類物質(zhì),COEs活性部位絲氨酸的酰化[26];(2)加水脫酰作用.羧酸產(chǎn)物釋放,酯酶恢復(fù)原始構(gòu)象[26].
羧酸酯酶可以介導(dǎo)多種昆蟲(chóng)的抗藥性,涉及的昆蟲(chóng)種類包括鱗翅目、膜翅目、雙翅目、鞘翅目、同翅目、纓翅目等.早期對(duì)羧酸酯酶與昆蟲(chóng)抗藥性的研究主要集中在生理生化方面.羧酸酯酶介導(dǎo)害蟲(chóng)抗藥性主要是通過(guò)提高對(duì)殺蟲(chóng)劑的水解活性,增強(qiáng)對(duì)殺蟲(chóng)劑的阻隔或者改變酶與底物的親和力來(lái)發(fā)揮作用[29].
昆蟲(chóng)羧酸酯酶能夠介導(dǎo)有機(jī)磷類、氨基甲酸酯類和擬除蟲(chóng)菊酯類等殺蟲(chóng)劑的抗藥性.在埃及伊蚊雙硫磷抗性品系中羧酸酯酶活性較敏感品系高[30],白紋伊蚊(Aedesalbopictus)溴氰菊酯抗性品系的羧酸酯酶比活力也明顯高于敏感品系[31],推斷羧酸酯酶可能在抗性品系的解毒代謝中具有重要作用.對(duì)高效氯氰菊酯抗性倍數(shù)高達(dá)4419.07倍的家蠅進(jìn)行酶活測(cè)定,發(fā)現(xiàn)羧酸酯酶活性在抗性品系中顯著高于敏感品系,但GSTs和細(xì)胞色素P450的活性卻沒(méi)有顯著差異,表明羧酸酯酶在家蠅對(duì)高效氯氰菊酯的抗藥性產(chǎn)生中起主要作用[32].對(duì)豌豆彩潛蠅(Chromatomyiahorticola)、Musca domestics三葉斑潛蠅(Liriomyzatrifolii)、美洲斑潛蠅(Liriomyzasativae)和豌豆?jié)撓壖》?Diglyphusisaea)、底比斯釉姬小蜂(Chrysocharispentheus)、麗潛蠅姬小蜂(Neochrysocharisformosa)和異角釉小蜂(Hemiptarsenusvaricornis)進(jìn)行生物測(cè)定,研究表明,3個(gè)斑潛蠅種的馬拉硫磷LD50顯著高于這4種寄生蜂.此外,三葉斑潛蠅和美洲斑潛蠅?mèng)人狨ッ傅幕钚砸诧@著高于這4種寄生蜂,因此推斷羧酸酯酶在馬拉硫磷抗性介導(dǎo)中具有重要作用[33].
羧酸酯酶在多殺菌素、氯蟲(chóng)苯甲酰胺等新型殺蟲(chóng)劑的抗性發(fā)展中也具有一定的作用.多殺菌素對(duì)甜菜夜蛾(Spodopteraexigua)的羧酸酯酶活性具有誘導(dǎo)作用[34].取食吡蟲(chóng)啉后的小菜蛾對(duì)阿維菌素的敏感性降低,這與羧酸酯酶活性變化有很大的關(guān)聯(lián)[35].用亞致死劑量的氯蟲(chóng)苯甲酰胺連續(xù)處理小菜蛾5代后,處理組羧酸酯酶活性顯著高于對(duì)照組,表明羧酸酯酶很有可能參與了小菜蛾對(duì)氯蟲(chóng)苯甲酰胺的抗性[36].生物測(cè)定表明轉(zhuǎn)基因玉米G03-2396品系和G03-2739品系對(duì)亞洲玉米螟(Ostriniafurnacalis)初孵幼蟲(chóng)和三齡幼蟲(chóng)的存活有顯著影響,喂食轉(zhuǎn)基因玉米的玉米螟三齡幼蟲(chóng)羧酸酯酶活性顯著低于喂食非轉(zhuǎn)基因玉米的試蟲(chóng),說(shuō)明轉(zhuǎn)基因玉米的Bt毒蛋白也會(huì)影響玉米螟體內(nèi)解毒酶的代謝[37].
植物源殺蟲(chóng)劑因其高效、低毒、低殘留、選擇性高,對(duì)環(huán)境友好等特點(diǎn),被認(rèn)為是替代傳統(tǒng)農(nóng)藥的最佳選擇之一.當(dāng)昆蟲(chóng)取食不同的寄主植物時(shí),由于植物化感物質(zhì)的影響,昆蟲(chóng)體內(nèi)解毒酶活性發(fā)生變化,導(dǎo)致它們對(duì)殺蟲(chóng)劑的敏感性也存在差異.測(cè)定喂食紅辣椒、煙草和人工飼料等不同寄主的煙實(shí)夜蛾(Helicoverpaassulta)對(duì)氰戊菊酯、茚蟲(chóng)威、辛硫磷和滅多威的抗性情況,發(fā)現(xiàn)喂食不同寄主的幼蟲(chóng)羧酸酯酶和GSTs活性不同,其中喂食紅辣椒的幼蟲(chóng)對(duì)茚蟲(chóng)威、滅多威、辛硫磷的抗藥性更高[38].由于酶解作用機(jī)制相同,昆蟲(chóng)對(duì)植物化感物質(zhì)的解毒往往與殺蟲(chóng)劑解毒相關(guān)[39].茉莉酸甲酯(MeJA)可以介導(dǎo)傳統(tǒng)棉花(Gossypiumhirsutum)對(duì)棉鈴蟲(chóng)(Helicoverpaarmigera)的防御反應(yīng).將MeJA噴至棉花籽苗并喂食棉鈴蟲(chóng)幼蟲(chóng)發(fā)現(xiàn):幼蟲(chóng)期延長(zhǎng),幼蟲(chóng)蟲(chóng)重和蛹重降低,蛹羧酸酯酶和GSTs活性降低,表明MeJA可以誘導(dǎo)植物的防御反應(yīng),進(jìn)而對(duì)害蟲(chóng)不利[40].測(cè)定14種植物精油對(duì)埃及伊蚊四齡幼蟲(chóng)和5-7 d成蟲(chóng)的西維因增效實(shí)驗(yàn),其中6種植物精油對(duì)西維因表現(xiàn)出明顯的增效作用.體外活性測(cè)定發(fā)現(xiàn),這6種植物精油可以在低濃度條件下有效抑制細(xì)胞色素P450和羧酸酯酶的活性,推斷這兩種酶是這些植物精油的作用靶標(biāo),通過(guò)抑制代謝解毒實(shí)現(xiàn)增效作用[41].昆蟲(chóng)、植物和殺蟲(chóng)劑之間的交互作用關(guān)系復(fù)雜,目前的研究主要局限在生理生化水平,深入研究其關(guān)系才能制定更加合理有效的害蟲(chóng)防治策略[38].
3.1 羧酸酯酶基因突變與抗藥性
昆蟲(chóng)中氨基酸突變頻率很低,每個(gè)世代約為10-8-10-9/密碼子[42].昆蟲(chóng)對(duì)殺蟲(chóng)劑產(chǎn)生抗性的原因之一就是由于編碼羧酸酯酶的基因突變導(dǎo)致的.羧酸酯酶活性中心氧離子洞G137D突變和?;诖黈251L突變,導(dǎo)致果蠅和銅綠蠅對(duì)有機(jī)磷類殺蟲(chóng)劑的水解作用增強(qiáng)和抗藥性水平的提高[15,43].在2003年和2009年分別測(cè)定烏拉圭螺旋蠅(Cochliomyiahominivorax) G137D和W251S的突變頻率,研究表明,G137D突變頻率降低,而W251S突變頻率顯著提升,原因是烏拉圭防治螺旋蠅化學(xué)控制策略的改變,過(guò)去主要用有機(jī)磷類殺蟲(chóng)劑進(jìn)行治理,而近年以擬除蟲(chóng)菊酯和有機(jī)磷混劑為主,導(dǎo)致了有機(jī)磷選擇壓力下降,因此較高適合度代價(jià)的G137D突變頻率就有所降低[44].羧酸酯酶催化三聯(lián)體附近的S331F突變?cè)鰪?qiáng)了兩個(gè)蚜蟲(chóng)種對(duì)N-二甲基氨基甲酸酯類殺蟲(chóng)劑的抗藥性[45].尖音庫(kù)蚊(Culexpipiens)在相同位點(diǎn)的F331W突變則同時(shí)增強(qiáng)對(duì)有機(jī)磷和氨基甲酸酯類殺蟲(chóng)劑的抗藥性[46].此外, F331W突變?cè)诳死锾貚uQ型煙粉虱(Bemisiatabaci)和華東地區(qū)Q型煙粉虱5個(gè)田間種群中也都普遍存在,該突變可以降低乙酰膽堿酯酶對(duì)有機(jī)磷化合物的敏感性[47,48].F139L和A302S兩個(gè)突變位點(diǎn)在所有的抗性棉蚜(Aphisgossypii)中都有發(fā)現(xiàn),推斷位點(diǎn)突變會(huì)影響酶的活性,從而降低昆蟲(chóng)對(duì)殺蟲(chóng)劑的敏感性[49].乙酰膽堿酯酶氧離子洞G119S突變,導(dǎo)致蚊類5個(gè)種對(duì)氨基甲酸酯類殺蟲(chóng)劑產(chǎn)生廣泛的抗藥性[50,51].對(duì)已報(bào)道的小菜蛾敏感品系和抗性品系的ace2型乙酰膽堿酯酶基因進(jìn)行序列分析發(fā)現(xiàn)在兩品系中沒(méi)有差別,而與ace2相似性很高的ace1中的G227A突變只存在于丙硫磷抗性品系中,在果蠅和家蠅中ace2相同位點(diǎn)的突變已經(jīng)證明與有機(jī)磷抗性有關(guān),因此該位點(diǎn)很可能與小菜蛾乙酰膽堿酯酶惰性有關(guān)[52].G151D和W271L突變主要發(fā)生在雙翅目昆蟲(chóng)中,它可以影響底物的特異性.通過(guò)克隆斜紋夜蛾(Spodopteralitura)、家蠶、棉蚜、褐飛虱(Nilaparvatalugens)、赤擬谷盜、異色瓢蟲(chóng)(Harmoniaaxyridis)、意大利蜜蜂的羧酸酯酶基因,對(duì)其151位和271位進(jìn)行突變并在大腸桿菌(Escherichiacoli)中表達(dá),發(fā)現(xiàn)G/A151D和W271L突變都能顯著降低羧酸酯酶活性,影響有機(jī)磷殺蟲(chóng)劑的水解活性,且271位突變比151位突變對(duì)底物特異性的影響更為明顯,表明這兩個(gè)位置的突變可以引起昆蟲(chóng)廣泛的抗藥性[28].
3.2 羧酸酯酶基因表達(dá)與抗藥性
解毒基因表達(dá)量的變化跟殺蟲(chóng)劑抗藥性密切相關(guān),是昆蟲(chóng)代謝抗性的重要分子機(jī)制之一.羧酸酯酶基因擴(kuò)增的調(diào)控機(jī)制在不同昆蟲(chóng)中各有差異.桃蚜羧酸酯酶E4和FE4過(guò)量表達(dá),對(duì)藥劑的解毒和阻隔作用增強(qiáng),進(jìn)而介導(dǎo)對(duì)多種殺蟲(chóng)劑的抗性[53].褐飛虱對(duì)有機(jī)磷廣泛的抗藥性與羧酸酯酶活性的提高有關(guān),從有機(jī)磷抗性品系中分離出羧酸酯酶基因Nl-EST1存在一個(gè)由24個(gè)氨基酸構(gòu)成的N末端疏水信號(hào)肽序列,表明成熟蛋白是分泌到細(xì)胞外表達(dá),其在敏感品系中也有發(fā)現(xiàn),但表達(dá)量顯著低于抗性品系[54].尖音庫(kù)蚊與有機(jī)磷抗性相關(guān)的羧酸酯酶基因有13個(gè),在中國(guó)田間種群中就發(fā)現(xiàn)了6個(gè)等位基因:EsterB1、Ester2、Ester8、Ester9、EsterB10、Ester11,有些等位基因甚至同時(shí)存在于同一個(gè)種群中,利用PCR-RFLP進(jìn)行羧酸酯酶進(jìn)化多樣性監(jiān)測(cè),可實(shí)現(xiàn)庫(kù)蚊田間種群的抗性分子監(jiān)測(cè)[55].
早期對(duì)昆蟲(chóng)抗藥性分子水平的研究主要集中在基因克隆和功能預(yù)測(cè)等方面,隨著基因沉默技術(shù)的發(fā)展和成熟,它在害蟲(chóng)抗性機(jī)理和基因功能方面的研究中將發(fā)揮重要作用.將介導(dǎo)二嗪農(nóng)抗性的Rop-1成功導(dǎo)入果蠅后,轉(zhuǎn)基因果蠅較非轉(zhuǎn)基因果蠅對(duì)二嗪農(nóng)產(chǎn)生了6-7倍的抗藥性[56].利用化學(xué)合成的siRNA沉默棉鈴蟲(chóng)乙酰膽堿酯酶基因?qū)е掠紫x(chóng)死亡和生長(zhǎng)抑制,具體表現(xiàn)為蛹重降低,畸形和成蟲(chóng)繁殖力的顯著降低[57].研究表明,沉默東亞飛蝗2個(gè)羧酸酯酶基因LmCesA1和LmCesA2后,飛蝗對(duì)毒死蜱敏感性增強(qiáng),說(shuō)明這2個(gè)基因可能參與了毒死蜱的解毒代謝[58].利用化學(xué)合成和修飾后的小菜蛾乙酰膽堿酯酶siRNA基因噴灑小菜蛾取食的甘藍(lán)葉片可以引起實(shí)驗(yàn)室和大田小菜蛾死亡率明顯提高,這為防治小菜蛾提供了新策略,同時(shí)也證明了基于RNAi技術(shù)的新型生物殺蟲(chóng)劑應(yīng)用的可能性[59].
3.3 基因突變和擴(kuò)增同時(shí)介導(dǎo)的抗藥性
昆蟲(chóng)的抗藥性分子機(jī)制主要是基因擴(kuò)增、表達(dá)上調(diào)、編碼序列的突變或者以上幾種機(jī)制同時(shí)起作用.昆蟲(chóng)抗性機(jī)制的復(fù)雜多樣,給害蟲(chóng)綜合治理方案的制定帶來(lái)很大難度,如生產(chǎn)中經(jīng)常出現(xiàn)害蟲(chóng)短暫控制和突然爆發(fā)的現(xiàn)象.關(guān)于昆蟲(chóng)抗性的多種分子機(jī)制研究已逐漸引起人們的關(guān)注.棉蚜對(duì)馬拉硫磷抗性的產(chǎn)生是由于位點(diǎn)突變和羧酸酯酶表達(dá)水平的提高共同起作用的,而表達(dá)水平的提高是由于羧酸酯酶基因拷貝數(shù)的增加和mRNA轉(zhuǎn)錄水平的提高[60].隨后研究發(fā)現(xiàn)棉蚜對(duì)氧樂(lè)果抗藥性的產(chǎn)生則由于Ace1 mRNA的下調(diào)表達(dá)和Ace1 (S146N 和L532P)、Ace2 (S431F)突變同時(shí)導(dǎo)致[61].家蠅的MdαE7基因在抗性品系(CRR)較敏感品系(CSS)過(guò)量表達(dá),并且W251S突變?cè)贑RR品系的高效氯氰菊酯抗性中發(fā)揮作用,并對(duì)擬除蟲(chóng)菊酯與有機(jī)磷的交互抗性也有影響,因此推斷基因突變和表達(dá)量的增加同時(shí)介導(dǎo)了家蠅對(duì)擬除蟲(chóng)菊酯類殺蟲(chóng)劑的抗藥性[62].灰飛虱(Laodelphaxstriatellus)羧酸酯酶基因Ls.CarE1的過(guò)量表達(dá)和Ls.AChE1 (F439H)基因的突變是導(dǎo)致毒死蜱抗藥性產(chǎn)生的原因[63].基因芯片分析發(fā)現(xiàn),編碼草地貪夜蛾(Spodopterafrugiperda)羧酸酯酶的2個(gè)基因在毒死蜱抗性品系中過(guò)量表達(dá),特別是EST(Sf1P09555-5-1)在抗性中表達(dá)量是敏感品系的21倍,且該基因與抗性相關(guān)基因E4序列相似性極高.同時(shí)比較毒死蜱抗性品系和敏感品系ace1基因發(fā)現(xiàn),存在3個(gè)位點(diǎn)A201S,G227A,F(xiàn)290V突變,這些突變?cè)谄渌ハx(chóng)中都與有機(jī)磷抗性相關(guān)[64].由于害蟲(chóng)的抗藥性機(jī)理復(fù)雜:多基因調(diào)控以及靶標(biāo)抗性與代謝抗性協(xié)同作用等為害蟲(chóng)治理帶來(lái)較大挑戰(zhàn).害蟲(chóng)抗藥性水平和抗性機(jī)理的研究,不僅可為害蟲(chóng)綜合治理策略(Integrated Pest Management, IPM)的制定、實(shí)施、監(jiān)測(cè)提供依據(jù),對(duì)于保證殺蟲(chóng)劑的長(zhǎng)期有效性和新型殺蟲(chóng)劑的開(kāi)發(fā)都具有重要意義.
隨著實(shí)驗(yàn)技術(shù)的發(fā)展進(jìn)步,昆蟲(chóng)羧酸酯酶的研究由早期生理生化為主,轉(zhuǎn)變?yōu)橐曰蛲蛔?、基因擴(kuò)增和基因表達(dá)調(diào)節(jié)等抗藥性分子機(jī)理的研究.但在一些昆蟲(chóng)中羧酸酯酶的研究仍以基因克隆和功能預(yù)測(cè)為主.赤擬谷盜、意蜂、家蠶、小菜蛾等昆蟲(chóng)基因組測(cè)序的完成以及基因芯片技術(shù)的發(fā)展,從基因組層面解析昆蟲(chóng)羧酸酯酶的不同結(jié)構(gòu)和功能,不僅有助于我們更好地深入了解羧酸酯酶的抗藥性分子機(jī)理,鑒定抗藥性相關(guān)基因以及研究多基因抗性機(jī)制,也有利于促進(jìn)高效、低毒、環(huán)保的新型殺蟲(chóng)劑的研發(fā)和應(yīng)用.
羧酸酯酶在分子結(jié)構(gòu)方面的深入解析,以及基因家族成員的全面分析,將有助于其多功能機(jī)理的探究和特定靶標(biāo)新型殺蟲(chóng)劑的研發(fā),也有利于揭示羧酸酯酶水解殺蟲(chóng)劑的分子機(jī)理[27],同時(shí)為羧酸酯酶與昆蟲(chóng)抗藥性關(guān)系的挖掘提供更多幫助.例如昆蟲(chóng)在抗性產(chǎn)生過(guò)程中如何規(guī)避適合度代價(jià)?多基因抗性機(jī)制如何相互作用影響昆蟲(chóng)抗藥性的進(jìn)化?抗性基因通過(guò)怎樣的表達(dá)調(diào)控機(jī)制介導(dǎo)抗性?植物、害蟲(chóng)和天敵間解毒酶活性變化如何交互影響?這些問(wèn)題都有待在羧酸酯酶功能分析基礎(chǔ)上深入探討.隨著基因組學(xué)和比較基因組學(xué)發(fā)展,以及基因芯片技術(shù)和RNAi技術(shù)的發(fā)展成熟,昆蟲(chóng)抗性基因鑒定和功能研究將變得愈加廣泛,昆蟲(chóng)的抗藥性分子機(jī)理也將逐漸得以解析,為害蟲(chóng)綜合治理策略的制定提供依據(jù).
[1] 周斌芬,唐振華,高菊芳.昆蟲(chóng)代謝抗性的研究進(jìn)展[J].農(nóng)藥,2008,47(5):313-315.
[2] WALKER C H, MACKNESS M I. Esterases: problems of identification and classification[J]. Biochemical Pharmacology, 1983,32(22):3265-3269.
[3] MARSHALL S D, PUTTERILL J J, PLUMMER K M. The carboxylesterase gene family fromArabidopsisthaliana[J]. Journal of molecular evolution, 2003,57(5):487-500.
[4] BORNSCHEUER U T. Microbial carboxyl esterases: classification, properties and application in biocatalysis[J]. Fems Microbiology Reviews, 2002,26(73):81.
[5] RANSON H. Evolution of supergene families associated with insecticide resistance[J]. Science, 2002,298(5591):179-181.
[6] OAKESHOTT J G, CLAUDIANOS C, CAMPBELL P M, et al. Biochemical genetics and genomics of insect esterases[M]∥LAWRENCE I G, SARJEET S G. Insect Pharmacology: Channels, Receptors, Toxins and Enzymes. London: Elsevier, 2005:229-301.
[7] NENE V, WORTMAN J R, LAWSON D, et al. Genome sequence ofAedesaegypti, a major arbovirus vector[J]. Science, 2007,316,5832:1718-1723.
[8] CLAUDIANOS C, RANSON H, JOHNSON R M, et al. A deficit of detoxification enzymes pesticide sensitivity and environmental response in the honeybee[J]. Insect Molecular Biology, 2006,15(5):615-636.
[9] OAKESHOTT J G, JOHNSON RM, BERENBAUM MR, et al. Metabolic enzymes associated with xenobiotic and chemosensory responses inNasoniavitripennis[J]. Insect Molecular Biology, 2010,19(S1):147-163.
[10] TSUBOTA, TAKUYA S, MASARU O, et al. Genomic and phylogenetic analysis of insect carboxyl/cholinesterase genes[J]. Journal of Pesticide Science, 2010,35(3):310-314.
[11] RAMSEY J S, RIDER, DEAN S W, et al. Comparative analysis of detoxification enzymes inAcyrthosiphonpisumandMyzuspersicae[J]. Insect Molecular Biology, 2010,19(S2):155-164.
[12] RICHARDS, STEPHEN, GIBBS, et al. The genome of the model beetle and pestTriboliumcastaneum[J]. Nature, 2008,452,7190:949-955.
[13] YU Q Y, LU C, LI W L, et al. Annotation and expression of carboxylesterases in the silkworm,Bombyxmori[J]. BMC Genomics, 2009,10(1):553.
[14] YOU M S, YUE Z, HE W Y, et al. A heterozygous moth genome provides insights into herbivory and detoxification[J]. Nature Genetics, 2013,45(2):220-225.
[15] NEWCOMB R D, CAMPBELL P M, OLLIS D L, et al. A single amino acid substitution converts a carboxylesterase to an organophosphorus hydrolase and confers insecticide resistance on a blowfly [J]. Proceedings of the National Academy of Sciences, 1997,94(14):7464-7468.
[16] BARKER J S F, STARMER W T, MACINTYRE R J. Ecological and evolutionary genetics ofDrosophila[M]. New York: Plenum Publishing Corporation,1990
[17] KAMITA S G, HAMMOCK B D. Juvenile hormone esterase: biochemistry and structure[J]. Journal of Pesticide Science, 2010,35(3):265.
[18] 高希武.害蟲(chóng)抗藥性分子機(jī)制與治理策略[M].北京:科學(xué)出版社,2012:53-83.
[19] WEILL M, FORT P, BERTHOMIEU A, et al. A novel acetylcholinesterase gene in mosquitoes codes for the insecticide target and is non-homologous to the ace geneDrosophila[J]. Proceedings of the Royal Society of London. Series B: Biological Sciences, 2002,269(1504):2007-2016.
[20] KIM Y H, LEE S H. Which acetylcholinesterase functions as the main catalytic enzyme in the Class Insecta?[J]. Insect Biochemistry and Molecular Biology, 2013,43(1):47-53.
[21] OLIVERA S, RODRIGUEZ-ITHURRALDE D, HENLEY J M. Acetylcholinesterase promotes neurite elongation, synapse formation, and surface expression of AMPA receptors in hippocampal neurons[J]. Molecular and Cellular Neuroscience, 2003,23(1):96-106.
[22] BARTHALAY Y, HIPEAU-JACQUOTTE R, de la ESCALERA S, et al. Drosophila neurotactin mediates heterophilic cell adhesion[J]. The EMBO Journal, 1990,9(11):3603.
[23] AULD V J, FETTER R D, BROADIE K, et al. Gliotactin, a novel transmembrane protein on peripheral glia, is required to form the blood-nerve barrier inDrosophila[J]. Cell, 1995,81(5):757-767.
[24] OLSON P F, FESSLER L I, NELSON R E, et al. Glutactin, a novelDrosophilabasement membrane-related glycoprotein with sequence similarity to serine esterases[J]. The EMBO Journal, 1990,9(4):1219.
[25] BERGER R, HOFFMANN M, KELLER U. Molecular analysis of a gene encoding a cell-bound esterase fromStreptomyceschrysomallus[J]. Journal of Bacteriology, 1998,180(23):6396-6399.
[26] MONTELLA I R, SCHAMA R, VALLE D. The classification of esterases: an important gene family involved in insecticide resistance-A Review[J]. Memorias Do Instituto Oswaldo Cruz, 2012,107(4):437-449.
[27] JACKSON C J, LIU J W, CARR P D, et al. Structure and function of an insect α-carboxylesterase (αEsterase7) associated with insecticide resistance[J]. Proceedings of the National Academy of Sciences, 2013,110(25):10177-10182.
[28] CUI F, LIN Z, WANG H S, et al. Two single mutations commonly cause qualitative change of nonspecific carboxylesterases in insects[J]. Insect Biochemistry and Molecular Biology, 2011,41(1):1-8.
[29] RANSON H, N′GUESSAN R, LINES J, et al. Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control?[J]. Trends in Parasitology, 2011,27(2):91-98.
[30] LIMA E P, PAIVA M H S, de ARAJO A P, et al. Insecticide resistance inAedesaegyptipopulations from Ceará, Brazil[J]. Parasit Vectors, 2011,4(5).doi: 10.1186/1756-3305-4-5
[31] 劉洪霞,冷培恩,徐仁權(quán),等.白紋伊蚊溴氰菊酯抗性和敏感品系羧酸酯酶性質(zhì)比較[J].應(yīng)用昆蟲(chóng)學(xué)報(bào),2012,49(2):403-407.
[32] ZHANG L, GAO X W, LIANG P. Beta-cypermethrin resistance associated with high carboxylesterase activities in a strain of house fly,Muscadomestica(Diptera: Muscidae)[J]. Pesticide Biochemistry and Physiology, 2007,89(1):65-72.
[33] MATSUDA K, SAITO T. Insecticide susceptibility and carboxylesterase activity in leafminers (Diptera: Agromyzidae) and their associated hymenopteran parasitoids[J]. Crop Protection, 2014,55:50-54.
[34] 王光峰,張友軍,柏連陽(yáng),等.多殺菌素對(duì)甜菜夜蛾多酚氧化酶和羧酸酯酶的影響[J].農(nóng)藥學(xué)學(xué)報(bào),2003,5(2):40-46.
[35] 王業(yè)繼,趙景瑋.吡蟲(chóng)啉對(duì)小菜蛾阿維菌素藥劑敏感性影響的研究[J].武夷科學(xué),2007,23:25-28.
[36] 邢靜,梁沛,高希武.亞致死濃度氯蟲(chóng)苯甲酰胺對(duì)小菜蛾藥劑敏感度和解毒酶活性的影響[J].農(nóng)藥學(xué)報(bào),2011,13(5):464-470.
[37] SHI M J, LU P L, SHI X L, et al. Effect of insect-resistant transgenic maize on growth and development, utilization of nutrients and in vivo activity of the detoxification enzymes of the Asian corn borer,Ostriniafurnacalis(Lepidoptera: Pyralidae)[J]. European Journal of Entomology, 2011,108(4):547-552.
[38] WANG K Y, ZHANG Y, WANG H Y, et al. Influence of three diets on susceptibility of selected insecticides and activities of detoxification esterases ofHelicoverpaassulta(Lepidoptera: Noctuidae)[J]. Pesticide Biochemistry and Physiology, 2010,96(1):51-55.
[39] LI X C, SCHULER M A, BERENBAUM M R. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics[J]. Annual Review of Entomology, 2007,52:231-253.
[40] YANG S Y, WU H H, XIE J C, et al. Depressed performance and detoxification enzyme activities ofHelicoverpaarmigerafed with conventional cotton foliage subjected to methyl jasmonate exposure [J]. Entomologia Experimentalis et Applicata, 2013,147(2):186-195.
[41] TONG F, BLOOMQUIST J R. Plant essential oils affect the toxicities of carbaryl and permethrin againstAedesaegypti(Diptera: Culicidae)[J]. Journal of Medical Entomology, 2013,50(4):826-832.
[42] LONG M, LANGLEY C H. Natural selection and the origin of jingwei, a chimeric processed functional gene inDrosophila[J]. Science-New York Then Washington, 1993,260:91-95.
[43] CAMPBELL P M, NEWCOMB R D, RUSSELL R J, et al. Two different amino acid substitutions in the ali-esterase, E3, confer alternative types of organophosphorus insecticide resistance in the sheep blowfly,Luciliacuprina[J]. Insect Biochemistry and Molecular Biology, 1998,28(3):139-150.
[44] DE CARVALHO R A, LIMIA C E G, BASSET C, et al. Changes in the frequency of the G137D and W251S mutations in the carboxylesterase E3 gene ofCochliomyiahominivorax(Diptera: Calliphoridae) populations from Uruguay[J]. Veterinary Parasitology, 2010,170(3-4):297-301.
[45] NABESHIMA T, KOZAKI T, TOMITA T, et al. An amino acid substitution on the second acetylcholinesterase in the pirimicarb-resistant strains of the peach potato aphid,Myzuspersicae[J]. Biochemical and Biophysical Research Communications, 2003,307(1):15-22.
[46] WEILL M, LUTFALLA G, MOGENSEN K, et al. Comparative genomics: Insecticide resistance in mosquito vectors[J]. Nature, 2003,423,6936:136-137.
[47] TSAGKARAKOU A, NIKOU D, RODITAKIS E, et al. Molecular diagnostics for detecting pyrethroid and organophosphate resistance mutations in the Q biotype of the whiteflyBemisiatabaci(Hemiptera: Aleyrodidae)[J]. Pesticide Biochemistry and Physiology, 2009,94(2):49-54.
[48] YUAN L Z, WANG S L, ZHOU J C, et al. Status of insecticide resistance and associated mutations in Q-biotype of whitefly,Bemisiatabaci, from eastern China[J]. Crop Protection, 2012,31(1):67-71.
[49] LI F, HAN Z J. Mutations in acetylcholinesterase associated with insecticide resistance in the cotton aphid,AphisgossypiiGlover[J]. Insect Biochemistry and Molecular Biology, 2004,34(4):397-405.
[50] NABESHIMA T, MORI A, KOZAKI T, et al. An amino acid substitution attributable to insecticide-insensitivity of acetylcholinesterase in a Japanese encephalitis vector mosquito,Culextritaeniorhynchus[J]. Biochemical and Biophysical Research Communications, 2004,313(3):794-801.
[51] OAKESHOTT J G, DEVONSHIRE A L, CLAUDIANOS C, et al. Comparing the organophosphorus and carbamate insecticide resistance mutations in cholin-and carboxyl-esterases[J]. Chemico-Biological Interactions, 2005,157-158:269-275.
[52] BAEK J H, KIM, J I, LEE D W, et al. Identification and characterization of ace1-type acetylcholinesterase likely associated with organophosphate resistance inPlutellaxylostella[J]. Pesticide Biochemistry and Physiology, 2005,81(3):164-175.
[53] DEVONSHIRE A L, FIELD L M, FOSTER S P, et al. The evolution of insecticide resistance in the peach-potato aphid,Myzuspersicae[J]. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 1998,353,1376:1677-1684.
[54] SMALL G J, HEMINGWAY J. Molecular characterization of the amplified carboxylesterase gene associated with organophosphorus insecticide resistance in the brown planthopper,Nilaparvatalugens[J]. Insect Molecular Biology, 2000,9(6):647-653.
[55] ZHANG H Y, MENG F X, QIAO C L, et al. Identification of resistant carboxylesterase alleles inCulexpipienscomplex via PCR-RFLP[J]. Parasites and vectors, 2012,5(1):1207-1215.
[56] DABORN P J, LUMB C, HARROP T W R, et al. UsingDrosophilamelanogasterto validate metabolism-based insecticide resistance from insect pests[J]. Insect Biochemistry and Molecular Biology, 2012,42(12):918-924.
[57] KUMAR M, GUPTA G P, RAJAM M V. Silencing of acetylcholinesterase gene ofHelicoverpaarmigeraby siRNA affects larval growth and its life cycle[J]. Journal of Insect Physiology, 2009,55(3):273-278.
[58] ZHANG J Q, LI D Q, GE P T, et al. RNA interference revealed the roles of two carboxylesterase genes in insecticide detoxification inLocustamigratoria[J]. Chemosphere, 2013,93(6):1207-1215.
[59] GONG L, CHEN Y, HU Z, et al. Testing insecticidal activity of novel chemically synthesized siRNA againstPlutellaxylostellaunder laboratory and field conditions[J]. Plos One, 2013,8(5):e62990.
[60] PAN Y O, GUO H L, GAO X W. Carboxylesterase activity, cDNA sequence, and gene expression in malathion susceptible and resistant strains of the cotton aphid,Aphisgossypii[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2009,152(3):266-270.
[61] PAN Y O, SHANG Q L, FANG K, et al. Down-regulated transcriptional level ofAce1 combined with mutations inAce1 andAce2 ofAphisgossypiiare related with omethoate resistance[J]. Chemico-biological interactions, 2010,188(3):553-557.
[62] ZHANG L, SHI J, SHI XY, et al. Quantitative and qualitative changes of the carboxylesterase associated with beta-cypermethrin resistance in the housefly,Muscadomestica(Diptera: Muscidae)[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2010,156(1):6-11.
[63] ZHANG Y L, LI S, XU L, et al. Overexpression of carboxylesterase-1 and mutation (F439H) of acetylcholinesterase-1 are associated with chlorpyrifos resistance inLaodelphaxstriatellus[J]. Pesticide Biochemistry and Physiology, 2013,106(1-2):8-13.
[64] CARVALHO R A, OMOTO C, FIELD L M, et al. Investigating the molecular mechanisms of organophosphate and pyrethroid resistance in the fall armywormSpodopterafrugiperda[J]. PLoS One, 2013,8(4):e62268.
(責(zé)任編輯:吳顯達(dá))
An overview on the study of insect carboxylesterases (COEs) and the COE-mediated resistance to insecticides
REN Na-na, XIE Miao, YOU Yan-chun, YOU Min-sheng
(1.Institute of Applied Ecology, Fujian Agriculture and Forestry University; 2.Key Laboratory of Integrated Pest Management of Fujian and Taiwan, China Ministry of Agriculture; 3.Provincial Key Laboratory of Insect Ecology, Fuzhou, Fujian 350002, China)
This review article presents an overview on the study of insect COEs, involving the subfamily-based classification, topological structure, metabolic mechanism, and COEs-mediated insecticides resistance. so as to provide a solid foundation for further investigation of the mechanism of COEs-mediated insecticide resistance.
carboxylesterase; subfamily-based classification; mediated resistance; metabolic detoxification
2014-05-07
2014-06-16
國(guó)家自然科學(xué)基金項(xiàng)目(31230061、31320103922).
任娜娜(1988-),女,碩士研究生.研究方向:農(nóng)業(yè)昆蟲(chóng)與害蟲(chóng)防治.Email:biluochangkong@163.com.通訊作者尤民生(1954-),男,教授,博士生導(dǎo)師.研究方向:昆蟲(chóng)生態(tài)與害蟲(chóng)綜合治理.Email:msyou@iae.fjau.edu.cn.
S481.4
A
1671-5470(2014)04-0337-08