祝亞男, 彭建堂, 劉升友, 孫玉珍
?
湘西沃溪礦床中黑鎢礦的地質(zhì)特征及微量元素地球化學(xué)
祝亞男1,2, 彭建堂1,3*, 劉升友4, 孫玉珍4
(1. 中國科學(xué)院 地球化學(xué)研究所 礦床地球化學(xué)國家重點(diǎn)實(shí)驗(yàn)室, 貴州 貴陽?550002; 2. 中國科學(xué)院大學(xué), 北京?100049; 3. 中南大學(xué) 有色金屬成礦預(yù)測教育部重點(diǎn)實(shí)驗(yàn)室, 地球科學(xué)與信息物理學(xué)院, 湖南 長沙?410083; 4.湖南辰州礦業(yè)股份有限公司, 湖南 沅陵?419607)
礦床地質(zhì); 微量元素地球化學(xué); 黑鎢礦; 沃溪Au-Sb-W礦床; 湘西
華南是世界上最重要的鎢礦集中區(qū), 已探明的WO3儲(chǔ)量約占世界總儲(chǔ)量的90%。華南鎢礦集中產(chǎn)在南嶺地區(qū), 主要是與花崗巖有關(guān)的石英脈型鎢礦和夕卡巖型鎢礦; 其次產(chǎn)于江南古陸的雪峰山-幕阜山構(gòu)造帶內(nèi), 主要是與巖漿活動(dòng)關(guān)系不明顯的層控型鎢礦[1]。相對(duì)南嶺鎢礦而言, 雪峰山一帶的鎢礦床研究程度較低。
在雪峰山一帶, 鎢礦化常與金、銻礦化相伴, 形成W-Au-Sb、W-Au和W-Sb等元素組合。除個(gè)別礦床與花崗巖有關(guān)外, 該區(qū)絕大部分鎢礦為與巖漿活動(dòng)無關(guān)的層控型鎢礦床, 如沃溪Au-Sb-W礦床、渣滓溪和曾家溪W-Sb礦床以及西安W-Au礦床等, 鎢礦體均受一定地層層位控制, 層控特征十分明顯。該區(qū)鎢礦床中的含鎢礦物主要為白鎢礦, 僅在沃溪礦區(qū)西部礦段(紅巖溪及魚兒山)發(fā)現(xiàn)有黑鎢礦產(chǎn)出。近年來, 人們已對(duì)該區(qū)沃溪、渣滓溪和廖家坪等鎢礦床中的白鎢礦進(jìn)行了較多的地球化學(xué)研究[2–9], 但目前涉及該區(qū)黑鎢礦的研究甚少, 有關(guān)其產(chǎn)出的具體地質(zhì)特征也不太清楚。本次研究在野外詳細(xì)調(diào)研的基礎(chǔ)上, 總結(jié)了沃溪魚兒山一帶黑鎢礦的地質(zhì)特征, 并對(duì)其進(jìn)行了微量元素分析, 試圖通過研究該礦黑鎢礦的稀土和微量元素組成, 來揭示該礦成礦物質(zhì)來源及成礦機(jī)理, 并探討其成礦過程中稀土元素分配的制約因素。
沃溪Au-Sb-W礦床位于湖南省的西部, 其大地構(gòu)造位置處于揚(yáng)子板塊與華夏板塊過渡帶中的雪峰弧形構(gòu)造隆起帶的轉(zhuǎn)折部位(圖1), 是雪峰山地區(qū)規(guī)模最大、也是最具代表性的礦床。除零星分布的震旦系(Z)、第四系(Q)和少量的上白堊統(tǒng)(K2)陸相紅色礫巖外, 礦區(qū)內(nèi)主要出露元古界冷家溪群(Pt2lj)和板溪群(Pt3bn)一套巨厚的淺變質(zhì)海相沉積粘土巖、碎屑巖(圖2a)。其中板溪群可劃分為馬底驛組(Pt3bnm)和上覆的五強(qiáng)溪組(Pt3bnw), 兩者以沃溪大斷層為界呈斷層接觸(圖2a)。區(qū)內(nèi)次級(jí)層間斷裂受褶皺影響, 與沃溪斷層呈“入”字型構(gòu)造相交(圖2a), 均發(fā)育于馬底驛組紫紅色絹云母板巖中, 具有多期活動(dòng)的特征。礦脈主要充填于次級(jí)層間斷裂中, 其規(guī)模和形態(tài)受這些斷裂控制[11–12]。礦區(qū)及其外圍無巖漿巖出露。自西向東, 沃溪礦區(qū)可劃分為紅巖溪、魚兒山、栗家溪、十六棚公和上沃溪5個(gè)礦段(圖2a)。其中, 紅巖溪和魚兒山礦段鎢的礦物相以黑鎢礦為主, 而十六棚公和上沃溪兩礦段, 基本上都是白鎢礦。本次工作重點(diǎn)對(duì)魚兒山礦段的黑鎢礦進(jìn)行研究。
圖1?湘西雪峰弧形構(gòu)造帶地質(zhì)簡圖(據(jù)文獻(xiàn)[8])
圖2?沃溪礦區(qū)地質(zhì)簡圖(a, 據(jù)文獻(xiàn)[10]修改)及魚兒山礦段剖面圖(b, 據(jù)文獻(xiàn)[11])
在魚兒山礦段目前僅見一條礦脈, 該礦脈賦存于板溪群馬底驛組紫紅色板巖頂部緊靠沃溪斷層下部的破碎帶中, 由含礦石英脈和蝕變板巖中的脈帶組成(圖2b)。按其產(chǎn)出形態(tài), 該區(qū)鎢礦脈可分為較規(guī)則的主脈、層間支脈及各種形式的節(jié)理脈(圖3a—圖3d)。主脈順層產(chǎn)出, 走向近東西, 傾向北, 傾角30°左右, 傾斜延深可達(dá)走向延長的10余倍; 主要呈扁豆?fàn)? 沿走向傾斜呈尖滅再現(xiàn), 尖滅地段為石英細(xì)脈帶、含礦蝕變板巖或斷層泥線連接(圖3a)。層間支脈大體與主脈平行, 也可與主脈呈銳角相交, 走向北西西, 傾向北北東; 這類脈體通常延伸較長且產(chǎn)狀穩(wěn)定, 礦脈主要由黑鎢礦和石英組成, 并往往具有礦物分帶性, 即與圍巖接觸的脈體兩側(cè)常為黑鎢礦, 而脈體中間主要為石英(圖3a)。節(jié)理脈由成礦物質(zhì)沿蝕變巖中各種節(jié)理裂隙沉淀而成, 表現(xiàn)為各種脈狀、網(wǎng)脈狀和不規(guī)則狀的鎢礦脈(圖3b—圖3d), 是該區(qū)最常見的黑鎢礦產(chǎn)出形式。圖3b中可見一組近于直立的剪節(jié)理被熱液礦物填充, 這些節(jié)理脈既可以是石英脈、也可以是黑鎢礦礦脈, 或由石英脈和黑鎢礦礦脈交替出現(xiàn); 這類脈體與圍巖的接觸界線十分平整, 脈體寬度也相當(dāng)穩(wěn)定, 不同方向交錯(cuò)的脈體常形成網(wǎng)脈。而發(fā)育于張性裂隙中的黑鎢礦礦脈, 其與兩側(cè)圍巖接觸界線不平整, 通常呈波狀起伏, 脈體寬窄不一且延伸較短, 不同方向交錯(cuò)的脈體往往呈網(wǎng)脈狀和不規(guī)則狀(圖3d)。在主脈中, 黑鎢礦主要與石英和輝銻礦共生; 而在支脈和節(jié)理脈中, 黑鎢礦與石英共生, 且黑鎢礦含量很高, 特別是充填于張性裂隙中的礦脈, 黑鎢礦的含量可高達(dá)80%~90%以上(圖3c、圖3d)。在整個(gè)魚兒山礦段, 黑鎢礦礦脈相互切割現(xiàn)象較普遍, 如圖3b中的網(wǎng)脈狀黑鎢礦, 明顯被近于直立的節(jié)理脈錯(cuò)斷并發(fā)生了位移; 圖3c也可見一組黑鎢礦礦脈被另外一組黑鎢礦礦脈錯(cuò)斷。因此, 該區(qū)應(yīng)存在多階段的鎢礦化。
沃溪礦床的黑鎢礦呈褐黑色, 條痕為褐色; 金屬光澤。該區(qū)的鎢礦石構(gòu)造主要有4種: (1)條帶狀構(gòu)造: 由黑鎢礦、白鎢礦和石英組成, 這些礦物往往平行脈壁呈條帶狀產(chǎn)出, 有時(shí)亦可見蝕變圍巖呈殘余條帶狀、角礫狀分布于脈體中(圖4a); (2)梳狀構(gòu)造: 黑鎢礦、毒砂晶體垂直于脈體兩壁向中間生長(圖4b); (3)網(wǎng)脈狀構(gòu)造: 常見于含礦蝕變板巖中, 由黑鎢礦細(xì)脈沿幾組相互交錯(cuò)的裂隙充填構(gòu)成(圖4c); (4)斑雜狀構(gòu)造: 黑鎢礦、毒砂和黃鐵礦呈不規(guī)則集合體分布于石英中(圖4d)。這些礦石構(gòu)造表現(xiàn)出明顯的熱液充填成礦特征。
圖3?沃溪魚兒山黑鎢礦礦脈的產(chǎn)出方式
(a) 順層礦脈; (b) 近直立的節(jié)理脈及垂直交叉的網(wǎng)脈; (c) 不同方向交叉的節(jié)理脈; (d) 不規(guī)則狀細(xì)脈
(a) Bedding veins; (b) vertical nearly joint vein and veinlets intersected at right angles; (c) veinlets intersected within different orientation; (d) irregular veinlets
礦石的結(jié)構(gòu)以粒狀結(jié)構(gòu)為主, 次為碎裂結(jié)構(gòu)、交代結(jié)構(gòu)、包含結(jié)構(gòu)及環(huán)帶結(jié)構(gòu)(圖4e—圖4l)。黑鎢礦呈不同粒徑的自形-半自形晶產(chǎn)出, 主要與毒砂、黃鐵礦、白鎢礦、菱鐵礦及少量閃鋅礦共生, 其碎裂結(jié)構(gòu)較發(fā)育。毒砂與黑鎢礦關(guān)系密切, 兩者常呈浸染狀及細(xì)脈狀分布于石英脈中, 有時(shí)可見相互包裹現(xiàn)象(圖4e—圖4g)。黃鐵礦與黑鎢礦共生, 呈浸染狀產(chǎn)于石英脈及近礦蝕變圍巖中, 普遍發(fā)育有環(huán)帶結(jié)構(gòu)(圖4h)。白鎢礦與黑鎢礦共生或交代黑鎢礦(圖4i)。菱鐵礦存在早、晚兩期, 早期菱鐵礦晶形較好, 與黑鎢礦共生, 呈碎裂結(jié)構(gòu)(圖4j); 晚期菱鐵礦結(jié)晶差, 多與晚期石英共同充填于黑鎢礦裂隙中(圖4k)。本次觀察未發(fā)現(xiàn)黑鎢礦與自然金、輝銻礦有直接接觸關(guān)系。
本次研究對(duì)樣品YRS-7及YRS-9的能譜分析表明, 沃溪礦區(qū)黑鎢礦的WO3含量為75.75%~78.30%, FeO含量為14.90%~17.84%, MnO為8.37%~13.74%。最近的波譜分析也顯示[14], 該區(qū)黑鎢礦中WO3含量為73.76%~76.87%, 平均值為75.66%, 略小于其理論值(76.46%); FeO含量為13.06%~23.36%, MnO為1.37%~ 11.00%, 與本次研究的能譜分析結(jié)果十分吻合。
從圖5可看出, 黑鎢礦無論是產(chǎn)于南嶺地區(qū)鎢礦床中或是沃溪礦床中, 其FeO和MnO均具有很好的負(fù)相關(guān)關(guān)系(圖5); 但與南嶺黑鎢礦相比, 沃溪黑鎢礦中FeO含量明顯偏高, 而MnO含量明顯偏低(圖5), 其黑鎢礦以鎢鐵礦和含錳鎢鐵礦為主。沃溪黑鎢礦的顏色很深, 也正是其含鐵高的反映。
本次用于微量元素測試的礦石及蝕變圍巖樣品均采自礦區(qū)坑道新鮮工作面上, 除W-2采自上沃溪礦段外, 其余均采自魚兒山礦段。具體的采樣位置及樣品特征見表1。
圖4?沃溪黑鎢礦礦石構(gòu)造特征及礦物組合
(a)條帶狀構(gòu)造; (b)梳狀構(gòu)造; (c)網(wǎng)脈狀構(gòu)造; (d)斑雜狀構(gòu)造; (e)黑鎢礦與毒砂、黃鐵礦的粒狀結(jié)構(gòu); (f,g)黑鎢礦與毒砂的包含結(jié)構(gòu); (h)黃鐵礦的環(huán)帶結(jié)構(gòu); (i)白鎢礦與黑鎢礦的交代結(jié)構(gòu); (j)黑鎢礦與毒砂、菱鐵礦共生; (k)菱鐵礦與晚期石英充填在黑鎢礦裂隙中; (l)閃鋅礦包裹黑鎢礦。Wol-黑鎢礦; Sch-白鎢礦; Q-石英; Apy-毒砂; Py-黃鐵礦; Sd-菱鐵礦
(a) banded structure; (b) comb structure; (c) stockwork structure; (d) spotted structure; (e) euhedral to subhedral crystalline grained texture of wolframite, arsenopyrite and pyrite; (f,g) poikilitic texture of wolframite and arsenopyrite; (h) zonal texture of pyrite; (i) metasomatic relict texture of wolframite; (j) wolframiteintergrown with arsenopyrite and siderite; (k) siderite and quartz in the fissure of wolframite; (l) poikilitic texture of wolframite and sphalerite. Wol-wolframite; Sch-scheelite; Q-quartz; Apy-arsenopyrite; Py-pyrite; Sd-siderite
在系統(tǒng)的野外和室內(nèi)觀察的基礎(chǔ)上, 將巖石樣品直接碎至200目; 而黑鎢礦與白鎢礦則先碎至100~140目左右, 利用重選的方法將其初步富集, 然后在雙目鏡下將雜質(zhì)剔除, 使黑鎢礦與白鎢礦的純度達(dá)到99%以上, 最后將純凈的樣品研磨至200目。所有樣品在研磨之前均用超純水和無水乙醇依次清洗, 以除去礦物表面可能吸附的雜質(zhì)。樣品的稀土和微量元素分析在國土資源部國家地質(zhì)實(shí)驗(yàn)測試中心完成。首先稱取0.0500 g樣品于封閉溶樣裝置中, 加入適量HF和HNO3, 在低溫電熱板上蒸干。待冷卻后再分別加入適量HF和HNO3, 加蓋密閉后放入200 ℃的烘箱中, 加熱12 h以上。爾后, 取出, 冷卻后去蓋, 加入0.5 mL 1 μg/mL 的Rh內(nèi)標(biāo)溶液, 在電熱板上蒸干后加入1 mL HNO3再蒸干, 重復(fù)一次。最后殘?jiān)? mL 40% HNO3在140 ℃封閉溶解3 h, 取出, 冷卻后將溶液轉(zhuǎn)移至10 mL試管中, 搖勻, 待測。樣品采用等離子體質(zhì)譜儀測定, 對(duì)微量元素和稀土元素的檢測下限為0.×10–9~×10–9, 分析誤差一般小于5%。樣品的稀土元素及其他微量元素?cái)?shù)據(jù)列于表1。
圖5?沃溪黑鎢礦與南嶺石英脈型黑鎢礦的 MnO-FeO關(guān)系圖
沃溪礦床數(shù)據(jù)來自文獻(xiàn)[14], YRS-9及YRS-7數(shù)據(jù)來自本次能譜測試分析, 南嶺鎢礦數(shù)據(jù)來自文獻(xiàn)[15–23]
沃溪礦區(qū)不同礦段、不同產(chǎn)狀黑鎢礦的稀土元素的含量變化不大, 其(REE+Y)總量均很低, 僅為1.62~4.58 μg/g, 遠(yuǎn)低于湘西區(qū)域板巖及蝕變圍巖(表1), 也明顯低于該礦白鎢礦的稀土元素含量[4]。該區(qū)黑鎢礦的(La/Yb)N值為0.25~1.00, (La/Sm)N值為1.24~2.87, (Gd/Yb)N值為0.21~0.72, 表明其略富集重稀土元素, 且輕稀土元素之間比重稀土元素之間分餾更明顯, 這與近礦蝕變板巖和區(qū)域板巖的富輕稀土特征明顯不同(表1)。該區(qū)黑鎢礦的Sm/Nd值為0.21~0.61, 明顯大于該區(qū)蝕變圍巖和區(qū)域板巖(表1), 但顯著小于沃溪礦區(qū)的白鎢礦, 后者的Sm/Nd值通常大于1.0, 部分達(dá)到2.0以上[2,4]。
根據(jù)前人的研究工作[26–27], 對(duì)于大部分稀土元素的異常程度, 可按照公式來計(jì)算:
REE/REE*=2[REE]/([REE]-1+[REE]+1)
(= 1, 2, 3, …, 15) (1)
由于自然界中尚未發(fā)現(xiàn)Pm, 故Nd和Sm的異常程度的計(jì)算公式為:
Nd/Nd*=3[Nd]/([Sm]+2[Pr]) (2)
Sm/Sm*=3[Sm]/([Nd]+2[Eu]) (3)
其中[REE]為球粒隕石標(biāo)準(zhǔn)化值,為各稀土元素在鑭系元素中的順序??紤]到計(jì)算La、Lu異常程度的誤差較大, 這里將不予討論。結(jié)果表明, 沃溪黑鎢礦中稀土元素普遍具有中-弱的負(fù)Eu異常(0.59~0.89)、或正或負(fù)Sm異常(0.72~1.51)及正Tb異常(1.08~1.43), 而Ce異常不明顯(0.95~1.01)。
從圖6中可以看出, 魚兒山礦區(qū)與黑鎢礦共生的白鎢礦, 和沃溪坑口單獨(dú)產(chǎn)出的白鎢礦的分布模式曲線相當(dāng)吻合, 均表現(xiàn)為MREE富集、向上拱曲的形狀, 具熱液成因白鎢礦的典型特征[28], 并也存在明顯的M型四分組效應(yīng)[4]。
圖6?沃溪白鎢礦的REE分布模式
YRS-8-Sch數(shù)據(jù)見表1, 其余數(shù)據(jù)來自文獻(xiàn)[4]
該區(qū)黑鎢礦的稀土元素分布模式明顯不同于礦區(qū)蝕變圍巖和區(qū)域板巖, 后兩者均為LREE富集型的右傾曲線(圖7); 黑鎢礦的MREE相對(duì)富集的特征與該區(qū)的白鎢礦類似, 但其LREE和HREE的分配趨勢, 則明顯不同于白鎢礦(圖7)。此外, 盡管沃溪黑鎢礦與南嶺石英脈型鎢礦床中的黑鎢礦相似, 均為重稀土富集型且具有不同程度的Eu負(fù)異常, 但后者的稀土元素含量顯著高于沃溪礦床(圖8)。
由于本次實(shí)驗(yàn)測試的黑鎢礦樣品在顯微鏡及掃描電鏡下均未發(fā)現(xiàn)其晶體內(nèi)含有REE礦物微粒, 故REE很可能存在于黑鎢礦的流體包裹體中, 或以類質(zhì)同像進(jìn)入了黑鎢礦晶格。干國梁等[30]在研究廣西都龐嶺地區(qū)錫礦床中的黑鎢礦時(shí)認(rèn)為, 黑鎢礦中REE以替換晶格中W6+的形式存在, 且受離子半徑影響, HREE較LREE更易進(jìn)入黑鎢礦中。這種認(rèn)識(shí)與黑鎢礦中富HREE而貧LREE的特征相符。但是, 對(duì)沃溪黑鎢礦(甚至一些南嶺石英脈型鎢礦床的黑鎢礦)而言, 其不僅具有HREE相對(duì)富集的特點(diǎn), 更表現(xiàn)出明顯的MREE相對(duì)富集的特征(圖7)。因此, REE的離子半徑不應(yīng)是控制其在沃溪黑鎢礦中分配的惟一因素。
值得注意是, 與該區(qū)白鎢礦的M型稀土四分組型式不同[4], 該區(qū)黑鎢礦的稀土元素分布模式曲線為一種近水平余弦曲線型(圖8)。這種特殊的稀土組成與趙振華等[24]報(bào)道的MW復(fù)合型四分組效應(yīng)很類似, 即在1個(gè)樣品中同時(shí)出現(xiàn)W型和M型稀土四分組型式。為了便于定量判斷稀土元素四分組效應(yīng)的程度,Irber[25]提出了一個(gè)判別參數(shù)TE1,3, 當(dāng)TE1,3為1時(shí), 表明沒有四分組效應(yīng); 而當(dāng)其大于1時(shí), 表明存在四分組現(xiàn)象。我們的計(jì)算表明, 除YRS-2和YRS-8的TE1,3稍大于1.0外, 沃溪礦區(qū)黑鎢礦樣品的TE1,3均大于1.1, 指示其確實(shí)存在明顯的四分組效應(yīng)。各四分組亞組型式可參考趙振華等[24]提出的BN/B*、CN/C*(如Ce/Ce*、Pr/Pr*), 計(jì)算(BN/B*× CN/C*)0.5值判斷, 當(dāng)該值大于1時(shí), 曲線上凸, 為M型; 小于1時(shí), 則曲線下凹, 為W型。從圖7及表1均可看出, 沃溪黑鎢礦稀土元素四分組的第一亞組和第四亞組的W型和M型均較弱, 而第三亞組的M型較明顯。
圖7?湘西區(qū)域板巖與沃溪白鎢礦、黑鎢礦、蝕變圍巖REE分布模式對(duì)比
巖石、黑鎢礦及YRS-8-Sch數(shù)據(jù)見表1, 其余數(shù)據(jù)來自文獻(xiàn)[4]
圖8?沃溪礦床與南嶺石英脈型鎢礦床中黑鎢礦 REE分布模式對(duì)比
沃溪黑鎢礦數(shù)據(jù)見表1, 大吉山黑鎢礦數(shù)據(jù)來自文獻(xiàn)[23], 其他南嶺石英脈型鎢礦床(8個(gè))的黑鎢礦數(shù)據(jù)來自文獻(xiàn)[29]
目前已有的研究認(rèn)為, 自然界中形成稀土四分組效應(yīng)的控制因素可能包括:高演化巖漿體系中非 CHARAC 微量元素行為[31]、熔體-流體相互作用[32]、某些稀土副礦物(如獨(dú)居石等)的結(jié)晶作用[33]、水-巖相互作用[34]以及絡(luò)合物的不穩(wěn)定性[25,35]。湘西一帶巖漿活動(dòng)微弱, 沃溪礦區(qū)沒有巖漿巖出露, 且該區(qū)黑鎢礦的稀土元素特征明顯有別于南嶺地區(qū)與花崗巖有關(guān)的黑鎢礦(圖8), 因此, 該區(qū)黑鎢礦的四分組效應(yīng)應(yīng)該與巖漿演化無關(guān)。其次, 該區(qū)與黑鎢礦共生的礦物主要為石英、毒砂及碳酸鹽類礦物(如菱鐵礦), 并未發(fā)現(xiàn)獨(dú)居石等對(duì)稀土元素具有選擇性配分的礦物; 就與白鎢礦共生的YRS-8樣品而言, 其REE含量及配分特征均與其他樣品一致, 并且假如富MREE的白鎢礦的沉淀對(duì)黑鎢礦中REE的配分產(chǎn)生影響, 則黑鎢礦應(yīng)表現(xiàn)出MREE明顯虧損的特征, 顯然與測試數(shù)據(jù)不符, 這也說明礦物結(jié)晶作用產(chǎn)生的稀土分餾, 也不應(yīng)導(dǎo)致沃溪礦床黑鎢礦中稀土元素產(chǎn)生四分組效應(yīng)。此外, 蝕變圍巖與區(qū)域板巖之間稀土元素含量及分布模式均無明顯變化, 暗示盡管成礦流體與圍巖發(fā)生了強(qiáng)烈的蝕變作用(蝕變很發(fā)育且W、Sb等在蝕變圍巖中富集), 但水-巖作用對(duì)穩(wěn)定性較強(qiáng)的元素影響不大(如Zr、Hf、REE等), 故水-巖反應(yīng)導(dǎo)致該區(qū)黑鎢礦發(fā)生REE四分組效應(yīng)的可能性很小。因此沃溪礦區(qū)成礦流體自身的組成特點(diǎn), 即REE絡(luò)合物的種類及其穩(wěn)定性可能才是導(dǎo)致REE四分組效應(yīng)產(chǎn)生的主要因素。
自Debaar.[36]首次發(fā)現(xiàn)Gd、Tb異常以來,很多學(xué)者也相繼報(bào)道了除Eu和Ce以外的其他稀土元素的異常[26,37,38]。研究表明, 這些異??赡懿⒎橇黧w氧化還原性質(zhì)的反映, 而是受元素自身絡(luò)合物穩(wěn)定性強(qiáng)弱的控制, 這種穩(wěn)定性甚至還可能產(chǎn)生四分組效應(yīng)[35]。就沃溪黑鎢礦而言, 其Eu異常與TE1,3無明顯相關(guān)性, 并且與黑鎢礦共生的礦物中未見長石等可能造成Eu異常的礦物, 表明成礦時(shí)所處的還原性條件應(yīng)是造成Eu異常的主要因素。同時(shí), Sm/Sm*與Eu/Eu*較好的相關(guān)性說明氧逸度可能也是造成Sm異常的一個(gè)重要因素(圖9)。而Gd/Gd*、Tb/Tb*與Eu/Eu*無明顯的相關(guān)性, 但與TE1,3相關(guān)較強(qiáng)(圖10), 暗示其與稀土元素發(fā)生四分組效應(yīng)機(jī)理類似, 成礦流體中REE絡(luò)合物穩(wěn)定性的差異可能是造成Gd、Tb異常的關(guān)鍵。
圖9?沃溪黑鎢礦的Sm/Sm*與Eu/Eu*關(guān)系圖
圖10?沃溪黑鎢礦的Gd/Gd*、Tb/Tb*與TE1, 3關(guān)系
沃溪黑鎢礦中Sc的含量很高, 可達(dá)76.1~155 μg/g(表1), 明顯高于區(qū)域板巖及蝕變圍巖, 也遠(yuǎn)高于上陸殼的平均值(14.0 μg/g,Rudnick et al.[39])。而其Nb(0.155~1.48 μg/g)和Ta(0.020~0.053 μg/g)的含量, 則明顯低于區(qū)域板巖及蝕變圍巖(表1)。與南嶺大吉山黑鎢礦相比, 沃溪黑鎢礦的Sc含量很高, Nb與Ta含量很低。
綜上所述, 湘西沃溪黑鎢礦礦床, 與巖漿活動(dòng)關(guān)系不大, 明顯有別于南嶺地區(qū)的黑鎢礦礦床。南嶺地區(qū)的黑鎢礦主要產(chǎn)于與花崗巖有關(guān)的石英脈型鎢礦床中。沃溪黑鎢礦礦床和南嶺石英脈型鎢礦床在地質(zhì)特征及黑鎢礦微量元素地球化學(xué)特征上均存在明顯的差別(表2)。
(1)在成礦元素組合、礦體特征、賦礦層位、礦物組合、黑鎢礦的主量及微量元素組成等方面, 沃溪礦床均明顯不同于南嶺地區(qū)與花崗巖有關(guān)的石英脈型鎢礦床。該區(qū)黑鎢礦礦體主要由順層的含礦石英脈及蝕變巖中的各種節(jié)理脈組成, 表現(xiàn)出多階段成礦和明顯的熱液充填特征, 與巖漿活動(dòng)無關(guān)。
(2)沃溪黑鎢礦以鎢鐵礦和含錳鎢鐵礦為主; 與南嶺石英脈型鎢礦床中的黑鎢礦相比, 沃溪黑鎢礦的FeO含量明顯偏高而MnO含量明顯偏低。
(3)該區(qū)黑鎢礦中REE含量均很低, 遠(yuǎn)低于南嶺石英脈型鎢礦床中的黑鎢礦; 其稀土元素分布模式較獨(dú)特, 表現(xiàn)為近水平的余弦曲線, 具有較明顯的MW復(fù)合型稀土元素四分組效應(yīng)。
(4)該區(qū)黑鎢礦除顯示中-弱的負(fù)Eu異常外, 還存在不常見的Sm、Gd和Tb異常, 其Eu、Sm異常與成礦流體的氧逸度有關(guān), 而Gd、Tb異常則可能主要受流體中絡(luò)合物穩(wěn)定性的控制。
圖11?沃溪黑鎢礦Y-Ho關(guān)系圖
圖中Cl代表球粒隕石的Y/Ho比值(28)
Cl–the line represented chondritic Y/Ho ratio of 28
圖12?湘西區(qū)域板巖與沃溪蝕變圍巖、黑鎢礦及大吉山黑鎢礦的Y/Ho-Zr/Hf圖解
表2?沃溪礦床與南嶺石英脈型鎢礦床的特征對(duì)比
Table 2?Characteristics of the Woxi deposit vs. the quartz vein-type tungsten deposit in the Nanling Range
(5)與南嶺石英脈型鎢礦床中的黑鎢礦比較, 該區(qū)黑鎢礦表現(xiàn)出Sc很高, Nb、Ta較低的特點(diǎn)。這種高Sc特征可能是成礦流體對(duì)該區(qū)深部巖石的淋濾所致, 而低Nb、Ta則可能主要與該區(qū)黑鎢礦弱堿性、弱還原性的形成環(huán)境有關(guān)。
野外工作得到了湖南辰州礦業(yè)股份有限公司的大力支持; 室內(nèi)工作得到田亞洲博士和蔡伊博士的很多幫助; 審稿者提供了寶貴的修改意見, 在此一并致以誠摯的謝意!
[1] 冶金部南嶺鎢礦專題組. 華南鎢礦[M]. 北京: 冶金工業(yè)出版社, 1985: 1–496.
Research Group on Tungsten Deposits in the Nanling Range, Ministry of Metallurgical Industry of China. Tungsten Deposits in Southern China[M]. Beijing: Metallurgical Industry Press, 1985: 1–496 (in Chinese).
[2] 彭建堂, 胡瑞忠, 趙軍紅, 符亞洲, 林源賢. 湘西沃溪Au-Sb-W礦床中白鎢礦Sm-Nd和石英Ar-Ar定年[J]. 科學(xué)通報(bào), 2003, 48(18): 1976–1981.
Peng Jiantang, Hu Ruizhong, Zhao Junhong, Fu Yazhou, Lin Yuanxian. Scheelite Sm-Nd dating and quartz Ar-Ar dating from Woxi Au-Sb-W deposit, western Hunan[J]. Chinese Sci Bull, 2003, 48(23): 2640–2646.
[3] 彭建堂, 胡瑞忠, 趙軍紅, 符亞洲. 湘西沃溪Au-Sb-W礦床中富放射成因鍶的成礦流體及其指示意義[J]. 礦物巖石地球化學(xué)通報(bào), 2003, 22(3): 193–196.
Peng Jian-tang, Hu Rui-zhong, Zhao Jun-hong, Fu Ya-zhou. The ore-forming fluid with a marked radiogenic87Sr signature from the Woxi Au-Sb-W deposit and its significant implication[J]. Bull Mineral Petrol Geochem, 2003, 22(3): 193–196 (in Chinese with English abstract).
[4] 彭建堂, 胡瑞忠, 趙軍紅, 符亞洲, 袁順達(dá). 湘西沃溪金銻鎢礦床中白鎢礦的稀土元素地球化學(xué)[J]. 地球化學(xué), 2005, 34(2): 115–122.
Peng Jian-tang, Hu Rui-zhong, Zhao Jun-hong, Fu Ya-zhou, Yuan Shun-da. Rare earth element (REE) geochemistry for scheelite from the Woxi Au-Sb-W deposit, western Hunan[J]. Geochimica, 2005, 34(2): 115–122 (in Chinese with English abstract).
[5] 彭建堂, 張東亮, 胡瑞忠, 吳夢君, 柳小明, 漆亮, 虞有光. 湘西渣滓溪鎢銻礦床白鎢礦中稀土元素的不均勻分布及其地質(zhì)意義[J]. 地質(zhì)論評(píng), 2010, 56(6): 810–819.
Peng Jian-tang, Zhang Dong-liang, Hu Rui-zhong, Wu Meng-jun, Liu Xiao-ming, Qi Liang, Yu You-guang. Inhomogeneous distribution of rare earth elements (REEs) in scheelite from the Zhazixi W-Sb deposit, Western Hunan and its geological implications[J]. Geol Rev, 2010, 56(6): 810–819 (in Chinese with English abstract).
[6] 彭建堂, 張東亮, 胡瑞忠, 吳夢君, 林源賢. 湘西渣滓溪鎢銻礦床白鎢礦的Sm-Nd和Sr同位素地球化學(xué)[J]. 地質(zhì)學(xué)報(bào), 2008, 82(11): 1514–1521.
Peng Jian-tang, Zhang Dong-liang, Hu Rui-zhong, Wu Meng-jun, Lin Yuan-xian. Sm-Nd and Sr isotope geochemistry of hydrothermal scheelite from the Zhazixi W-Sb deposit, Western Hunan[J]. Acta Geol Sinica, 2008, 82(11): 1514–1521 (in Chinese with English abstract).
[7] 彭渤, Frei R, 涂湘林. 湘西沃溪W-Sb-Au礦床白鎢礦Nd-Sr-Pb同位素對(duì)成礦流體的示蹤 [J]. 地質(zhì)學(xué)報(bào), 2006, 80(4): 561–570.
Peng Bo, Frei R, Tu Xiang-lin. Nd-Sr-Pb Isotopic geochemistry of scheelite from the Woxi W-Sb-Au deposit, Western Hunan: Implications for sources and evolution of Ore-forming fluids[J]. Acta Geol Sinica, 2006, 80(4): 561–570 (in Chinese with English abstract).
[8] Peng B, Frei R. Nd-Sr-Pb isotopic constraints on metal and fluid sources in W-Sb-Au mineralization at Woxi and Liaojiaping (Western Hunan, China)[J]. Miner Deposit, 2004, 39(3): 313–327.
[9] 王永磊, 陳毓川, 王登紅, 徐玨, 陳鄭輝. 湖南渣滓溪W-Sb礦床白鎢礦Sm-Nd測年及其地質(zhì)意義[J]. 中國地質(zhì), 2012, 39(5): 1339–1344.
Wang Yong-lei, Chen Yu-chuan, Wang Deng-hong, Xu Jue, Chen Zheng-hui. Scheelite Sm-Nd dating of the Zhazixi W-Sb deposit in Hunan and its geological significance[J]. Geol China, 2012, 39(5): 1339–1344 (in Chinese with English abstract).
[10] 顧雪祥, 劉建明, Schulz O, Vavtar F, 付紹洪. 湖南沃溪金-銻-鎢礦床成因的稀土元素地球化學(xué)證據(jù)[J]. 地球化學(xué), 2005, 34(5): 428–442.
Gu Xue-xiang, Liu Jian-ming, Schulz O, Vavtar F, Fu Shao-hong. REE geochemical evidence for the genesis of the Woxi Au-Sb-W deposit, Hunan Province[J]. Geochimica, 2005, 34(5): 428–442 (in Chinese with English abstract).
[11] 何谷先. 魚兒山金礦床地質(zhì)特征[J]. 黃金地質(zhì)科技, 1994 (1): 27–30.
He Gu-xian. Mineral deposit geology of the Yuershan Au deposit[J]. Sci Technol Gold Geol, 1994 (1): 27–30 (in Chinese).
[12] 羅獻(xiàn)林, 易詩軍, 梁金城. 論湘西沃溪金銻鎢礦床的成因[J]. 地質(zhì)與勘探, 1984, 20(7): 1–10.
Luo Xian-lin, Yi Shi-jun, Liang Jin-cheng. Ore genesis of the Woxi Au-Sb deposit, western Hunan[J]. Geol Prospect, 1984, 20(7): 1–10 (in Chinese).
[13] 雷鳴波, 余景明. 湘西沃溪金銻鎢礦床控礦構(gòu)造及其找礦意義[J]. 黃金, 1998, 19(2): 3–7.
Lei Ming-bo, Yu Jing-ming. The ore-controlling structure of Xiangxi Woxi Au-Sb-W deposit and the meaning of ore-prospecting at this area[J]. Gold, 1998, 19(2): 3–7 (in Chinese with English abstract).
[14] 陳愛清. 湖南沃溪Au-Sb-W礦床中白鎢礦與黑鎢礦的成礦規(guī)律及成因機(jī)制的研究[D]. 北京: 中國地質(zhì)大學(xué), 2012.
Chen Ai-qing. Study on mineralization regularity and formation mechanism of scheelite and wolframite in the Woxi Au-Sb-W deposit in Hunan Province[D]. Beijing: China University of Geosciences, 2012 (in Chinese with English abstract).
[15] 張文蘭, 華仁民, 王汝成. 大吉山鎢礦中鎢鈮錳礦與富鎢鈮錳礦的交生現(xiàn)象及其成因探討 [J]. 礦床地質(zhì), 2003, 22(2): 158–165.
Zhang Wen-lan, Hua Ren-min, Wang Ru-cheng. Intergrowth of wolframoixiolite and W-rich manganocolumbite in Dajishan tungsten deposit, Jiangxi Province, South China[J]. Mineral Deposit, 2003, 22(2): 158–165 (in Chinese with English abstract).
[16] 陳蓉美. 瑤崗仙脈鎢礦床伴生組分的研究[J]. 湖南地質(zhì), 1983, 2(2): 36–43.
Chen Rong-mei. A study on the associated components from Yaogangxian tungsten deposit[J]. Hunan Geol, 1983, 2(2): 36–43 (in Chinese).
[17] 慕紀(jì)錄. 江西大龍山鎢鉬礦床中黑鎢礦的標(biāo)型特征及礦化富集規(guī)律[J]. 地質(zhì)與勘探, 1986 (5): 32–33.
Mu Ji-lu. Geochemical characteristics of the mineralization of wolfram-molybdenum deposits in Dalongshan area, Jiangxi Province[J]. Geol Prospect, 1986 (5): 32–33 (in Chinese with English abstract).
[18] 陳圖華. 試論江西某鎢錫礦床中黑鎢礦化學(xué)成分的變化特征[J]. 南京大學(xué)學(xué)報(bào)(自然科學(xué)版), 1982 (1): 133–145.
Chen Tu-hua. On various features of the chemical composition of wolframites in a tungsten-tin deposit in Jiangxi Province[J]. J Nanjing Univ (Nat Sci), 1982 (1): 133–145 (in Chinese with English abstract).
[19] 譚運(yùn)金. 華南地區(qū)內(nèi)生鎢礦床的鎢礦物成分特征及其控制因素[J]. 中國鎢業(yè), 1999, 14(5/6): 84–90.
Tan Yun-jin. The chemical composition characteristic and controlling factors of tungsten in endogenetic W deposit in South China[J]. Tungsten China, 1999, 14(5/6): 84–90 (in Chinese).
[20] 黃維新. 黑鎢礦單礦物中化學(xué)組份的多元統(tǒng)計(jì)分析及其地質(zhì)意義[J]. 福州大學(xué)學(xué)報(bào)(自然科學(xué)版), 1992 (3): 123–128.
Huang Wei-xin. Multivariate statistical analysis of chemical constituents in monomineral blumite and its geological significance[J]. J Fuzhou Univ (Nat Sci), 1992 (3): 123–128 (in Chinese with English abstract).
[21] 鄒繼蓉. 徐山三位一體鎢礦床黑鎢礦的初步研究[J]. 地質(zhì)地球化學(xué), 1982 (12): 51–52.
Zou Ji-rong. A primary study on wolframite in Xushan Tungsten deposit[J]. Geol Geochem, 1982 (12): 51–52 (in Chinese).
[22] 譚運(yùn)金. 南嶺地區(qū)某些脈鎢礦床的黑鎢礦成分特征[J]. 礦物學(xué)報(bào), 1982 (1): 59–65.
Tan Yun-jin. Compositional characteristics of wolframite from the vein-wolframite deposits in Nanling region[J]. Acta Mineral Sinica, 1982 (1): 59–65 (in Chinese with English abstract).
[23] 張思明. 江西省大吉山鎢礦床的礦物學(xué)研究及礦床特征[D]. 北京: 中國地質(zhì)大學(xué), 2012.
Zhang Si-ming. Mineralogy and deposit characteristics on the Dajishan tungsten deposit in Jiangxi Province[D]. Beijing: China University of Geosciences, 2012 (in Chinese with English abstract).
[24] 趙振華, 包志偉, 喬玉樓. 一種特殊的“M”與“W”復(fù)合型稀土元素四分組效應(yīng): 以水泉溝堿性正長巖為例[J]. 科學(xué)通報(bào), 2010 (15): 1474–1488.
Zhao Zhen-hua, Bao Zhi-wei, Qiao Yu-lou. A peculiar composite M- and W-type REE tetrad effect: Evidence from the Shuiquangou alkaline syenite complex, Hebei Province, China[J]. Chinese Sci Bull, 2010, 55(24): 2684–2696.
[25] Irber W. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu?, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites[J]. Geochim Cosmochim Acta, 1999, 63(3/4): 489–508.
[26] Alibo D S, Nozaki Y. Rare earth elements in seawater: Particle association, shale-normalization, and Ce oxidation [J]. Geochim Cosmochim Acta, 1999, 63(3/4): 363–372.
[27] 韓吟文, 馬振東, 張宏飛, 張本仁, 李方林, 高山, 鮑征宇. 地球化學(xué)[M]. 北京: 地質(zhì)出版社, 2003: 189–202.
Han Yin-wen, Ma Zhen-dong, Zhang Hong-fei, Zhang Ben-ren, Li Fang-lin, Gao Shan, Bao Zheng-yu. Geochemistry[M]. Beijing: Geological Publishing House, 2003: 189–202 (in Chinese).
[28] Brugger J, Lahaye Y, Costa S, Lambert D, Bateman R. Inhomogeneous distribution of REE in scheelite and dynamics of Archaean hydrothermal systems (Mt. Charlotte and Drysdale gold deposits, Western Australia)[J]. Contrib Mineral Petrol, 2000, 139(3): 251–264.
[29] 張玉學(xué), 劉義茂, 高思登, 何其光. 鎢礦物的稀土地球化學(xué)特征——礦床成因類型的判別標(biāo)志[J]. 地球化學(xué), 1990, 19(1): 11–20.
Zhang Yu-xue, Liu Yi-mao, Gao Si-deng, He Qi-guang. REE geochemical characteristics of tungsten minerals as a discriminant indicator of the genetic types of ore deposits[J]. Geochimica, 1990, 19(1): 11–20 (in Chinese with English abstract).
[30] 干國梁, 陳志雄. 廣西都龐嶺地區(qū)錫礦床黑鎢礦主要、微量及稀土元素的組成特點(diǎn)及賦存狀態(tài)[J]. 礦物學(xué)報(bào), 1991, 11(2): 122–132.
Gan Guo-liang, Chen Zhi-xiong. The compositional characteristics and existing states of major, trace and rare-earth elements in wolframite from the Dupanling tin ore-field, Guangxi[J]. Acta Mineral Sinica, 1991, 11(2): 122–132 (in Chinese with English abstract).
[31] Bau M. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: Evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect[J]. Contrib Mineral Petrol, 1996, 123(3): 323–333.
[32] 趙振華, 增田彰正, 夏巴尼 M B. 稀有金屬花崗巖的稀土元素四分組效應(yīng)[J]. 地球化學(xué), 1992, 21(3): 221–233.
Zhao Zhen-hua, Masuda A, Shabani M B. Tetrad effects of rare-earth elements in rare-metal granites[J]. Geochimica, 1992, 21(3): 221–233 (in Chinese with English abstract).
[33] McLennan S M. Rare earth element geochemistry and the “tetrad” effect[J]. Geochim Cosmochim Acta, 1994, 58(9): 2025–2033.
[34] Takahashi Y, Yoshida H, Sato N, Hama K, Yusa Y, Shimizu H. W- and M-type tetrad effects in REE patterns for water-rock systems in the Tono uranium deposit, central Japan[J]. Chem Geol, 2002, 184(3/4): 311–335.
[35] Bau M. Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: Experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect[J]. Geochim Cosmochim Acta, 1999, 63(1): 67–77.
[36] Debaar H J W, Brewer P G, Bacon M P. Anomalies in rare earth distributions in seawater: Gd and Tb[J]. Geochim Cosmochim Acta, 1985, 49(9): 1961–1969.
[37] Nozaki Y, Alibo D S. Dissolved rare earth elements in the Southern Ocean, southwest of Australia: Unique patterns compared to the South Atlantic data[J]. Geochem J, 2003, 37(1): 47–62.
[38] Bau M, Koschinsky A, Dulski P, Hein J R. Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater[J]. Geochim Cosmochim Acta, 1996, 60(10): 1709–1725.
[39] Rudnick R L, Gao S. Composition of the continental crust[M]//Rudnick R L. Treatise on Geochemistry (Vol 3). Amsterdam: Elsevier, 2003: 1–64.
[40] Bychkov A Y, Matveeva S S. Thermodynamic model of the formation of ore bodies at the Akchatau wolframite greisen-vein deposit[J]. Geochem Int, 2008, 46(9): 867–886.
[41] Kempe U, Belyatsky B V. An attempt at direct dating of the Sadisdorf Sn-W mineralization, Eastern Erzgebirge (Germany)[J]. J Geosci, 1997, 42(3): 21–20.
[42] Tindle A G, Webb P C. Niobian wolframite from Glen Gairn in the Eastern Highlands of Scotland: A microprobe investigation[J]. Geochim Cosmochim Acta, 1989, 53(8): 1921–1935.
[43] 華光. 中國南部某區(qū)黑鎢礦及其成分的變化規(guī)律[J]. 地質(zhì)科學(xué), 1960 (4): 165–181.
Hua Guang. Characteristics of wolframites and their changes of composition in an area, South China[J]. Chinese J Geol (Sci Geol Sinica), 1960 (4): 165–181 (in Chinese).
[44] 趙斌, 李維顯, 蔡元吉. 黑鎢礦、錫石、鈮鐵礦、細(xì)晶石、鈮鉭鐵礦生成條件及黑鎢礦和錫石中鉭、鈮含量變化的實(shí)驗(yàn)研究[J]. 地球化學(xué), 1977, 6(2): 123–135, 157–158.
Zhao Bin, Li Wei-xian, Cai Yuan-ji. Conditions of formation of wolframite, cassiterite, columbite, microlite and tapiolite and experimental studies on the variation of Nb and Ta in wolframite and cassiterite[J]. Geochimica, 1977, 6(2): 123–135, 157–158 (in Chinese with English abstract).
[45] 章崇真. 黑鎢礦中鈮鉭含量變化的研究及意義[J]. 礦床地質(zhì), 1984, 3(2): 59–67.
Zhang Chong-zhen. Variation in Nb-Ta contents of wolframite and its significance as an indicator[J]. Mineral Deposit, 1984, 3(2): 59–67 (in Chinese with English abstract).
[46] Kempe U, Wolf D. Anomalously high Sc contents in ore minerals from Sn-W deposits: Possible economic significance and genetic implications[J]. Ore Geol Rev, 2006, 28(1): 103–122.
[47] 郝家璋. 某區(qū)黑鎢礦中錳、鐵、鈮、鉭和鈧分布的初步規(guī)律[J]. 中國地質(zhì), 1964 (12): 16–25.
Hao Jia-zhang. Distribution of manganese, iron, niobium, tantalum and scandium in wolframite from an area[J]. Geol China, 1964 (12): 16–25 (in Chinese).
[48] Ivanova G F, Maximyuk I E, Bakhteev R K, Viktorova M E, Abdrakhmanova I F. Correlation bonds of tantalum, niobium, scandium, yttrium, and ytterbium in wolframites and their geochemical signficance[J]. Geokhimiya, 1981 (8): 1123–1135.
[49] 牛賀才, 馬東升.湘西江南型金礦床流體包裹體的研究[J]. 礦物學(xué)報(bào), 1991, 11(4): 386–394.
Niu He-cai, Ma Dong-sheng. Fluid inclusions studies of Jiangnan type gold deposits in western Hunan Province[J]. Acta Mineral Sinica, 1991, 11(4): 386–394 (in Chinese with English abstract).
[50] Yang S, Blum N. A fossil hydrothermal system or a source-bed in the Madiyi Formation near the Xiangxi Au-Sb-W deposit, NW Hunan, PR China?[J]. Chem Geol, 1999, 155(1): 151–169.
[51] Bau M, Dulski P. Comparative study of yttrium and rare-earth element behaviours in fluorine-rich hydrothermal fluids[J]. Contrib Mineral Petrol, 1995, 119(2/3): 213–223.
Mineral deposit geology and trace element geochemistry of wolframite from the Woxi deposit, western Hunan, China
ZHU Ya-nan1,2, PENG Jian-tang1,3*, LIU Sheng-you4and SUN Yu-zhen4
1. State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang?550002, China; 2. University of Chinese Academy of Sciences, Beijing?100049, China; 3. Key Laboratory of Metallogenic Prediction of Nonferrous Metals, Ministry of Education, School of Geosciences and Info-physics, Central South University, Changsha?410083, China; 4. Chenzhou Mining Group Co., LTD, Yuanling?419607, China
The Xuefeng Uplift Belt in western Hunan is an important Au-Sb(-W) mineralization belt in South China. The Woxi deposit, as the largest deposit with a unique element association of Au-Sb-W in this region, has attracted attentions of numerous geologists. Researches on ore genesis, fluid inclusion, stable isotope, ore fabric, ore-controlling tectonic and mineralogy have been well conducted in this deposit; however, wolframite in this well studied deposit receives less attention. In this study, geological characteristics of wolframite in the Woxi deposit are described in details, and its trace element concentrations are analyzed by ICP-MS in order to constrain its ore genesis, the nature of the ore-forming fluid and the source of the ore-forming materials. In the Woxi deposit, most wolframite-bearing ore veins occur as bedding quartz veins, whereas the others appear as joint veins of various types indicating there exist multi-stage tungsten mineralization events in this area. Besides, the ore commonly exhibits open-space filling structure and the wolframite is frequently intergrown with carbonate and sulfide in this deposit. The results show that the REE concentrations of wolframites from the Woxi deposit (1.62–4.58 μg/g) are distinctly lower than those of wolframites from granite-related tungsten deposits in the Nanling Range. The REE geochemistry of the Woxi wolframite is characterized by HREE enrichment, Eu-, Sm-, Gd- and Tb-anomalies, as well as a peculiar composite M- and W-type tetrad effect. All of these features are probably controlled by the oxygen fugacity and the stabilities of complexing agent in the ore-forming fluid. Moreover, the Y/Ho ratios (< 28) of wolframites from the Woxi deposit reveal REE and Y speciation is dominated by (bi)carbonate-complexes in wolframite-precipitating fluid. In addition, the content of Sc of wolframite from this deposit is high but the contents of Nb and Ta are low, which probably resulted from high pH, low Eh conditions during the crystallization of wolframite and from the leaching of the underlying older continental rocks by the hydrothermal fluid. Generally, the geological and geochemical characteristics of wolframite in the Woxi deposit, which are obviously different from that of those quartz vein-type wolframite deposits associated with granite intrusions in the Nanling Range, provide new evidences for no direct relationship between the tungsten mineralization and magmatism in the Woxi deposit.
mineral deposit geology; trace element geochemistry; wolframite; Woxi Au-Sb-W deposit; western Hunan
P595; P61
A
0379-1726(2014)03-0287-14
2013-07-09;
2013-08-23;
2013-09-06
國家自然科學(xué)基金(40673021, 41073036)
祝亞男(1988–), 女, 博士研究生, 礦床地球化學(xué)專業(yè)。E-mail: re.zhuyanan@163.com
PENG Jian-tang, E-mail: jtpeng@126.com; Tel: +86-851-5895405