• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Glowworm swarm optimization algorithm merging simulated annealing strategy*

    2014-06-09 14:44:40XiushuangCAO
    機床與液壓 2014年3期
    關(guān)鍵詞:模態(tài)分析優(yōu)化設(shè)計連桿

    Xiu-shuang CAO

    Department of Information Engineering,Tangshan College,Tangshan 063000,China

    Glowworm swarm optimization algorithm merging simulated annealing strategy*

    Xiu-shuang CAO?

    Department of Information Engineering,Tangshan College,Tangshan 063000,China

    Artificial glowworm swarm optimization algorithm is a new research orientation in the field of swarm intelligence recently.The algorithm has achieved success in the complex function optimization,but it is easy to fall into local optimum,and has the low speed of convergence in the later period and so on.Simulated annealing algorithm has excellent global search ability.Combining their advantages,an improved glowworm swarm optimization algorithm was proposed based on simulated annealing strategy.The simulated annealing strategy was integrated into the process of glowworm swarm optimization algorithm.And the temper strategy was integrated into the local search process of hybrid algorithm to improve search precision.Overall performance of the Glowworm swarm optimization was improved.Simulation results show that the hybrid algorithm increases the accuracy of solution and the speed of convergence significantly,and is a feasible and effective method.

    Glowworm swarm optimization(GSO),Simulated annealing strategy,Annealing method,Temper strategy,Benchmark

    1.Introduction

    Glowworm Swarm Optimization(GSO)[1]is proposed by K.N.Krishnanad and D.Ghose in 2005,which is a new bionic swarm intelligence optimization algorithm.The algorithm has strong local search capabilities,but its global search performance is bad.It attracts the attention of scholars increasingly.At present,many scholars have improved traditional GSO in many aspects.A pattern search operator was integrated into GSO in reference[2],which improves global and local search ability of GSO.But the search result based on pattern search operator depends on the initial point to a large degree;Chaos theory was integrated into GSO in reference[3].The glowworm’s position of algorithm was initiated based on chaos theory,and mutation was operated by Gaussian disturbances in due time,which improves the capabilities of algorithm in a certain extent;aim at improving optimization structure of GSO by ZHOU Yongquan et al,the algorithms of glowworm swarm optimization based on fluoresce in diffusion and self-adaptive step were proposed,which overcomes the shortcoming of insufficient collaboration between glowworm and slow convergence in the late search disadvantage,respectively;the Swarm intelligence behaviors of bee colony and birds colony were used as move strategy of GSO in reference[4-7],which improves capability of algorithm in a certain extent.In addition,the standard GSO has also been applied in many areas successfully.The improved algorithm were used to solve function and TSP problems in reference[8-11]respectively,it proves that the algorithm is applicable in the relevant area.

    In order to further improve the GSO problems oflocal optimum easily,slow convergence and lower searching precision in optimizing complex functions,simulated annealing strategy is integrated into GSO in this paper.GSO has better local search performance,simulated annealing strategy is used to strengthen the whole search ability of algorithm,and temper strategy is used to promote search accuracy.A glowworm swarm optimization algorithm merging simulated annealing strategy is proposed.

    2.GSO principle and simulated annealing search

    2.1.Standard GSO

    In standard GSO,the‘n’glowworm individual is distributed in whole feasible field random ly,every glowworm will carry a certain amount of fluorescein li.The glowworm releases appropriate fluorescein that will influence on each other around it.Every glowworm individual’s decision-making domains can be set to:.Here,the size of decision making domains is related to the number of neighbors,and the smaller neighbor density,the bigger radius of decision-making domains in order to search more neighbors.Contrary,radius of decision-making domains will decrease.The size of fluoresce in of every glowworm is related to the objective function value of position in search area.The glowworm has the bigger fluoresce in value,and it illustrates that the position in search area is better,so the objective value is better.Every glowworm individual searches the neighbor set Ni()t in decision-making domains,in this set,the neighbor with the bigger fluoresce in value fascinates glowworm individual,which makes glowworm to move in this direction.And the moving direction also will change with the difference of neighbor selected.After moving several times,most glowworms gather in the better solutions position.Initially,the sensing range of every glowworm individual is all rs,the decision-making range is determined by the domain of the object function.After completing the initial settings of the algorithm,the algorithm goes into a loop iteration process,which has 4 processes mainly:fluoresce in update,probability selection,location update and dynamic decision-making domain update.

    1)Fluoresce in update

    The object function value J xi()( )t of position xi(t)in T iterations about glowworm individual i is converted to correspondent fluorescein li()t:

    Where,ρ∈0,()1 is the parameter controlling the size of fluorescein value,andγis the parameter measuring object function value.

    2)Probability selection

    Within radius rid()t of dynamic decision-making domains,determines the fluoresce in value higher than themselves individuals constitute the individual's neighborhood set:

    In neighborhood set Ni()t probability of move towards individual j is Pij()t:

    3)Location update

    where sis move step.

    4)Dynamic decision-making domain update

    Where,βis constant to control the change range of neighborhood individual,and ntis neighborhood threshold value to control the number of neighbors.

    2.2.Introduction of simulated annealing

    As early as 1953,Metropolis proposed an algorithm for simulating balance evolution process of solid temperature,which guides the optimization process through Metropolis criterion.When temperature is T,current status i produces corresponding new status. That their energies are Eiand Ejseparately,if Ei≤Ej,the new status j is accepted as current optimum status,otherwise,with a certain probability that is greater than RAND to judge whether or not to accept the new status.The guidelines will be gradually reduced as the temperature,and its probability in accepting inferior solution also reduces.Firefly algorithm is implemented in the process of searching for optimal solutions,when it appears that no more excellent individual is repeatedly found in the corresponding perception range of an individual,it will be decided that this individual fall into local optimum. Or so,this individual’s position can’t move,which reduces search efficiency and leads to fall into local optimum.Now,if the algorithm accepts inferior solu-tions with a certain probability through simulated annealing strategy,it can jump to local optimum to increase convergence speed.

    2.3.Annealing method and temper strategy

    Annealing method refers to temperature drop speed.In theory,the slower annealing temperature drop,the bigger probability to obtain global optimum.But too slow temperature drop will lead to overlong iteration time of search.The most common annealing method:Tk+1=α*Tk,αinfluences annealing method greatly.This paper adopt following annealing strategy:

    Firstly,this annealing strategy is converged by quick speed.When iteration carries out to a certain extent,the temperature will drop under Tmin.Now,raising system temperature to T,and carrying out iteration of algorithm again.Temper strategy range is [Tmin,Tmax].When the temperature drops under Tminagain,this process is tempering process[12-14]. According to the iteration times,algorithm can be set tempering process time and further improve solution accuracy again.

    3.GSO merging into simulated annealing strategy(SA-GSO)

    3.1.Basic idea of improved algorithm

    On the base of search frame structure about standard GSO,when the algorithm has searched for a certain numbers and the optimum doesn’t change,the algorithm adopts inferior solution for certain probability through simulated annealing,which makes s algorithm to skip out local optimum.So a hybrid algorithm merging into simulated annealing is presented.The idea of hybrid algorithm is as follows:firstly,the glowworm individual location is initialized in the range of feasible region,at the same time,given a certain amount of fluorescein values,which are related to the function value.The sensing range of glowworm individual is determined by the definition domain of function.When the distance between two glowworms is in the range of decision domain,and other glowworm individual has bigger fluorescein value,this glowworm individual chooses excellent individual with some probability,then,moves to better individual according to set step.After a number of iterations,when the neighborhood set of a glowworm individual can’t find more excellent individual,the hybrid algorithm accepts inferior solution with some probability by simulated annealing strategy to skip out local optimum and update glowworm location,and its fluoresce in value is updated according to object function value of new solution.At last,judging the current temperature,if temperature drops under the set value,adopting temper strategy is adopted,and local area in neighborhood radius of optimum is further searched.The global optimum is found through above process repeatly.

    3.2.Implementation steps of hybrid algorithm

    Step 1 Initializing parameters,initialing temperature T0and temper strategy Tminand Tmaxof simulated annealing,and placing glowworm individual locations randomly.

    Step 2 Updating individual fluorescein.

    Step 3 Computing neighborhood set and corresponding move probability,and determining moving direction.

    Step 4 Mobile phase,according to probability formula(2)in neighborhood set to choose next excellent individual to move.

    Step 5 Determining the fluoresce in value of better individual whether don’t change in specified iteration or not.If yes,turn to Step 6;If no,turn to Step 7.

    Step 6 The simulated annealing strategy:producing new solution in neighborhood of current excellent individual,and accepting inferior solution through Metropolis criterion.

    Step 7 Under current optimum,determine whether the temperature drops to that below tempering temperature.If it is smaller than Tmin,adopt temper strategy to search;otherwise,turn to Step 8.

    Step 8 Updating the location of glowworm individual and corresponding neighborhood radius,if the finished condition is fulfilled,exit a loop,if not,turn to Step 2.

    4.Test function simulation and analysis

    4.1.Testing platform

    This algorithm is realized through programming on Matlab2009a.Tests depending on the platform arethe dual-core 3G and memory 2G based on XP system PC.

    4.2.Test function

    In order to verify efficiency of improved algorithm,the typical Benchmark functions(as formula(7)~(12))are used to test improved algorithm in this paper:

    1)Rosenbrock function

    n=30,-30≤xi≤30,global minimum is 0,optimum point(1,1,1…1),typical non-convex,pathological unimodal function.

    2)Shaffer’s f7function

    -100<xi<100,global minimum is 0,optimum point(0,0),multi modal function,it includes a number of local optimum which consists of concentric circles,so it is easy to fall into local optimum.

    3)Schaffer’s f6 function

    -100<xi<100,global minimum is 0.There are some infinite local minimums that these points are located in the range of about 3.14 from global optimum,these point shock strongly,and the requirement is very high for algorithm performance to search global optimum.

    4)Freudenstein-Roth

    -10<xi<10,global minimum is 0,optimum point(5,4).

    5)Sphere function

    global minimum is 0,optimum point(0,0,0…0). 6)Griewan function

    n=30,-100<xi<100,global minimum is 0.

    4.3.Parameters setting

    In GSO and SA-GSO,glowworm individual is 50,iteration times N=500,initial fluoresce in value of glowworm individual are also set l(0)=5,moving step sizes=2,affecting individual firefly selected neighbor number neighborhood threshold nt=5,parametersβ=0.6 that controls neighboring change ranges,initial value of decision domain range is 10,ρ=0.3,γ=0.6,initial temperature of simulated annealing T0=2 000,and temper strategy range is [500,1 000] according to trial and error.

    4.4.Experimental results and analysis

    Improved GSO(SA-GSO)is tested through above test functions.In order to overcome accidental error because of placing glowworm individual locations randomly,each function is optimized for 20 times.Compared with basic GSO,the best,worst,average and average iterations times are listed as shown in Table 1.

    From Figure 1 to Figure 6,these figures are compared after and before improved algorithm between optimum and iterations times.

    As can be seen from Table 1,compared with standard GSO,after merging into simulated annealing strategy,the search capability of hybrid GSO is further strong,the optimum is also closer to standard value.The search capability of improved GSO in High-dimensional space is stronger than before.For high-dimensional function f1,the solution accuracy through SA-GSO is superior to standard GSO greatly,its average number of iterations also reduce dramatically.For functions f2that are hard to find optimum,the solution of SA-GSO is nearer to optimum in theory,the number of iterations also reduces in a certain degree,which shows that SA-GSO is rapider to converge than before.For function f3which has unlimited local extremum,SA-GSO finds the optimum that is closer to the optimum in theory in the similar iterations,which reflects that the convergence speed of SA-GSO is quick.For a two-dimensional function f4,all of the optimization results of algorithm are better,however,the optimum accuracy through SA-GSO is improved substantially,its optimum is 9.552 5e-06,optimum point(5.986 4,3.961 4).And the optimum of GSO is 0.003 1,optimum point(5.593 0,3.815 6).For high-dimension function f5,the accuracy of solution also increases within a factor of ten.The accuracy of function f6is increased lightly,however,the number of iteration reduces,and it equals to indicate that Glowworm swarm optimization algorithm merging simulated annealing strategy is effective.

    As can be seen from Figure 1,SA-GSO can converge to the optimum fastly in iteration of 100 or so.But the optimum of GSO after250 iterations is inferior to SA-GSO still.In addition,it falls into the local optimum for a long time in iteration of 100 to 250.As can be seen from Figure 2 to Figure 6 too,the convergence speed of SA-GSO is superior to GSO.When GSO falls into local optimum in a certain iteration times,it is hard to jump local optimum.But because SA-GSO is merged into simulated annealing,it can jump to local optimum and converge quickly. Besides,because of the temperature strategy,the solution accuracy is improved substantially.As can be seen from Figure 6,SA-GSO obtains the optimum 0.047 71 after the iteration of129,but GSO only obtains the optimum 0.056 62 after the iteration of239. It indicates that convergence speed and solution accuracy are improved greatly.

    Table 1.The com parison of experimental results

    Figure 1.The iterative curve of Rosenbrock

    Figure 2.The iterative curve of Shaffer’s f7

    Figure 3.The iterative curve of Shaffer’s f6

    Figure 4.The iterative curve of Freudenstein

    Figure 5.The iterative curve of Sphere

    Figure 6.The iterative curve of Griewank

    5.Conclusion

    Aiming at falling into local optimum easily and slow convergence later stage in optimizing complex function by GSO,a glowworm swarm optimization algorithm merging simulated annealing strategy is proposed,which improves global search capability of algorithm.In order to further improve search accuracy,temper strategy is adopted,which searches local area further at certain temperatures.Simulation test show that the algorithm is improved in search speed and search accuracy.So the improvement of algorithm is effective and feasible.But,because the parameters in algorithm are set through many experiments,the optimization of algorithm parameters and other application need to study further,which is also the next job.

    [1] Krishnanand K.N.D,Ghose D.Glowworm swarm optimization:a new method for optimizing multi-modal functions[J].Computational Intelligence Studies,2009,1(1):93 -119.

    [2] LIU Hong-xia,ZHOU Yong-quan.A Glowworm Swarm Optimization Algorithm Based on Pattern Search Operator[J].Journal of Chinese Computer Systems,2011,32(10):2130~2133.

    [3] FENG Yan-hong,LIU Jian-qin,He Yi-chao.Chaosbased dynamic population firefly algorithm[J].Journal of Computer Applications,2013,33(3):796-799,805.

    [4] WANG Ying-ju,ZHOU Yong-quan.Golwworm Swarm Optimization algorithm based on fluoresce in diffusion[J].Computer Engineering and Applications,2012,48(10):34-38.

    [5] OUYANG-Zhe,ZHOU Yong-quan.Self-adaptive step glowworm swarm optimization algorithm[J].Journal of Computer Applications,2011,31(7):1804-1807.

    [6] ZHANG Jun-li,ZHOU Yong-quan.A Hybrid Optimization Algorithm Based on Artificial Glowworm Swarm and Differential Evolution[J].Information and Control,2011,40(5):608-613.

    [7] WU-Bin,CUI Zhi-yong,NI Wei-hong.Research on Glowworm Swarm Optimization with Hybrid Swarm Intelligence Behavior[J].Computer Science,2012,39(5):198-200,228.

    [8] YUAN Ji-jun.Optimal design for scale-based product family based on multi-objective firefly algorithm[J]. Computer Integrated Manufacturing System,2012,18(8):1801-1808.

    [9] GUO Li-ping,LI Xiang-tao,GU Wen-xiang,et al.An improved firefly algorithm for the blocking flow shop scheduling problem[J].CAAI Transactions on Intelligent Systems,2013,8(1):1-7.

    [10]LIU Peng,LIU Hong,ZHENG Xiang-wei,et al.Approach for dynamic group automatic aggregation path planning based on improved FA[J].Application Research of Computers,2011,28(11):4146-4149.

    [11]ZHOU Yong-quan,HUANG Zheng-xin.Artificial glowworm swarm optimization algorithm for TSP[J].Control and Decision,2012,27(12):1816-1821.

    [12]ZHOU Yong-quan,HUANG Zheng-xin,LIU Hong-xia. Discrete Glowworm Swarm Optimization Algorithm for TSP Problem[J].ACTA ELECTRONICA SINICA,2012,40(6):1164-1170.

    [13]LI Bing.The Study of New optimization Algorithms and Their Applications[D].Shanghai:East China University of Science and Technology,1996.

    [14]LIU Bo,MENG Pei-sheng.Simulated annealing-based ant colony algorithm for traveling salesman problems[J]. J.Huazhong Univ.of Sci.&Tech.(Natural Science Edition),2009,37(11):26-30.

    摘要:人造草坪機的連桿是使機構(gòu)中的簇針、成圈鉤、割刀完成各自往復(fù)運動的重要連接部件。利用了ANSYS Workbench有限元分析軟件對人造草坪機連桿建立了有限元模型。根據(jù)其在實際中的受約束以及載荷情況,進行靜力分析??紤]到機床運轉(zhuǎn)時振動對連桿的影響,對其進行模態(tài)分析。根據(jù)靜力學(xué)分析的結(jié)果對連桿進行拓撲優(yōu)化設(shè)計,為連桿以及人造草坪機的其他部件的進一步優(yōu)化提供了理論依據(jù)及實現(xiàn)方法。

    關(guān)鍵詞:ANSYS Workbench;連桿;靜力分析;模態(tài)分析;優(yōu)化設(shè)計

    中圖分類號:TP114

    融合模擬退火策略的螢火蟲優(yōu)化算法*

    曹秀爽?

    唐山學(xué)院信息工程系,河北唐山 063000

    螢火蟲算法是群智能領(lǐng)域近年出現(xiàn)的一個新的研究方向,該算法雖已在復(fù)雜函數(shù)優(yōu)化方面取得了成功,但也存在著易于陷入局部最優(yōu)且進化后期收斂速度慢等問題,而模擬退火機制具有很強的全局搜索能力,結(jié)合兩者的優(yōu)缺點,提出一種融合模擬退火策略的螢火蟲優(yōu)化算法。改進后的算法在螢火蟲算法全局搜索過程中融入模擬退火搜索機制,在局部搜索過程中采用了回火策略,改善尋優(yōu)精度,改進了螢火蟲算法的全局搜索性能和局部搜索性能。仿真實驗結(jié)果表明:改進后的算法在收斂速度和解的精度方面有了顯著地提高,證明了算法改進的可行性和有效性。

    螢火蟲算法;模擬退火策略;退火方式;回火策略;Benchmark

    TP312

    基于ANSYS Workbench的人造草坪織機連桿的有限元分析及優(yōu)化設(shè)計

    吳士昊?,戴惠良,宋佳玲

    東華大學(xué)機械工程學(xué)院,上海 201620

    10.3969/j.issn.1001-3881.2014.18.020

    2014-05-02

    *Project supported Education Department of Hebei Province(No:QN20132019,Science and Technology Planning Project of Tangshan city(No:131302118a)

    ?Xiu-shuang CAO,E-mail:379511725@qq.com

    猜你喜歡
    模態(tài)分析優(yōu)化設(shè)計連桿
    某發(fā)動機連桿螺栓擰緊工藝開發(fā)
    基于ANSYS workbench六片斜葉圓盤渦輪攪拌器的模態(tài)分析
    基于Ansys的礦用局部通風(fēng)機葉輪模態(tài)分析
    某調(diào)速型液力偶合器泵輪的模態(tài)分析
    東林煤礦保護層開采卸壓瓦斯抽采優(yōu)化設(shè)計
    橋式起重機主梁結(jié)構(gòu)分析和優(yōu)化設(shè)計
    基于simulation的醫(yī)用升降椅參數(shù)化設(shè)計
    科技視界(2016年21期)2016-10-17 17:27:09
    簡述建筑結(jié)構(gòu)設(shè)計中的優(yōu)化策略
    民用飛機沖壓渦輪機的動剛度分析
    科技視界(2015年25期)2015-09-01 16:34:55
    連桿的運動及有限元分析
    機械工程師(2015年9期)2015-02-26 08:38:12
    91久久精品电影网| 国产一级毛片在线| 99久久精品一区二区三区| 久久国产精品大桥未久av| 亚洲精品日韩av片在线观看| 欧美性感艳星| 一级黄片播放器| 中文字幕久久专区| 国产精品久久久久久久电影| 美女主播在线视频| 观看美女的网站| 丝袜脚勾引网站| 一个人免费看片子| 午夜福利在线观看免费完整高清在| 少妇人妻 视频| 美女xxoo啪啪120秒动态图| 一本一本综合久久| 极品少妇高潮喷水抽搐| 亚洲第一区二区三区不卡| 3wmmmm亚洲av在线观看| 亚洲欧美日韩卡通动漫| 香蕉精品网在线| a级片在线免费高清观看视频| 欧美精品人与动牲交sv欧美| 我的女老师完整版在线观看| 久久国产亚洲av麻豆专区| 日日爽夜夜爽网站| 国产视频内射| 如何舔出高潮| 高清视频免费观看一区二区| 日韩中字成人| 丝袜美足系列| 国产精品久久久久久久久免| 日韩欧美一区视频在线观看| 国产精品 国内视频| 亚洲综合色网址| 最近手机中文字幕大全| 久久久a久久爽久久v久久| 精品酒店卫生间| av免费观看日本| 9色porny在线观看| 香蕉精品网在线| 久久精品国产亚洲av涩爱| 只有这里有精品99| 校园人妻丝袜中文字幕| 内地一区二区视频在线| 老司机影院毛片| 日本wwww免费看| 久久99热这里只频精品6学生| a级毛色黄片| 日韩欧美一区视频在线观看| 久久久亚洲精品成人影院| 国产成人精品婷婷| 狂野欧美白嫩少妇大欣赏| 秋霞伦理黄片| 久久免费观看电影| 国产精品女同一区二区软件| 狂野欧美激情性bbbbbb| 国产精品不卡视频一区二区| 亚洲色图 男人天堂 中文字幕 | 久久免费观看电影| 97在线视频观看| 欧美精品亚洲一区二区| 国产av一区二区精品久久| 纯流量卡能插随身wifi吗| 亚洲,欧美,日韩| 91aial.com中文字幕在线观看| 成人影院久久| 一级黄片播放器| 欧美激情 高清一区二区三区| 伊人亚洲综合成人网| 有码 亚洲区| 久久久久精品性色| 国产av一区二区精品久久| 18在线观看网站| 午夜久久久在线观看| 下体分泌物呈黄色| 精品人妻熟女毛片av久久网站| 日本午夜av视频| 啦啦啦视频在线资源免费观看| 国产69精品久久久久777片| 亚洲性久久影院| 久久99蜜桃精品久久| 人人澡人人妻人| 999精品在线视频| 不卡视频在线观看欧美| 又大又黄又爽视频免费| 高清欧美精品videossex| 国产色爽女视频免费观看| 亚洲第一区二区三区不卡| 久久久久视频综合| 亚洲精品成人av观看孕妇| 国产精品国产av在线观看| 亚洲av国产av综合av卡| 啦啦啦视频在线资源免费观看| 18禁观看日本| 天堂中文最新版在线下载| 国产国拍精品亚洲av在线观看| 亚洲av免费高清在线观看| 天天影视国产精品| 亚洲精品自拍成人| 国产黄片视频在线免费观看| 一个人免费看片子| 交换朋友夫妻互换小说| 人人妻人人添人人爽欧美一区卜| 中文字幕制服av| 人人妻人人澡人人爽人人夜夜| 精品一区二区免费观看| 99久国产av精品国产电影| 天天影视国产精品| av在线观看视频网站免费| 成人漫画全彩无遮挡| 欧美精品亚洲一区二区| 国产成人freesex在线| 欧美人与性动交α欧美精品济南到 | 在线观看一区二区三区激情| a级毛片在线看网站| 男女国产视频网站| 晚上一个人看的免费电影| 免费av不卡在线播放| 色吧在线观看| 亚洲国产精品成人久久小说| 欧美老熟妇乱子伦牲交| 国产成人免费观看mmmm| 九色亚洲精品在线播放| 看免费成人av毛片| 一本—道久久a久久精品蜜桃钙片| 老司机影院成人| 亚洲丝袜综合中文字幕| 国产午夜精品久久久久久一区二区三区| 色视频在线一区二区三区| 特大巨黑吊av在线直播| 国产成人精品无人区| 精品久久久久久久久av| 国产乱来视频区| 亚洲久久久国产精品| 少妇被粗大猛烈的视频| 亚洲av免费高清在线观看| 久久久精品免费免费高清| 欧美亚洲 丝袜 人妻 在线| 天美传媒精品一区二区| 精品亚洲成a人片在线观看| 亚洲欧美一区二区三区黑人 | 色吧在线观看| 狂野欧美激情性bbbbbb| 久久久久久久久久久免费av| 精品久久久久久久久av| 久久久久久久国产电影| 大话2 男鬼变身卡| av国产精品久久久久影院| 久久精品国产亚洲av天美| 国产有黄有色有爽视频| 成人影院久久| 黑人巨大精品欧美一区二区蜜桃 | 日韩中文字幕视频在线看片| 国产69精品久久久久777片| 亚洲成色77777| 大码成人一级视频| 亚洲成人一二三区av| 国产白丝娇喘喷水9色精品| 久久久久久久久大av| 国产精品99久久99久久久不卡 | 一本大道久久a久久精品| 成年女人在线观看亚洲视频| 免费播放大片免费观看视频在线观看| 日韩 亚洲 欧美在线| 国产在线视频一区二区| 一级片'在线观看视频| 久久精品久久久久久久性| www.av在线官网国产| 成人国语在线视频| 国产黄色视频一区二区在线观看| 久久女婷五月综合色啪小说| av天堂久久9| 成年av动漫网址| 一级毛片黄色毛片免费观看视频| 黑人欧美特级aaaaaa片| 日本91视频免费播放| 天天躁夜夜躁狠狠久久av| 免费大片18禁| 亚洲欧美色中文字幕在线| 国产精品 国内视频| 日本爱情动作片www.在线观看| 97在线人人人人妻| 91aial.com中文字幕在线观看| 久久午夜福利片| 大又大粗又爽又黄少妇毛片口| 街头女战士在线观看网站| 精品少妇内射三级| 久久婷婷青草| 日本wwww免费看| 国产 精品1| 十八禁网站网址无遮挡| 午夜久久久在线观看| 91精品国产九色| 亚洲人成77777在线视频| 黑人高潮一二区| 国产乱来视频区| 精品国产一区二区三区久久久樱花| 国国产精品蜜臀av免费| 国产亚洲精品第一综合不卡 | 亚洲国产精品一区三区| av在线老鸭窝| xxx大片免费视频| 久久人人爽人人片av| av有码第一页| 久久人人爽av亚洲精品天堂| 日韩电影二区| 看非洲黑人一级黄片| 久久久久网色| 国产高清不卡午夜福利| 18禁在线播放成人免费| 国产高清三级在线| 亚洲激情五月婷婷啪啪| 亚洲国产最新在线播放| 国产探花极品一区二区| 国产片内射在线| 国产深夜福利视频在线观看| 男女边摸边吃奶| 在线观看免费高清a一片| 午夜视频国产福利| 一级毛片 在线播放| 亚洲欧美日韩另类电影网站| 成年美女黄网站色视频大全免费 | 亚洲成人av在线免费| 亚洲精品国产色婷婷电影| 久久精品国产a三级三级三级| 国产成人精品久久久久久| 亚洲情色 制服丝袜| 涩涩av久久男人的天堂| 日本午夜av视频| 在线 av 中文字幕| 久久久国产精品麻豆| 一级毛片电影观看| 国产亚洲精品第一综合不卡 | 日本av手机在线免费观看| 国产高清三级在线| 亚洲欧美成人综合另类久久久| 美女国产高潮福利片在线看| .国产精品久久| 搡老乐熟女国产| 久久精品国产a三级三级三级| 亚洲精品视频女| 嫩草影院入口| 九草在线视频观看| 中文字幕最新亚洲高清| 久久狼人影院| 大码成人一级视频| av在线app专区| 大香蕉久久成人网| 亚洲精品日本国产第一区| 精品人妻熟女毛片av久久网站| 亚洲av福利一区| 纯流量卡能插随身wifi吗| 日韩av在线免费看完整版不卡| 丝袜美足系列| 亚洲无线观看免费| a级毛片免费高清观看在线播放| 丝瓜视频免费看黄片| 91午夜精品亚洲一区二区三区| 亚洲婷婷狠狠爱综合网| 亚洲精品美女久久av网站| 免费av中文字幕在线| 日日啪夜夜爽| 免费播放大片免费观看视频在线观看| 国产一级毛片在线| 日本av免费视频播放| 欧美精品亚洲一区二区| 中文字幕人妻丝袜制服| 成人无遮挡网站| 日本黄色日本黄色录像| 中文字幕最新亚洲高清| 一区二区日韩欧美中文字幕 | a级毛片免费高清观看在线播放| 极品少妇高潮喷水抽搐| 亚洲欧美成人综合另类久久久| 一边摸一边做爽爽视频免费| 日韩一本色道免费dvd| 久久午夜福利片| 久久久久久久久久成人| 人人妻人人澡人人看| 男女国产视频网站| 国产一区二区三区av在线| 九色成人免费人妻av| 亚洲av免费高清在线观看| 欧美激情 高清一区二区三区| 久久久午夜欧美精品| 国产日韩一区二区三区精品不卡 | 狠狠精品人妻久久久久久综合| 精品熟女少妇av免费看| 一本色道久久久久久精品综合| videossex国产| 中文字幕制服av| 亚洲第一区二区三区不卡| 九色成人免费人妻av| 在线免费观看不下载黄p国产| 亚洲精品久久成人aⅴ小说 | 99久久综合免费| 精品99又大又爽又粗少妇毛片| 国产男女超爽视频在线观看| 国产精品三级大全| 亚洲成人一二三区av| 中国美白少妇内射xxxbb| 搡女人真爽免费视频火全软件| 欧美日韩国产mv在线观看视频| 日韩视频在线欧美| 国产黄频视频在线观看| 亚洲欧美日韩卡通动漫| 久久久a久久爽久久v久久| 久久久久久久久久久久大奶| 日韩强制内射视频| 美女视频免费永久观看网站| 黄色一级大片看看| av免费在线看不卡| 一本一本综合久久| 久久久精品免费免费高清| 午夜av观看不卡| 18禁在线播放成人免费| 国产高清三级在线| 母亲3免费完整高清在线观看 | 久久精品熟女亚洲av麻豆精品| 亚洲精品,欧美精品| 大片免费播放器 马上看| 国产亚洲精品第一综合不卡 | 日韩中字成人| av电影中文网址| 国产不卡av网站在线观看| 国产一区二区在线观看av| 亚洲欧美中文字幕日韩二区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 99久国产av精品国产电影| 男人添女人高潮全过程视频| 精品久久久久久电影网| 曰老女人黄片| 91精品三级在线观看| 一级毛片 在线播放| 性色av一级| 国产成人精品在线电影| 国产精品免费大片| 精品99又大又爽又粗少妇毛片| 国产成人精品久久久久久| 国产高清国产精品国产三级| 在线亚洲精品国产二区图片欧美 | 夜夜骑夜夜射夜夜干| 亚洲精品久久成人aⅴ小说 | 免费av中文字幕在线| 97在线人人人人妻| 七月丁香在线播放| 国产爽快片一区二区三区| 国产黄色免费在线视频| 麻豆乱淫一区二区| 中文天堂在线官网| 黄色视频在线播放观看不卡| 成人毛片a级毛片在线播放| 亚洲欧美清纯卡通| 肉色欧美久久久久久久蜜桃| 大香蕉97超碰在线| 少妇高潮的动态图| 美女福利国产在线| videosex国产| 99九九在线精品视频| 久久精品人人爽人人爽视色| 国产免费一区二区三区四区乱码| 欧美日韩综合久久久久久| 亚洲婷婷狠狠爱综合网| 国产精品久久久久久久电影| 亚洲四区av| 美女脱内裤让男人舔精品视频| 99久久综合免费| 免费高清在线观看日韩| av电影中文网址| 99国产综合亚洲精品| 99九九在线精品视频| 色网站视频免费| 亚洲高清免费不卡视频| .国产精品久久| 成人无遮挡网站| 成人亚洲欧美一区二区av| 精品少妇内射三级| 99精国产麻豆久久婷婷| 老司机亚洲免费影院| 国产av码专区亚洲av| 一区二区三区乱码不卡18| 精品国产露脸久久av麻豆| 一级毛片我不卡| 99视频精品全部免费 在线| 精品久久久精品久久久| 中文字幕人妻丝袜制服| 在线 av 中文字幕| 视频在线观看一区二区三区| 建设人人有责人人尽责人人享有的| 午夜日本视频在线| 丰满饥渴人妻一区二区三| 一区二区三区精品91| 韩国高清视频一区二区三区| 久久精品国产自在天天线| 午夜精品国产一区二区电影| 菩萨蛮人人尽说江南好唐韦庄| 国产亚洲精品第一综合不卡 | 高清欧美精品videossex| 夜夜看夜夜爽夜夜摸| 亚洲欧美清纯卡通| 美女大奶头黄色视频| 九色亚洲精品在线播放| av在线观看视频网站免费| 超碰97精品在线观看| 制服诱惑二区| 乱人伦中国视频| 女人精品久久久久毛片| 国产淫语在线视频| 中文字幕最新亚洲高清| 日韩,欧美,国产一区二区三区| 日韩成人av中文字幕在线观看| 一个人看视频在线观看www免费| 一区二区三区四区激情视频| 久久女婷五月综合色啪小说| 免费观看的影片在线观看| 欧美xxⅹ黑人| 精品人妻熟女av久视频| 2022亚洲国产成人精品| 欧美日韩亚洲高清精品| 久久精品久久久久久噜噜老黄| 九九爱精品视频在线观看| 少妇人妻久久综合中文| 精品人妻一区二区三区麻豆| 免费不卡的大黄色大毛片视频在线观看| 天天影视国产精品| 欧美少妇被猛烈插入视频| 免费看不卡的av| 18禁在线播放成人免费| 日韩,欧美,国产一区二区三区| 黄色毛片三级朝国网站| 精品熟女少妇av免费看| 亚洲欧美一区二区三区国产| 欧美精品一区二区免费开放| 99久久人妻综合| 七月丁香在线播放| 青春草视频在线免费观看| 一级毛片电影观看| 99国产精品免费福利视频| 久久97久久精品| 久久久国产精品麻豆| 性色avwww在线观看| 男女免费视频国产| 日韩一区二区三区影片| 看非洲黑人一级黄片| 91成人精品电影| 亚洲综合色网址| 少妇的逼水好多| 精品少妇久久久久久888优播| 伦理电影大哥的女人| 成人无遮挡网站| 亚洲精品aⅴ在线观看| 国产黄色视频一区二区在线观看| 国产精品无大码| 久久精品国产亚洲av天美| 97超视频在线观看视频| 成人午夜精彩视频在线观看| 久久99热这里只频精品6学生| 久久精品人人爽人人爽视色| 热99国产精品久久久久久7| 午夜日本视频在线| 亚洲国产成人一精品久久久| 黑丝袜美女国产一区| 99久久综合免费| 日本-黄色视频高清免费观看| 欧美xxxx性猛交bbbb| 欧美精品一区二区免费开放| 黑人巨大精品欧美一区二区蜜桃 | 曰老女人黄片| 欧美精品一区二区免费开放| 国产乱人偷精品视频| 又粗又硬又长又爽又黄的视频| 国产成人午夜福利电影在线观看| 亚洲精品久久午夜乱码| 国产有黄有色有爽视频| 久久精品夜色国产| 国产国语露脸激情在线看| 涩涩av久久男人的天堂| 国国产精品蜜臀av免费| 少妇高潮的动态图| 在现免费观看毛片| 久久99精品国语久久久| 高清在线视频一区二区三区| 国产精品免费大片| 免费大片黄手机在线观看| 午夜福利影视在线免费观看| 亚洲激情五月婷婷啪啪| 高清毛片免费看| 一本—道久久a久久精品蜜桃钙片| 日韩欧美一区视频在线观看| 啦啦啦视频在线资源免费观看| 夜夜看夜夜爽夜夜摸| 久久久久国产精品人妻一区二区| 又大又黄又爽视频免费| 精品一区二区三卡| 日本爱情动作片www.在线观看| 老司机影院毛片| 欧美日韩av久久| 免费观看a级毛片全部| 国产日韩欧美亚洲二区| 91久久精品国产一区二区三区| 国产成人精品福利久久| 日本欧美国产在线视频| 亚洲熟女精品中文字幕| 少妇精品久久久久久久| 亚洲欧洲精品一区二区精品久久久 | 黄片无遮挡物在线观看| 精品亚洲乱码少妇综合久久| 精品久久久久久久久av| 久久鲁丝午夜福利片| 一区二区三区免费毛片| 日韩av在线免费看完整版不卡| 18禁动态无遮挡网站| 自拍欧美九色日韩亚洲蝌蚪91| 在线播放无遮挡| 99久久综合免费| a级毛片在线看网站| 中文字幕亚洲精品专区| 亚洲精品色激情综合| 色5月婷婷丁香| 99久久综合免费| 一级,二级,三级黄色视频| 国产精品蜜桃在线观看| xxx大片免费视频| 99re6热这里在线精品视频| 一本久久精品| av在线观看视频网站免费| 精品亚洲成a人片在线观看| 国产片内射在线| 老司机影院毛片| 亚洲人与动物交配视频| 亚洲欧美成人综合另类久久久| 久久这里有精品视频免费| 亚洲色图综合在线观看| 天天操日日干夜夜撸| 嘟嘟电影网在线观看| 97超视频在线观看视频| 国产探花极品一区二区| 一本一本综合久久| 欧美人与性动交α欧美精品济南到 | 精品一区在线观看国产| 人人妻人人澡人人爽人人夜夜| 国产精品一区www在线观看| 久久久久精品久久久久真实原创| 一级毛片aaaaaa免费看小| 少妇猛男粗大的猛烈进出视频| 亚洲精品aⅴ在线观看| 18禁动态无遮挡网站| 一级a做视频免费观看| 岛国毛片在线播放| 狂野欧美激情性bbbbbb| 亚洲国产av新网站| 两个人免费观看高清视频| 嫩草影院入口| 亚洲精品日韩在线中文字幕| 亚洲丝袜综合中文字幕| 一二三四中文在线观看免费高清| 日韩一本色道免费dvd| 亚洲国产精品国产精品| 国产亚洲最大av| 熟女电影av网| 欧美3d第一页| 高清av免费在线| 国产在线视频一区二区| 国产精品一区www在线观看| 国产欧美日韩综合在线一区二区| 赤兔流量卡办理| 一区二区三区免费毛片| 成人手机av| 国产一区有黄有色的免费视频| 欧美日韩视频高清一区二区三区二| 肉色欧美久久久久久久蜜桃| 超碰97精品在线观看| 午夜激情久久久久久久| 亚洲国产日韩一区二区| 狂野欧美白嫩少妇大欣赏| 国产一区二区在线观看av| 午夜福利,免费看| 99久久精品国产国产毛片| 欧美日韩视频精品一区| 日韩视频在线欧美| 日日摸夜夜添夜夜爱| 亚洲精品日韩在线中文字幕| 乱码一卡2卡4卡精品| 制服人妻中文乱码| 大话2 男鬼变身卡| 午夜精品国产一区二区电影| 狂野欧美激情性xxxx在线观看| 99视频精品全部免费 在线| 欧美亚洲日本最大视频资源| 久久人人爽人人爽人人片va| 伦理电影大哥的女人| 日韩一区二区三区影片| 各种免费的搞黄视频| 大香蕉久久网| 最近2019中文字幕mv第一页| 日本wwww免费看| 久久久久久久久久成人| 男人爽女人下面视频在线观看| 亚洲国产av影院在线观看| 国产不卡av网站在线观看| 亚洲av免费高清在线观看| 精品国产乱码久久久久久小说| 少妇被粗大的猛进出69影院 | 免费看av在线观看网站| 一级片'在线观看视频| 国产免费现黄频在线看| 性色av一级| 久久久国产一区二区| 黑丝袜美女国产一区| 亚洲成人一二三区av| 免费av中文字幕在线| 高清午夜精品一区二区三区| 国产无遮挡羞羞视频在线观看|