• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Glowworm swarm optimization algorithm merging simulated annealing strategy*

    2014-06-09 14:44:40XiushuangCAO
    機床與液壓 2014年3期
    關(guān)鍵詞:模態(tài)分析優(yōu)化設(shè)計連桿

    Xiu-shuang CAO

    Department of Information Engineering,Tangshan College,Tangshan 063000,China

    Glowworm swarm optimization algorithm merging simulated annealing strategy*

    Xiu-shuang CAO?

    Department of Information Engineering,Tangshan College,Tangshan 063000,China

    Artificial glowworm swarm optimization algorithm is a new research orientation in the field of swarm intelligence recently.The algorithm has achieved success in the complex function optimization,but it is easy to fall into local optimum,and has the low speed of convergence in the later period and so on.Simulated annealing algorithm has excellent global search ability.Combining their advantages,an improved glowworm swarm optimization algorithm was proposed based on simulated annealing strategy.The simulated annealing strategy was integrated into the process of glowworm swarm optimization algorithm.And the temper strategy was integrated into the local search process of hybrid algorithm to improve search precision.Overall performance of the Glowworm swarm optimization was improved.Simulation results show that the hybrid algorithm increases the accuracy of solution and the speed of convergence significantly,and is a feasible and effective method.

    Glowworm swarm optimization(GSO),Simulated annealing strategy,Annealing method,Temper strategy,Benchmark

    1.Introduction

    Glowworm Swarm Optimization(GSO)[1]is proposed by K.N.Krishnanad and D.Ghose in 2005,which is a new bionic swarm intelligence optimization algorithm.The algorithm has strong local search capabilities,but its global search performance is bad.It attracts the attention of scholars increasingly.At present,many scholars have improved traditional GSO in many aspects.A pattern search operator was integrated into GSO in reference[2],which improves global and local search ability of GSO.But the search result based on pattern search operator depends on the initial point to a large degree;Chaos theory was integrated into GSO in reference[3].The glowworm’s position of algorithm was initiated based on chaos theory,and mutation was operated by Gaussian disturbances in due time,which improves the capabilities of algorithm in a certain extent;aim at improving optimization structure of GSO by ZHOU Yongquan et al,the algorithms of glowworm swarm optimization based on fluoresce in diffusion and self-adaptive step were proposed,which overcomes the shortcoming of insufficient collaboration between glowworm and slow convergence in the late search disadvantage,respectively;the Swarm intelligence behaviors of bee colony and birds colony were used as move strategy of GSO in reference[4-7],which improves capability of algorithm in a certain extent.In addition,the standard GSO has also been applied in many areas successfully.The improved algorithm were used to solve function and TSP problems in reference[8-11]respectively,it proves that the algorithm is applicable in the relevant area.

    In order to further improve the GSO problems oflocal optimum easily,slow convergence and lower searching precision in optimizing complex functions,simulated annealing strategy is integrated into GSO in this paper.GSO has better local search performance,simulated annealing strategy is used to strengthen the whole search ability of algorithm,and temper strategy is used to promote search accuracy.A glowworm swarm optimization algorithm merging simulated annealing strategy is proposed.

    2.GSO principle and simulated annealing search

    2.1.Standard GSO

    In standard GSO,the‘n’glowworm individual is distributed in whole feasible field random ly,every glowworm will carry a certain amount of fluorescein li.The glowworm releases appropriate fluorescein that will influence on each other around it.Every glowworm individual’s decision-making domains can be set to:.Here,the size of decision making domains is related to the number of neighbors,and the smaller neighbor density,the bigger radius of decision-making domains in order to search more neighbors.Contrary,radius of decision-making domains will decrease.The size of fluoresce in of every glowworm is related to the objective function value of position in search area.The glowworm has the bigger fluoresce in value,and it illustrates that the position in search area is better,so the objective value is better.Every glowworm individual searches the neighbor set Ni()t in decision-making domains,in this set,the neighbor with the bigger fluoresce in value fascinates glowworm individual,which makes glowworm to move in this direction.And the moving direction also will change with the difference of neighbor selected.After moving several times,most glowworms gather in the better solutions position.Initially,the sensing range of every glowworm individual is all rs,the decision-making range is determined by the domain of the object function.After completing the initial settings of the algorithm,the algorithm goes into a loop iteration process,which has 4 processes mainly:fluoresce in update,probability selection,location update and dynamic decision-making domain update.

    1)Fluoresce in update

    The object function value J xi()( )t of position xi(t)in T iterations about glowworm individual i is converted to correspondent fluorescein li()t:

    Where,ρ∈0,()1 is the parameter controlling the size of fluorescein value,andγis the parameter measuring object function value.

    2)Probability selection

    Within radius rid()t of dynamic decision-making domains,determines the fluoresce in value higher than themselves individuals constitute the individual's neighborhood set:

    In neighborhood set Ni()t probability of move towards individual j is Pij()t:

    3)Location update

    where sis move step.

    4)Dynamic decision-making domain update

    Where,βis constant to control the change range of neighborhood individual,and ntis neighborhood threshold value to control the number of neighbors.

    2.2.Introduction of simulated annealing

    As early as 1953,Metropolis proposed an algorithm for simulating balance evolution process of solid temperature,which guides the optimization process through Metropolis criterion.When temperature is T,current status i produces corresponding new status. That their energies are Eiand Ejseparately,if Ei≤Ej,the new status j is accepted as current optimum status,otherwise,with a certain probability that is greater than RAND to judge whether or not to accept the new status.The guidelines will be gradually reduced as the temperature,and its probability in accepting inferior solution also reduces.Firefly algorithm is implemented in the process of searching for optimal solutions,when it appears that no more excellent individual is repeatedly found in the corresponding perception range of an individual,it will be decided that this individual fall into local optimum. Or so,this individual’s position can’t move,which reduces search efficiency and leads to fall into local optimum.Now,if the algorithm accepts inferior solu-tions with a certain probability through simulated annealing strategy,it can jump to local optimum to increase convergence speed.

    2.3.Annealing method and temper strategy

    Annealing method refers to temperature drop speed.In theory,the slower annealing temperature drop,the bigger probability to obtain global optimum.But too slow temperature drop will lead to overlong iteration time of search.The most common annealing method:Tk+1=α*Tk,αinfluences annealing method greatly.This paper adopt following annealing strategy:

    Firstly,this annealing strategy is converged by quick speed.When iteration carries out to a certain extent,the temperature will drop under Tmin.Now,raising system temperature to T,and carrying out iteration of algorithm again.Temper strategy range is [Tmin,Tmax].When the temperature drops under Tminagain,this process is tempering process[12-14]. According to the iteration times,algorithm can be set tempering process time and further improve solution accuracy again.

    3.GSO merging into simulated annealing strategy(SA-GSO)

    3.1.Basic idea of improved algorithm

    On the base of search frame structure about standard GSO,when the algorithm has searched for a certain numbers and the optimum doesn’t change,the algorithm adopts inferior solution for certain probability through simulated annealing,which makes s algorithm to skip out local optimum.So a hybrid algorithm merging into simulated annealing is presented.The idea of hybrid algorithm is as follows:firstly,the glowworm individual location is initialized in the range of feasible region,at the same time,given a certain amount of fluorescein values,which are related to the function value.The sensing range of glowworm individual is determined by the definition domain of function.When the distance between two glowworms is in the range of decision domain,and other glowworm individual has bigger fluorescein value,this glowworm individual chooses excellent individual with some probability,then,moves to better individual according to set step.After a number of iterations,when the neighborhood set of a glowworm individual can’t find more excellent individual,the hybrid algorithm accepts inferior solution with some probability by simulated annealing strategy to skip out local optimum and update glowworm location,and its fluoresce in value is updated according to object function value of new solution.At last,judging the current temperature,if temperature drops under the set value,adopting temper strategy is adopted,and local area in neighborhood radius of optimum is further searched.The global optimum is found through above process repeatly.

    3.2.Implementation steps of hybrid algorithm

    Step 1 Initializing parameters,initialing temperature T0and temper strategy Tminand Tmaxof simulated annealing,and placing glowworm individual locations randomly.

    Step 2 Updating individual fluorescein.

    Step 3 Computing neighborhood set and corresponding move probability,and determining moving direction.

    Step 4 Mobile phase,according to probability formula(2)in neighborhood set to choose next excellent individual to move.

    Step 5 Determining the fluoresce in value of better individual whether don’t change in specified iteration or not.If yes,turn to Step 6;If no,turn to Step 7.

    Step 6 The simulated annealing strategy:producing new solution in neighborhood of current excellent individual,and accepting inferior solution through Metropolis criterion.

    Step 7 Under current optimum,determine whether the temperature drops to that below tempering temperature.If it is smaller than Tmin,adopt temper strategy to search;otherwise,turn to Step 8.

    Step 8 Updating the location of glowworm individual and corresponding neighborhood radius,if the finished condition is fulfilled,exit a loop,if not,turn to Step 2.

    4.Test function simulation and analysis

    4.1.Testing platform

    This algorithm is realized through programming on Matlab2009a.Tests depending on the platform arethe dual-core 3G and memory 2G based on XP system PC.

    4.2.Test function

    In order to verify efficiency of improved algorithm,the typical Benchmark functions(as formula(7)~(12))are used to test improved algorithm in this paper:

    1)Rosenbrock function

    n=30,-30≤xi≤30,global minimum is 0,optimum point(1,1,1…1),typical non-convex,pathological unimodal function.

    2)Shaffer’s f7function

    -100<xi<100,global minimum is 0,optimum point(0,0),multi modal function,it includes a number of local optimum which consists of concentric circles,so it is easy to fall into local optimum.

    3)Schaffer’s f6 function

    -100<xi<100,global minimum is 0.There are some infinite local minimums that these points are located in the range of about 3.14 from global optimum,these point shock strongly,and the requirement is very high for algorithm performance to search global optimum.

    4)Freudenstein-Roth

    -10<xi<10,global minimum is 0,optimum point(5,4).

    5)Sphere function

    global minimum is 0,optimum point(0,0,0…0). 6)Griewan function

    n=30,-100<xi<100,global minimum is 0.

    4.3.Parameters setting

    In GSO and SA-GSO,glowworm individual is 50,iteration times N=500,initial fluoresce in value of glowworm individual are also set l(0)=5,moving step sizes=2,affecting individual firefly selected neighbor number neighborhood threshold nt=5,parametersβ=0.6 that controls neighboring change ranges,initial value of decision domain range is 10,ρ=0.3,γ=0.6,initial temperature of simulated annealing T0=2 000,and temper strategy range is [500,1 000] according to trial and error.

    4.4.Experimental results and analysis

    Improved GSO(SA-GSO)is tested through above test functions.In order to overcome accidental error because of placing glowworm individual locations randomly,each function is optimized for 20 times.Compared with basic GSO,the best,worst,average and average iterations times are listed as shown in Table 1.

    From Figure 1 to Figure 6,these figures are compared after and before improved algorithm between optimum and iterations times.

    As can be seen from Table 1,compared with standard GSO,after merging into simulated annealing strategy,the search capability of hybrid GSO is further strong,the optimum is also closer to standard value.The search capability of improved GSO in High-dimensional space is stronger than before.For high-dimensional function f1,the solution accuracy through SA-GSO is superior to standard GSO greatly,its average number of iterations also reduce dramatically.For functions f2that are hard to find optimum,the solution of SA-GSO is nearer to optimum in theory,the number of iterations also reduces in a certain degree,which shows that SA-GSO is rapider to converge than before.For function f3which has unlimited local extremum,SA-GSO finds the optimum that is closer to the optimum in theory in the similar iterations,which reflects that the convergence speed of SA-GSO is quick.For a two-dimensional function f4,all of the optimization results of algorithm are better,however,the optimum accuracy through SA-GSO is improved substantially,its optimum is 9.552 5e-06,optimum point(5.986 4,3.961 4).And the optimum of GSO is 0.003 1,optimum point(5.593 0,3.815 6).For high-dimension function f5,the accuracy of solution also increases within a factor of ten.The accuracy of function f6is increased lightly,however,the number of iteration reduces,and it equals to indicate that Glowworm swarm optimization algorithm merging simulated annealing strategy is effective.

    As can be seen from Figure 1,SA-GSO can converge to the optimum fastly in iteration of 100 or so.But the optimum of GSO after250 iterations is inferior to SA-GSO still.In addition,it falls into the local optimum for a long time in iteration of 100 to 250.As can be seen from Figure 2 to Figure 6 too,the convergence speed of SA-GSO is superior to GSO.When GSO falls into local optimum in a certain iteration times,it is hard to jump local optimum.But because SA-GSO is merged into simulated annealing,it can jump to local optimum and converge quickly. Besides,because of the temperature strategy,the solution accuracy is improved substantially.As can be seen from Figure 6,SA-GSO obtains the optimum 0.047 71 after the iteration of129,but GSO only obtains the optimum 0.056 62 after the iteration of239. It indicates that convergence speed and solution accuracy are improved greatly.

    Table 1.The com parison of experimental results

    Figure 1.The iterative curve of Rosenbrock

    Figure 2.The iterative curve of Shaffer’s f7

    Figure 3.The iterative curve of Shaffer’s f6

    Figure 4.The iterative curve of Freudenstein

    Figure 5.The iterative curve of Sphere

    Figure 6.The iterative curve of Griewank

    5.Conclusion

    Aiming at falling into local optimum easily and slow convergence later stage in optimizing complex function by GSO,a glowworm swarm optimization algorithm merging simulated annealing strategy is proposed,which improves global search capability of algorithm.In order to further improve search accuracy,temper strategy is adopted,which searches local area further at certain temperatures.Simulation test show that the algorithm is improved in search speed and search accuracy.So the improvement of algorithm is effective and feasible.But,because the parameters in algorithm are set through many experiments,the optimization of algorithm parameters and other application need to study further,which is also the next job.

    [1] Krishnanand K.N.D,Ghose D.Glowworm swarm optimization:a new method for optimizing multi-modal functions[J].Computational Intelligence Studies,2009,1(1):93 -119.

    [2] LIU Hong-xia,ZHOU Yong-quan.A Glowworm Swarm Optimization Algorithm Based on Pattern Search Operator[J].Journal of Chinese Computer Systems,2011,32(10):2130~2133.

    [3] FENG Yan-hong,LIU Jian-qin,He Yi-chao.Chaosbased dynamic population firefly algorithm[J].Journal of Computer Applications,2013,33(3):796-799,805.

    [4] WANG Ying-ju,ZHOU Yong-quan.Golwworm Swarm Optimization algorithm based on fluoresce in diffusion[J].Computer Engineering and Applications,2012,48(10):34-38.

    [5] OUYANG-Zhe,ZHOU Yong-quan.Self-adaptive step glowworm swarm optimization algorithm[J].Journal of Computer Applications,2011,31(7):1804-1807.

    [6] ZHANG Jun-li,ZHOU Yong-quan.A Hybrid Optimization Algorithm Based on Artificial Glowworm Swarm and Differential Evolution[J].Information and Control,2011,40(5):608-613.

    [7] WU-Bin,CUI Zhi-yong,NI Wei-hong.Research on Glowworm Swarm Optimization with Hybrid Swarm Intelligence Behavior[J].Computer Science,2012,39(5):198-200,228.

    [8] YUAN Ji-jun.Optimal design for scale-based product family based on multi-objective firefly algorithm[J]. Computer Integrated Manufacturing System,2012,18(8):1801-1808.

    [9] GUO Li-ping,LI Xiang-tao,GU Wen-xiang,et al.An improved firefly algorithm for the blocking flow shop scheduling problem[J].CAAI Transactions on Intelligent Systems,2013,8(1):1-7.

    [10]LIU Peng,LIU Hong,ZHENG Xiang-wei,et al.Approach for dynamic group automatic aggregation path planning based on improved FA[J].Application Research of Computers,2011,28(11):4146-4149.

    [11]ZHOU Yong-quan,HUANG Zheng-xin.Artificial glowworm swarm optimization algorithm for TSP[J].Control and Decision,2012,27(12):1816-1821.

    [12]ZHOU Yong-quan,HUANG Zheng-xin,LIU Hong-xia. Discrete Glowworm Swarm Optimization Algorithm for TSP Problem[J].ACTA ELECTRONICA SINICA,2012,40(6):1164-1170.

    [13]LI Bing.The Study of New optimization Algorithms and Their Applications[D].Shanghai:East China University of Science and Technology,1996.

    [14]LIU Bo,MENG Pei-sheng.Simulated annealing-based ant colony algorithm for traveling salesman problems[J]. J.Huazhong Univ.of Sci.&Tech.(Natural Science Edition),2009,37(11):26-30.

    摘要:人造草坪機的連桿是使機構(gòu)中的簇針、成圈鉤、割刀完成各自往復(fù)運動的重要連接部件。利用了ANSYS Workbench有限元分析軟件對人造草坪機連桿建立了有限元模型。根據(jù)其在實際中的受約束以及載荷情況,進行靜力分析??紤]到機床運轉(zhuǎn)時振動對連桿的影響,對其進行模態(tài)分析。根據(jù)靜力學(xué)分析的結(jié)果對連桿進行拓撲優(yōu)化設(shè)計,為連桿以及人造草坪機的其他部件的進一步優(yōu)化提供了理論依據(jù)及實現(xiàn)方法。

    關(guān)鍵詞:ANSYS Workbench;連桿;靜力分析;模態(tài)分析;優(yōu)化設(shè)計

    中圖分類號:TP114

    融合模擬退火策略的螢火蟲優(yōu)化算法*

    曹秀爽?

    唐山學(xué)院信息工程系,河北唐山 063000

    螢火蟲算法是群智能領(lǐng)域近年出現(xiàn)的一個新的研究方向,該算法雖已在復(fù)雜函數(shù)優(yōu)化方面取得了成功,但也存在著易于陷入局部最優(yōu)且進化后期收斂速度慢等問題,而模擬退火機制具有很強的全局搜索能力,結(jié)合兩者的優(yōu)缺點,提出一種融合模擬退火策略的螢火蟲優(yōu)化算法。改進后的算法在螢火蟲算法全局搜索過程中融入模擬退火搜索機制,在局部搜索過程中采用了回火策略,改善尋優(yōu)精度,改進了螢火蟲算法的全局搜索性能和局部搜索性能。仿真實驗結(jié)果表明:改進后的算法在收斂速度和解的精度方面有了顯著地提高,證明了算法改進的可行性和有效性。

    螢火蟲算法;模擬退火策略;退火方式;回火策略;Benchmark

    TP312

    基于ANSYS Workbench的人造草坪織機連桿的有限元分析及優(yōu)化設(shè)計

    吳士昊?,戴惠良,宋佳玲

    東華大學(xué)機械工程學(xué)院,上海 201620

    10.3969/j.issn.1001-3881.2014.18.020

    2014-05-02

    *Project supported Education Department of Hebei Province(No:QN20132019,Science and Technology Planning Project of Tangshan city(No:131302118a)

    ?Xiu-shuang CAO,E-mail:379511725@qq.com

    猜你喜歡
    模態(tài)分析優(yōu)化設(shè)計連桿
    某發(fā)動機連桿螺栓擰緊工藝開發(fā)
    基于ANSYS workbench六片斜葉圓盤渦輪攪拌器的模態(tài)分析
    基于Ansys的礦用局部通風(fēng)機葉輪模態(tài)分析
    某調(diào)速型液力偶合器泵輪的模態(tài)分析
    東林煤礦保護層開采卸壓瓦斯抽采優(yōu)化設(shè)計
    橋式起重機主梁結(jié)構(gòu)分析和優(yōu)化設(shè)計
    基于simulation的醫(yī)用升降椅參數(shù)化設(shè)計
    科技視界(2016年21期)2016-10-17 17:27:09
    簡述建筑結(jié)構(gòu)設(shè)計中的優(yōu)化策略
    民用飛機沖壓渦輪機的動剛度分析
    科技視界(2015年25期)2015-09-01 16:34:55
    連桿的運動及有限元分析
    機械工程師(2015年9期)2015-02-26 08:38:12
    熟女人妻精品中文字幕| 日韩国内少妇激情av| 欧美丝袜亚洲另类| 久久精品综合一区二区三区| 在线观看av片永久免费下载| 亚洲不卡免费看| 久久6这里有精品| www日本黄色视频网| 亚洲成人av在线免费| 大又大粗又爽又黄少妇毛片口| 水蜜桃什么品种好| 日本猛色少妇xxxxx猛交久久| 亚洲av中文av极速乱| 日韩,欧美,国产一区二区三区 | 久久亚洲国产成人精品v| 久久精品国产99精品国产亚洲性色| 卡戴珊不雅视频在线播放| 日韩三级伦理在线观看| 国产精品国产三级专区第一集| 欧美极品一区二区三区四区| 性插视频无遮挡在线免费观看| 三级毛片av免费| 男插女下体视频免费在线播放| 97热精品久久久久久| 噜噜噜噜噜久久久久久91| 精品一区二区三区人妻视频| 波多野结衣巨乳人妻| 国产乱来视频区| 男女国产视频网站| 亚洲av成人精品一二三区| 日本免费在线观看一区| 免费一级毛片在线播放高清视频| 美女高潮的动态| 亚洲综合精品二区| 精品久久国产蜜桃| 成人三级黄色视频| 欧美日韩一区二区视频在线观看视频在线 | 亚洲av电影不卡..在线观看| 少妇被粗大猛烈的视频| 国产老妇女一区| 可以在线观看毛片的网站| 建设人人有责人人尽责人人享有的 | 久99久视频精品免费| 日本免费a在线| 国产精品av视频在线免费观看| 两个人的视频大全免费| 麻豆一二三区av精品| 如何舔出高潮| av卡一久久| 亚洲内射少妇av| 国产精品无大码| 大话2 男鬼变身卡| 欧美高清成人免费视频www| 国产中年淑女户外野战色| 欧美zozozo另类| 国产亚洲91精品色在线| 婷婷色综合大香蕉| 一级黄色大片毛片| 一级毛片aaaaaa免费看小| 午夜福利成人在线免费观看| 老司机福利观看| 插阴视频在线观看视频| 日韩制服骚丝袜av| 欧美又色又爽又黄视频| 一个人看视频在线观看www免费| 国产欧美日韩精品一区二区| 国产精品伦人一区二区| 禁无遮挡网站| 国产精品精品国产色婷婷| 亚洲美女视频黄频| 夫妻性生交免费视频一级片| 国产在视频线在精品| 欧美丝袜亚洲另类| 性色avwww在线观看| 国产精品三级大全| 精品国产三级普通话版| 国产精品国产三级专区第一集| 欧美日韩一区二区视频在线观看视频在线 | 国产老妇伦熟女老妇高清| 色综合站精品国产| 男女下面进入的视频免费午夜| 欧美三级亚洲精品| 一个人看视频在线观看www免费| 大又大粗又爽又黄少妇毛片口| 99热这里只有是精品在线观看| 日本一二三区视频观看| 视频中文字幕在线观看| 国产欧美另类精品又又久久亚洲欧美| 亚洲av中文av极速乱| 日韩av不卡免费在线播放| 国产老妇女一区| 国产黄片美女视频| kizo精华| 亚洲人成网站在线播| 亚洲国产精品成人久久小说| 精品久久久久久久末码| 观看美女的网站| 色综合亚洲欧美另类图片| 久久欧美精品欧美久久欧美| 国产精品乱码一区二三区的特点| 国产在线一区二区三区精 | 亚洲综合精品二区| 青青草视频在线视频观看| 日韩三级伦理在线观看| 成人三级黄色视频| 中文字幕av成人在线电影| 日本黄色视频三级网站网址| 免费看光身美女| 日韩视频在线欧美| 欧美成人精品欧美一级黄| 丰满少妇做爰视频| 亚洲av.av天堂| 久久99精品国语久久久| 国产黄片美女视频| 亚洲色图av天堂| 国产伦理片在线播放av一区| 青春草视频在线免费观看| 亚洲国产精品久久男人天堂| 成人鲁丝片一二三区免费| 少妇人妻精品综合一区二区| 国产成人精品婷婷| 97人妻精品一区二区三区麻豆| 天天躁夜夜躁狠狠久久av| 身体一侧抽搐| 久久精品91蜜桃| 人人妻人人澡人人爽人人夜夜 | 午夜亚洲福利在线播放| 狂野欧美激情性xxxx在线观看| 国产成人精品婷婷| 又粗又硬又长又爽又黄的视频| 亚洲自偷自拍三级| 99久久中文字幕三级久久日本| 我的女老师完整版在线观看| 九九久久精品国产亚洲av麻豆| 五月伊人婷婷丁香| 少妇人妻一区二区三区视频| 亚洲精品久久久久久婷婷小说 | 日本免费一区二区三区高清不卡| 我的老师免费观看完整版| 91久久精品电影网| av免费在线看不卡| 岛国在线免费视频观看| 麻豆av噜噜一区二区三区| 亚洲精华国产精华液的使用体验| 国产老妇女一区| 国产av码专区亚洲av| 看黄色毛片网站| 午夜视频国产福利| 日本-黄色视频高清免费观看| 亚洲av.av天堂| 听说在线观看完整版免费高清| 汤姆久久久久久久影院中文字幕 | or卡值多少钱| 99久久精品热视频| 最新中文字幕久久久久| 亚洲国产精品sss在线观看| 亚洲欧美精品专区久久| 男的添女的下面高潮视频| 国产一级毛片七仙女欲春2| 人人妻人人澡人人爽人人夜夜 | 少妇猛男粗大的猛烈进出视频 | 99久久成人亚洲精品观看| 久久精品国产亚洲网站| 丰满少妇做爰视频| av在线播放精品| 国产男人的电影天堂91| 久久精品国产自在天天线| 久久99精品国语久久久| 永久网站在线| 特级一级黄色大片| 尾随美女入室| 日韩成人伦理影院| 国产伦精品一区二区三区四那| 精品国内亚洲2022精品成人| 久久人妻av系列| 久久人妻av系列| 久久久久久久亚洲中文字幕| 久久久久久久国产电影| 女人被狂操c到高潮| 午夜福利视频1000在线观看| 亚洲欧美清纯卡通| 国产精品久久视频播放| 亚洲婷婷狠狠爱综合网| 99国产精品一区二区蜜桃av| 18禁在线播放成人免费| 九色成人免费人妻av| 99久久中文字幕三级久久日本| 亚洲美女视频黄频| 2021天堂中文幕一二区在线观| 欧美精品一区二区大全| 美女脱内裤让男人舔精品视频| 在线a可以看的网站| 欧美日韩一区二区视频在线观看视频在线 | 精品无人区乱码1区二区| 水蜜桃什么品种好| 18禁动态无遮挡网站| 日本欧美国产在线视频| 最近视频中文字幕2019在线8| 一级毛片久久久久久久久女| 欧美bdsm另类| 2021天堂中文幕一二区在线观| 老司机影院毛片| 午夜福利在线观看免费完整高清在| 22中文网久久字幕| 2021天堂中文幕一二区在线观| 亚洲精品成人久久久久久| 久久亚洲精品不卡| 国产私拍福利视频在线观看| 国产av不卡久久| 狠狠狠狠99中文字幕| 一夜夜www| 91精品伊人久久大香线蕉| 春色校园在线视频观看| 99热6这里只有精品| 欧美成人精品欧美一级黄| 一级爰片在线观看| 午夜免费男女啪啪视频观看| 国产白丝娇喘喷水9色精品| 永久网站在线| 久久国产乱子免费精品| 亚洲美女视频黄频| 亚洲内射少妇av| 一二三四中文在线观看免费高清| 精品欧美国产一区二区三| 中文字幕亚洲精品专区| 成人一区二区视频在线观看| 亚洲欧美日韩东京热| 国产成人精品久久久久久| 神马国产精品三级电影在线观看| 国产三级在线视频| 大话2 男鬼变身卡| 国产精品久久久久久精品电影| 别揉我奶头 嗯啊视频| 国产黄片视频在线免费观看| 五月玫瑰六月丁香| 91久久精品国产一区二区三区| 卡戴珊不雅视频在线播放| 99久国产av精品国产电影| 中文在线观看免费www的网站| 看黄色毛片网站| 黄色日韩在线| ponron亚洲| 亚洲自拍偷在线| 精品久久久久久电影网 | a级毛色黄片| 国产单亲对白刺激| 别揉我奶头 嗯啊视频| 欧美变态另类bdsm刘玥| 小蜜桃在线观看免费完整版高清| 日韩成人伦理影院| 美女脱内裤让男人舔精品视频| 日韩精品青青久久久久久| 国产精品一及| 听说在线观看完整版免费高清| 亚洲五月天丁香| 2021少妇久久久久久久久久久| 精品人妻熟女av久视频| 内地一区二区视频在线| 欧美变态另类bdsm刘玥| 色网站视频免费| av播播在线观看一区| 久久久成人免费电影| 国产精品人妻久久久影院| 91久久精品国产一区二区三区| 天天躁日日操中文字幕| 欧美xxxx性猛交bbbb| 中文字幕人妻熟人妻熟丝袜美| 日韩在线高清观看一区二区三区| 国产免费福利视频在线观看| 日产精品乱码卡一卡2卡三| 国产成人91sexporn| 男女边吃奶边做爰视频| 日日摸夜夜添夜夜爱| 久久久久网色| 亚洲欧美精品综合久久99| 男女那种视频在线观看| 成人午夜精彩视频在线观看| 国产白丝娇喘喷水9色精品| 欧美日韩综合久久久久久| 边亲边吃奶的免费视频| 日韩精品有码人妻一区| 变态另类丝袜制服| 男女视频在线观看网站免费| 在线免费十八禁| 非洲黑人性xxxx精品又粗又长| 老司机福利观看| 啦啦啦观看免费观看视频高清| 高清视频免费观看一区二区 | 可以在线观看毛片的网站| 黄色配什么色好看| 寂寞人妻少妇视频99o| 91aial.com中文字幕在线观看| 欧美精品国产亚洲| 欧美一区二区亚洲| 日韩亚洲欧美综合| 国产精品麻豆人妻色哟哟久久 | 国产亚洲av片在线观看秒播厂 | 校园人妻丝袜中文字幕| 嫩草影院入口| 麻豆乱淫一区二区| 午夜精品一区二区三区免费看| 国产精品99久久久久久久久| 大话2 男鬼变身卡| 国产不卡一卡二| 变态另类丝袜制服| 亚洲欧美日韩卡通动漫| 国产麻豆成人av免费视频| 久久久久久久久久久丰满| 91精品一卡2卡3卡4卡| 黄色日韩在线| 汤姆久久久久久久影院中文字幕 | 看非洲黑人一级黄片| 国产私拍福利视频在线观看| 国产黄片视频在线免费观看| 有码 亚洲区| 国产在视频线精品| 久久久久久大精品| 免费观看a级毛片全部| 亚洲综合色惰| 六月丁香七月| 色尼玛亚洲综合影院| 黄色一级大片看看| av免费在线看不卡| 国产精品久久久久久久久免| 亚洲精品aⅴ在线观看| 日本爱情动作片www.在线观看| 美女被艹到高潮喷水动态| 亚洲av男天堂| 中文字幕av在线有码专区| 日韩欧美在线乱码| 国产片特级美女逼逼视频| 国产一级毛片在线| 国产精品野战在线观看| 欧美+日韩+精品| 身体一侧抽搐| 亚洲精品乱久久久久久| 嫩草影院新地址| 亚洲欧美中文字幕日韩二区| 亚洲丝袜综合中文字幕| 日本黄色视频三级网站网址| 国产精品福利在线免费观看| 欧美一区二区国产精品久久精品| 一本一本综合久久| 国产91av在线免费观看| 人妻制服诱惑在线中文字幕| 天天躁夜夜躁狠狠久久av| 青春草亚洲视频在线观看| 麻豆精品久久久久久蜜桃| 中文天堂在线官网| 人妻少妇偷人精品九色| ponron亚洲| 国产精品久久久久久av不卡| 白带黄色成豆腐渣| 国产成人a∨麻豆精品| 中文资源天堂在线| 日本av手机在线免费观看| 日韩在线高清观看一区二区三区| or卡值多少钱| 麻豆一二三区av精品| 国产av不卡久久| 亚洲人成网站高清观看| 国产精品人妻久久久影院| 国产在视频线在精品| 久久久久精品久久久久真实原创| 一卡2卡三卡四卡精品乱码亚洲| 国产真实伦视频高清在线观看| 久久精品夜色国产| 男人舔奶头视频| 久99久视频精品免费| av在线蜜桃| 亚洲四区av| 你懂的网址亚洲精品在线观看 | 日韩精品青青久久久久久| 国产精品久久久久久精品电影小说 | 成人毛片60女人毛片免费| 日本一二三区视频观看| 天堂中文最新版在线下载 | 爱豆传媒免费全集在线观看| 国产一区有黄有色的免费视频 | 人妻系列 视频| 91午夜精品亚洲一区二区三区| 亚洲国产色片| 两个人的视频大全免费| 乱系列少妇在线播放| 精品人妻偷拍中文字幕| 午夜激情欧美在线| 亚洲真实伦在线观看| 99热全是精品| 久久欧美精品欧美久久欧美| 韩国高清视频一区二区三区| 国产真实伦视频高清在线观看| 亚洲精品456在线播放app| 欧美日韩在线观看h| 日本黄色片子视频| 国产一区二区在线观看日韩| 欧美高清性xxxxhd video| 男女下面进入的视频免费午夜| 18禁动态无遮挡网站| av国产免费在线观看| 嘟嘟电影网在线观看| 精品人妻视频免费看| 老司机福利观看| 黄片wwwwww| 欧美3d第一页| 国产亚洲5aaaaa淫片| 99热6这里只有精品| 午夜日本视频在线| 精品无人区乱码1区二区| 男人舔奶头视频| 国产亚洲一区二区精品| 亚洲精品日韩av片在线观看| 精品99又大又爽又粗少妇毛片| 最新中文字幕久久久久| 又爽又黄a免费视频| 久久久久久久久久黄片| 99热精品在线国产| 男女国产视频网站| 久久久久久久久久成人| 日韩av在线大香蕉| 成人亚洲欧美一区二区av| 丰满少妇做爰视频| 一区二区三区高清视频在线| 一级黄片播放器| 免费看a级黄色片| 久热久热在线精品观看| 亚洲美女视频黄频| 国产 一区 欧美 日韩| 日韩三级伦理在线观看| 国产欧美日韩精品一区二区| 久久久精品欧美日韩精品| 久久久久免费精品人妻一区二区| 最近中文字幕高清免费大全6| 黄色配什么色好看| 午夜福利在线观看吧| 国产精品一区二区在线观看99 | 中文字幕精品亚洲无线码一区| 日产精品乱码卡一卡2卡三| 欧美3d第一页| 亚洲av成人精品一二三区| 久久久a久久爽久久v久久| 亚洲av福利一区| 国产伦精品一区二区三区四那| 一级二级三级毛片免费看| 一个人看视频在线观看www免费| 女人十人毛片免费观看3o分钟| av福利片在线观看| 国产精品嫩草影院av在线观看| 日韩精品青青久久久久久| 亚洲精品456在线播放app| 婷婷六月久久综合丁香| 青春草国产在线视频| 日产精品乱码卡一卡2卡三| 特大巨黑吊av在线直播| av免费在线看不卡| 小蜜桃在线观看免费完整版高清| 视频中文字幕在线观看| 伦理电影大哥的女人| 一级毛片我不卡| 永久网站在线| 秋霞在线观看毛片| 精品久久久久久久久亚洲| 直男gayav资源| 97超视频在线观看视频| 国产激情偷乱视频一区二区| 综合色丁香网| 三级男女做爰猛烈吃奶摸视频| 2021少妇久久久久久久久久久| 男的添女的下面高潮视频| 国产乱来视频区| 日韩中字成人| 国产日韩欧美在线精品| 国产精品爽爽va在线观看网站| 成人高潮视频无遮挡免费网站| 亚洲五月天丁香| 国产一级毛片七仙女欲春2| 99热全是精品| 国产伦精品一区二区三区视频9| 真实男女啪啪啪动态图| 国产高清国产精品国产三级 | 99久久精品国产国产毛片| ponron亚洲| 国产一级毛片在线| 亚洲精品乱久久久久久| 中国美白少妇内射xxxbb| 亚洲aⅴ乱码一区二区在线播放| 美女脱内裤让男人舔精品视频| 国产美女午夜福利| 日本午夜av视频| 级片在线观看| 久久久久久国产a免费观看| 久久久久久久久久成人| 男插女下体视频免费在线播放| 午夜日本视频在线| 欧美成人午夜免费资源| 长腿黑丝高跟| 亚洲欧美日韩东京热| 一区二区三区乱码不卡18| 亚洲精品乱码久久久久久按摩| 亚洲精品456在线播放app| 丰满人妻一区二区三区视频av| 国产成人午夜福利电影在线观看| 欧美zozozo另类| 免费观看在线日韩| a级毛色黄片| 久久精品夜夜夜夜夜久久蜜豆| 黄色欧美视频在线观看| 超碰av人人做人人爽久久| 国产精品一区二区在线观看99 | 久久6这里有精品| 丝袜美腿在线中文| 国产欧美日韩精品一区二区| 亚洲内射少妇av| 午夜精品一区二区三区免费看| 99热网站在线观看| 乱码一卡2卡4卡精品| www.色视频.com| 99久久人妻综合| 草草在线视频免费看| 中文字幕免费在线视频6| 久久亚洲精品不卡| 久久精品久久久久久久性| 成人毛片a级毛片在线播放| 午夜福利在线观看吧| 亚洲无线观看免费| 亚洲内射少妇av| 天堂av国产一区二区熟女人妻| 亚洲av福利一区| 一级毛片aaaaaa免费看小| АⅤ资源中文在线天堂| 国产色婷婷99| 亚洲18禁久久av| 久久久a久久爽久久v久久| 国产成年人精品一区二区| 十八禁国产超污无遮挡网站| 在线免费观看的www视频| 最近最新中文字幕大全电影3| 国产成年人精品一区二区| 大又大粗又爽又黄少妇毛片口| 我的女老师完整版在线观看| 直男gayav资源| 久久久久久久久大av| 国产色爽女视频免费观看| 五月玫瑰六月丁香| 久久久久久久亚洲中文字幕| 亚洲综合色惰| 十八禁国产超污无遮挡网站| 国产一区二区在线av高清观看| 亚洲最大成人中文| 1024手机看黄色片| av国产免费在线观看| 99热精品在线国产| 91精品伊人久久大香线蕉| 成人毛片a级毛片在线播放| 成年av动漫网址| 麻豆国产97在线/欧美| 九草在线视频观看| 国产精品久久久久久精品电影小说 | 舔av片在线| 少妇人妻精品综合一区二区| 精品久久久久久久久亚洲| 久久精品熟女亚洲av麻豆精品 | 日本欧美国产在线视频| 欧美日韩在线观看h| 国产乱人偷精品视频| 久久精品影院6| 国产在线男女| 一级二级三级毛片免费看| 国产精品国产高清国产av| 卡戴珊不雅视频在线播放| 三级经典国产精品| 亚洲精品影视一区二区三区av| 大香蕉久久网| 一本久久精品| 亚洲av日韩在线播放| 国产真实乱freesex| 国产av在哪里看| 超碰97精品在线观看| 亚洲成人中文字幕在线播放| 中文字幕免费在线视频6| 丰满人妻一区二区三区视频av| 亚洲丝袜综合中文字幕| 乱人视频在线观看| 伊人久久精品亚洲午夜| 国产免费视频播放在线视频 | 麻豆久久精品国产亚洲av| 非洲黑人性xxxx精品又粗又长| 日本与韩国留学比较| 特大巨黑吊av在线直播| 免费av毛片视频| 啦啦啦观看免费观看视频高清| 我要看日韩黄色一级片| 人妻制服诱惑在线中文字幕| 精品久久久久久久末码| 汤姆久久久久久久影院中文字幕 | 91精品一卡2卡3卡4卡| 插阴视频在线观看视频| 欧美日韩在线观看h| 欧美潮喷喷水| 嫩草影院入口| 国产av在哪里看| 欧美97在线视频| 国产免费视频播放在线视频 | 午夜亚洲福利在线播放| av天堂中文字幕网| 99在线视频只有这里精品首页| av播播在线观看一区| 国产精品麻豆人妻色哟哟久久 | 男人的好看免费观看在线视频| 91午夜精品亚洲一区二区三区| 久久人妻av系列| 久久99热这里只频精品6学生 | 99久久精品国产国产毛片| 色噜噜av男人的天堂激情| 亚洲成av人片在线播放无| 毛片女人毛片|