• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Gear fault classification based on support vector machine*

    2014-06-09 14:44:40FengyunXIESanmaoXIE
    機(jī)床與液壓 2014年3期
    關(guān)鍵詞:模糊PID

    Feng-yun XIE,San-mao XIE

    School of Mechanical and Electronical Engineering,East China Jiaotong University,Nanchang 330013,China

    Gear fault classification based on support vector machine*

    Feng-yun XIE?,San-mao XIE

    School of Mechanical and Electronical Engineering,East China Jiaotong University,Nanchang 330013,China

    Gears are critical elements in rotating machinery.An approach is proposed based on support vector machine(SVM)to solve classification of multiple gear conditions.These conditions are divided into normal,wear,and broken teeth conditions.The root mean square(RMS)and the wavelet packet energy at different scales of the vibration signals of gearbox casing are employed in constructing the features of classifier.SVM is employed for the classifier,and it has the abilities of multi-class classification and good generalization.The experimental results show that the proposed method is able to discriminate the gear faults clearly.

    Gear,Support vector machine,F(xiàn)ault classification,Wavelet packet energy

    Gear systems are widely used in rotating machinery,and gear abnormity is a crucial reason for machine failure.It is significant to study the technique of gear fault classification for increasing machine processing reliability.Early fault detection in gears has been the subject of intensive investigation and many methods based on vibration signal analysis have been developed.For instance,Mcfadden proposed an interpolation technique for time domain averaging of gear vibration[1].Rafiee proposed a multi-layer perceptron neural network to recognize gears and bearings fault of a gearbox system[2].As a powerful machine learning approach for classification problems,support vector machine is known to have good generalization ability.SVM are introduced by Vapnik in the late 1960s on the foundation of statistical learning theory.In the early 1990s,The techniques used for SVM started emerging with greater availability of computing power and used in numerous practical applications[3-5].

    In this paper,an approach based on vibration signal processing techniques and SVM is proposed for solving the gear fault classification.For classifying gear fault,the piezoelectric accelerometer is used for data acquisition.The features of the classification by SVM are considered on a dataset composed of two sets of features:the first is from the RMS of time domain,the second consists of the wavelet packet energy calculated in the time-frequency.Two sets of features provide sensitive information for a classifier. The classifier is based on SVM method.The results show that the proposed method has a good classification capability.

    1.Support vector machine theory

    SVM incorporates the maximal margin strategy and the kernel method.The architecture of a classical SVM is shown in Figure 1.

    Figure 1.Architecture of SVM

    SVM is a supervised learning approach used for nonlinear classification which has also led to many other recent developments in kernel based learning methods in general.The authors in this study usedthe one-against-all method for SVM multiclass classification[6].The“winner-takes-all”rule is used for the final decision,where the winning class is the one corresponding to the SVM with the highest output. This method constructs k SVM models where k is the number of classes.The ith SVM is trained with all of the examples in the ith class with positive labels,and all other examples with negative labels.Given m training data(x1,y1),,(xm,ym),where xi∈Rn,i =1,…,m and yi∈{1,…,k}is the class of xi,the ith SVM solves the following problem:

    Where the training data xiis mapped to a higher dimensional space by the functionΦand the penalty parameter C.ξis a slack variable,ωis a weight,and b is a threshold.

    After solving(1),k decision functions are obtained here:

    Where x is in the class which has the largest value of the decision function.

    Considering the problem of indivisible linear vectors,and selecting the relaxation factor,punishment parameter,and non-linear mapping core function,the sample can be mapped into a high dimension space and be transformed to a linear classification problem in attributive space.

    2.Experiment setup and signal analysis

    In order to research gear fault classification,a test bench of the gear fault simulation was set up. The experiment testing chart is shown in Figure 2. The vibration signals of machining process are obtained by piezoelectric accelerometer DH107.The vibration signals are amplified by charge amplifier5070 and simultaneously recorded by dynamic signal test and analysis system with 5 kHz sampling frequency.

    Figure 2.Schematic diagram of testing system

    The gear conditions are divided into three categories:normal,wear,and broken teeth.The real time processing signals under different conditions are shown as Figure 3.The fast Fourier transforms(FFT)processing results of the time domain signals are shown in Figure 4.

    The time-frequency amplitude is different significantly in the three different conditions as shown in Figure 3 and Figure 4.

    Figure 3.The time domain chart of vibration signals

    Figure 4.The frequency domain chart of vibration signals

    3.Feature extraction

    According to the results of vibration signals analysis,feature extraction method in this paper is adopted in time and time-frequency domain analysis.It includes RMS and the energy of wavelet package of vibration signals.

    RMS is a statistical measure of the magnitude of a varying quantity that can reflect changes in the amplitude of time domain.Three group vibration signals are selected for experimental test.The RMS in the different conditions is calculated and the results of RMS are shown in Table 1.

    Table 1.RMS of vibration signals in different conditions

    The RMS of vibration signals in different gear conditions are denoted as feature T1.

    Wavelet package decomposition(WPD)is a wavelet transform where the signal is passed through more filters than discrete wavelet transform.WPD can record the detailed information about the different frequency bands,and is a good time-frequency analysis tool[7-8].In this paper,the three-level wavelet packet decomposition with wavelet sym4 is carried out.The energy of the first and the second nodes in three different conditions are significantly different than that of other nodes.The energy summations of the first node and the second node in three different conditions are shown in Table 2.

    Table 2.Energy summations of the first and second nodes

    The energy summation of the first and second nodes in different gear conditions is denoted as feature T2.

    4.Gear fault classification

    In order to make the multi-class gear fault classification,a multi-class classification system based on SVM is developed.The system is composed of three cascaded binary classifiers.The classification processing based on SVM is shown in Figure 5.

    Figure 5.Flow chart of the gear fault classification

    According to three gear conditions,two subclassifiers are designed.One distinguishes the normal and fault,the other distinguishes the fault type which is wear and broken teeth.

    Define class 1 as normal condition,class 2 as gear wear condition,and class3 as broken teeth condition.Select the radial basis function as the kernel function,the width of the radial basis kernel function asσ2=σ2=5,and the error penalty parameter as γ=1.The result of gear fault classification based on SVM is shown in Figure 6,where x1is RMS,and x2is the energy of WPD.It can be clearly seen that all experimental data are classified correctly by SVM method.

    Figure 6.Results of gear fault classification based on SVM

    The feature values of the group 1 and group 2 are used for training SVM and the feature values of the group 3 is used for classification.The result of recognition based on SVM is shown in Table 3.

    Table 3.Result of classification based on SVM

    It can be seen that the result of recognition based on SVM is correct in Table 3.

    5.Conclusion

    A procedure is proposed for classification of gear condition using SVM classifiers by feature exaction from time-domain vibration signals.The RMS andenergy of WPD are selected as the inputs of SVM. The gear processing conditions are divided into normal,wear and broken teeth.The SVM successfully classifies the signals of normal,wear,and broken teeth,and which is very effective.In future works,the comparison with other classification methods are recommended.

    [1] Mcfadden PD.Interpolation techniques for time domain averaging of gear vibration[J].Mechanical Systems and Signal Processing,1989(3):87-97.

    [2] Rafiee J,Arvani F,Harifi A,et al.Intelligent condition monitoring of a gearbox using artificial neural network[J].Mech.Syst.and Signal Process,2007,21(4):1746-1754.

    [3] Xuan Jianping,Jiang Hanhong,Shi Tielin,et al.Gear fault classification using genetic programming and support vector machines[J].International Journal of Information Technology,2005,11(9):19-27.

    [4] Samanta B.Gear fault detection using artificial neural networks and support vector machines with genetic algorithms[J].Mechanical Systems and Signal Processing,2004,18(3):625-644.

    [5] Huifang T,Shanxia S.Gear Fault Diagnosis Based on Rough Set and Support Vector Machine[J].Journal of Wuhan University of Technology,2006,28:1046 -1051.

    [6] Chih-Wei Hsu,Chi-Jen Lin.A Comparison of methods for multiclass support vector machines[J].IEEE Transactions on Neural Networks,2002(13):415-425.

    [7] Xie fengyun.State recognition of machine tools processing based on wavelet packet and hidden Markov model[J].2013,41(7):202-205.

    [8] XIE FY.Hu YM,Wu B.A generalized interval probability-based optimization method for training generalized hidden Markov model[J].Signal Processing.2014,94(1):319-329.

    摘要:設(shè)計(jì)了鍛造操作機(jī)夾鉗旋轉(zhuǎn)電液比例控制系統(tǒng),建立了夾鉗旋轉(zhuǎn)機(jī)構(gòu)的數(shù)學(xué)模型,確定了PID控制器的初始參數(shù),并在此基礎(chǔ)上得出對應(yīng)的模糊邏輯系統(tǒng)。通過MATLAB/Simulink和AMESim聯(lián)合仿真技術(shù)對鍛造操作機(jī)旋轉(zhuǎn)液壓控制系統(tǒng)進(jìn)行建模與仿真研究,結(jié)果表明:設(shè)計(jì)方案合理,數(shù)學(xué)模型準(zhǔn)確,基于模糊PID控制的系統(tǒng)魯棒性更好。

    關(guān)鍵詞:鍛造操作機(jī);模糊PID;AMESim;電液比例控制系統(tǒng)

    中圖分類號:TH137

    基于支持向量機(jī)的齒輪故障分類*

    謝鋒云?,謝三毛

    華東交通大學(xué)機(jī)電學(xué)院,南昌 330013

    齒輪是旋轉(zhuǎn)機(jī)械中的關(guān)鍵元件。提出了一個基于支持向量機(jī)的齒輪多故障分類方法。齒輪狀態(tài)被劃分為正常、齒輪磨損和斷齒狀態(tài)。振動信號的均方根和小波包能量被選作為分類器的特征參數(shù)。分類器選用支持向量機(jī)(SVM)。SVM具有良好的實(shí)用性及多分類能力。實(shí)驗(yàn)結(jié)果表明:提出的方法能很好地區(qū)分齒輪故障。

    齒輪;支持向量機(jī);故障分類;小波包能量

    TH133;TP391

    20 t鍛造操作機(jī)夾鉗旋轉(zhuǎn)液壓控制系統(tǒng)設(shè)計(jì)*

    李閣強(qiáng)?,江 兵,李躍松

    河南科技大學(xué),河南洛陽 471003

    10.3969/j.issn.1001-3881.2014.18.010

    2014-06-10

    *Project supported by Jiangxi Province Education Department Science Technology Project(GJJ14365),and Jiangxi Province Nature Science Foundation(20132BAB201047,20114BAB206003)

    ?Feng-yun XIE,PhD.E-mail:xiefyun@163.com

    猜你喜歡
    模糊PID
    基于模糊PID的液壓調(diào)平系統(tǒng)的同步控制研究
    中國新通信(2017年3期)2017-03-11 09:33:02
    模糊PID控制在煤礦污水集中監(jiān)控系統(tǒng)中的應(yīng)用
    科技視界(2016年23期)2016-11-04 11:07:53
    基于模糊PID的液化氣梭式窯自動控制系統(tǒng)設(shè)計(jì)
    科技視界(2016年5期)2016-02-22 20:10:30
    步進(jìn)電機(jī)模糊PID閉環(huán)控制系統(tǒng)仿真研究
    微小型陸空兩棲機(jī)器人地面移動控制方法
    自適應(yīng)壓電振動盤控制器設(shè)計(jì)
    日本撒尿小便嘘嘘汇集6| 成人性生交大片免费视频hd| 久久精品国产99精品国产亚洲性色| 大又大粗又爽又黄少妇毛片口| 国产毛片a区久久久久| 边亲边吃奶的免费视频| 日韩欧美一区二区三区在线观看| 91在线精品国自产拍蜜月| 青春草国产在线视频 | 国产一区二区三区av在线 | 国产在线男女| 国产成人精品久久久久久| 久久婷婷人人爽人人干人人爱| 少妇裸体淫交视频免费看高清| 99热6这里只有精品| 亚洲av成人精品一区久久| 精品不卡国产一区二区三区| 国产蜜桃级精品一区二区三区| 偷拍熟女少妇极品色| 熟女人妻精品中文字幕| 联通29元200g的流量卡| 两个人的视频大全免费| 国产av不卡久久| 99久久精品国产国产毛片| 中文字幕制服av| 国产伦一二天堂av在线观看| 久久99蜜桃精品久久| 综合色av麻豆| 久久久久性生活片| 午夜免费男女啪啪视频观看| 亚洲精品乱码久久久久久按摩| 中文精品一卡2卡3卡4更新| 亚洲va在线va天堂va国产| 亚洲精品乱码久久久v下载方式| kizo精华| 99国产极品粉嫩在线观看| 国产精品日韩av在线免费观看| 欧美色视频一区免费| av在线老鸭窝| 麻豆久久精品国产亚洲av| www.色视频.com| 日韩av在线大香蕉| 国产精品久久电影中文字幕| 久久久久久久久久久免费av| 亚洲欧洲国产日韩| 亚洲五月天丁香| 一级av片app| 欧美日韩国产亚洲二区| 亚洲欧美日韩无卡精品| 日韩成人av中文字幕在线观看| 亚洲国产精品成人久久小说 | 国产成人福利小说| 亚洲欧美清纯卡通| 久久久a久久爽久久v久久| 美女脱内裤让男人舔精品视频 | 欧美成人免费av一区二区三区| 精品少妇黑人巨大在线播放 | 我要搜黄色片| 久久草成人影院| 天天一区二区日本电影三级| 最好的美女福利视频网| 久久综合国产亚洲精品| 国产精品久久久久久久久免| 少妇高潮的动态图| avwww免费| 少妇猛男粗大的猛烈进出视频 | 九色成人免费人妻av| 成人性生交大片免费视频hd| 亚洲精华国产精华液的使用体验 | 国产久久久一区二区三区| 亚洲国产精品合色在线| 久久这里只有精品中国| 99久久无色码亚洲精品果冻| 国产综合懂色| 身体一侧抽搐| 亚洲无线在线观看| 欧美3d第一页| 国产精品国产高清国产av| eeuss影院久久| 两个人的视频大全免费| 国产一区二区在线av高清观看| 国产精品嫩草影院av在线观看| 国产在线精品亚洲第一网站| 边亲边吃奶的免费视频| 精品久久国产蜜桃| 我要搜黄色片| 久久精品国产自在天天线| 97超视频在线观看视频| 毛片一级片免费看久久久久| 毛片女人毛片| 日本黄色片子视频| 国产av一区在线观看免费| 人妻久久中文字幕网| 免费一级毛片在线播放高清视频| 国产欧美日韩精品一区二区| 全区人妻精品视频| 日产精品乱码卡一卡2卡三| 变态另类丝袜制服| 男人和女人高潮做爰伦理| 老司机福利观看| 国产精品不卡视频一区二区| 一进一出抽搐gif免费好疼| 亚洲欧洲国产日韩| 我要看日韩黄色一级片| 久99久视频精品免费| 午夜福利成人在线免费观看| 中文资源天堂在线| av天堂中文字幕网| 国产女主播在线喷水免费视频网站 | 欧美又色又爽又黄视频| 亚洲欧美成人综合另类久久久 | 卡戴珊不雅视频在线播放| 国产精品久久久久久精品电影小说 | 久久精品国产清高在天天线| 我要搜黄色片| 国产黄色视频一区二区在线观看 | 国产午夜精品久久久久久一区二区三区| 美女xxoo啪啪120秒动态图| 国产精品伦人一区二区| 欧美日韩综合久久久久久| 免费不卡的大黄色大毛片视频在线观看 | 在线免费观看的www视频| 国产片特级美女逼逼视频| 99久久精品一区二区三区| av在线观看视频网站免费| 国产黄片视频在线免费观看| 中文在线观看免费www的网站| 寂寞人妻少妇视频99o| 成年女人永久免费观看视频| 99热6这里只有精品| 国产探花极品一区二区| 久久久久久伊人网av| 久久精品人妻少妇| 最近中文字幕高清免费大全6| 久久精品国产亚洲av天美| 你懂的网址亚洲精品在线观看 | 日韩亚洲欧美综合| 亚洲成av人片在线播放无| 91aial.com中文字幕在线观看| 国产高清有码在线观看视频| 男女那种视频在线观看| 成人毛片60女人毛片免费| 国产一区二区在线av高清观看| 韩国av在线不卡| 久久久久国产网址| 爱豆传媒免费全集在线观看| 欧美色视频一区免费| 久久亚洲国产成人精品v| 国产精品无大码| 毛片一级片免费看久久久久| 亚洲三级黄色毛片| 只有这里有精品99| av卡一久久| 黄色欧美视频在线观看| 欧美又色又爽又黄视频| av在线天堂中文字幕| 一卡2卡三卡四卡精品乱码亚洲| 黄色配什么色好看| 欧美精品国产亚洲| 中文字幕精品亚洲无线码一区| 国产探花极品一区二区| 中文精品一卡2卡3卡4更新| 欧美色欧美亚洲另类二区| 国产精品一区二区三区四区免费观看| 国产男人的电影天堂91| 麻豆av噜噜一区二区三区| 伦理电影大哥的女人| 亚洲av免费在线观看| 99热全是精品| 女同久久另类99精品国产91| 狂野欧美激情性xxxx在线观看| 国产精品蜜桃在线观看 | 色播亚洲综合网| 国产在线精品亚洲第一网站| 亚洲乱码一区二区免费版| 夜夜爽天天搞| 国产大屁股一区二区在线视频| 久久精品人妻少妇| 色播亚洲综合网| 老师上课跳d突然被开到最大视频| 国产女主播在线喷水免费视频网站 | 91午夜精品亚洲一区二区三区| 搡老妇女老女人老熟妇| 成人综合一区亚洲| 欧美日韩在线观看h| 在线观看午夜福利视频| 日日摸夜夜添夜夜添av毛片| 国产精品国产三级国产av玫瑰| 少妇熟女欧美另类| 熟女电影av网| 一级毛片久久久久久久久女| 国产色爽女视频免费观看| 欧美精品一区二区大全| 国产高清有码在线观看视频| 啦啦啦韩国在线观看视频| 国产真实伦视频高清在线观看| 最后的刺客免费高清国语| 赤兔流量卡办理| 一区福利在线观看| 中文字幕精品亚洲无线码一区| 伦理电影大哥的女人| 少妇的逼好多水| 又爽又黄无遮挡网站| 国产高清不卡午夜福利| 国产精品女同一区二区软件| av黄色大香蕉| 深夜a级毛片| 国产亚洲av嫩草精品影院| 欧美日韩国产亚洲二区| 长腿黑丝高跟| 欧美高清性xxxxhd video| 12—13女人毛片做爰片一| 日韩成人av中文字幕在线观看| 国产成人a区在线观看| 日本与韩国留学比较| 午夜免费激情av| 久久久久免费精品人妻一区二区| 长腿黑丝高跟| 亚洲精品乱码久久久v下载方式| 中文字幕av成人在线电影| 男女视频在线观看网站免费| 午夜视频国产福利| 免费不卡的大黄色大毛片视频在线观看 | 听说在线观看完整版免费高清| 九九爱精品视频在线观看| 在线观看av片永久免费下载| 六月丁香七月| 久久亚洲国产成人精品v| www.色视频.com| 久久人人爽人人片av| 黄色日韩在线| 久久久久久大精品| 久久精品国产亚洲av天美| 国产女主播在线喷水免费视频网站 | 亚洲精品成人久久久久久| 男人和女人高潮做爰伦理| 日本熟妇午夜| 国产精品爽爽va在线观看网站| 国产av一区在线观看免费| 国产av在哪里看| 男人的好看免费观看在线视频| 欧美+日韩+精品| 国产男人的电影天堂91| 精品久久久久久成人av| 国产午夜精品久久久久久一区二区三区| 久久国内精品自在自线图片| 国产白丝娇喘喷水9色精品| 欧美性猛交黑人性爽| 99久久成人亚洲精品观看| 久久99精品国语久久久| 亚洲欧美中文字幕日韩二区| 亚洲人成网站在线播放欧美日韩| 听说在线观看完整版免费高清| 精品久久久久久久久久免费视频| 国产蜜桃级精品一区二区三区| 久久99热6这里只有精品| 亚洲欧美精品自产自拍| 好男人视频免费观看在线| 国产亚洲精品av在线| 亚洲一级一片aⅴ在线观看| 免费看日本二区| 91久久精品电影网| 亚洲五月天丁香| 欧美+日韩+精品| 色哟哟·www| 最近最新中文字幕大全电影3| 欧美最新免费一区二区三区| 日韩强制内射视频| 欧美潮喷喷水| 五月玫瑰六月丁香| 亚洲第一电影网av| 精品国产三级普通话版| 亚洲欧美精品综合久久99| 欧美精品一区二区大全| 一本一本综合久久| 国产精品一区二区在线观看99 | www日本黄色视频网| 可以在线观看的亚洲视频| 精品不卡国产一区二区三区| 亚洲av男天堂| 人妻久久中文字幕网| 亚洲精品久久久久久婷婷小说 | 久久精品国产99精品国产亚洲性色| 日韩欧美 国产精品| 六月丁香七月| 成年版毛片免费区| 午夜亚洲福利在线播放| 亚洲成av人片在线播放无| 国产av不卡久久| 午夜久久久久精精品| av国产免费在线观看| 欧美xxxx性猛交bbbb| 国产精品久久久久久久电影| 能在线免费看毛片的网站| 少妇熟女aⅴ在线视频| 成人特级av手机在线观看| 成人美女网站在线观看视频| 日韩欧美三级三区| 久久人妻av系列| 国产高清激情床上av| 婷婷色av中文字幕| 国产一区二区三区av在线 | 精品国产三级普通话版| 亚洲人成网站在线播| 日本五十路高清| 久久久色成人| 国产精品一区二区性色av| 国模一区二区三区四区视频| 在线观看66精品国产| 91在线精品国自产拍蜜月| 日韩成人伦理影院| 丰满乱子伦码专区| 天堂av国产一区二区熟女人妻| 亚洲国产欧美在线一区| 99热这里只有是精品50| av免费在线看不卡| 99热这里只有精品一区| 成人国产麻豆网| 久久草成人影院| 2021天堂中文幕一二区在线观| 51国产日韩欧美| 国内精品美女久久久久久| 高清毛片免费观看视频网站| 成年版毛片免费区| 亚洲五月天丁香| 伦理电影大哥的女人| 日本av手机在线免费观看| kizo精华| 免费看美女性在线毛片视频| 国产伦理片在线播放av一区 | 黄色欧美视频在线观看| 又粗又硬又长又爽又黄的视频 | 婷婷六月久久综合丁香| 国产av一区在线观看免费| 久久这里只有精品中国| 高清在线视频一区二区三区 | 国产精品三级大全| 舔av片在线| 99久久精品一区二区三区| 久久精品影院6| 国产日韩欧美在线精品| 欧美精品国产亚洲| 国产欧美日韩精品一区二区| 丰满乱子伦码专区| 亚洲国产日韩欧美精品在线观看| 亚洲无线在线观看| 亚洲成av人片在线播放无| 九九热线精品视视频播放| 免费一级毛片在线播放高清视频| 淫秽高清视频在线观看| 亚洲国产日韩欧美精品在线观看| 我要搜黄色片| www.av在线官网国产| 最近中文字幕高清免费大全6| 久久久久久久久久成人| av视频在线观看入口| 亚洲欧美日韩东京热| 国产精品女同一区二区软件| 天天一区二区日本电影三级| 亚洲国产精品成人综合色| 老熟妇乱子伦视频在线观看| 欧美xxxx黑人xx丫x性爽| 夫妻性生交免费视频一级片| 一级毛片我不卡| 日本成人三级电影网站| 久久久久九九精品影院| 国产成人精品久久久久久| 午夜精品在线福利| 91久久精品电影网| 久久人人爽人人片av| 99国产极品粉嫩在线观看| 麻豆精品久久久久久蜜桃| 最好的美女福利视频网| 日本黄色片子视频| 欧美bdsm另类| 国产av一区在线观看免费| 久久久久久久久大av| 国产又黄又爽又无遮挡在线| 黑人高潮一二区| 99热这里只有是精品50| 九色成人免费人妻av| 国产精品电影一区二区三区| 国产一区二区三区在线臀色熟女| 久久精品国产亚洲av涩爱 | 国产午夜福利久久久久久| 日本一二三区视频观看| 国产精品一区二区性色av| 精品一区二区三区视频在线| 亚洲精品日韩在线中文字幕 | 亚洲综合色惰| 欧美一级a爱片免费观看看| 又粗又硬又长又爽又黄的视频 | 久久中文看片网| 亚洲在线自拍视频| 精品久久国产蜜桃| 国产成人午夜福利电影在线观看| 18禁在线播放成人免费| 久久鲁丝午夜福利片| 一个人观看的视频www高清免费观看| 看十八女毛片水多多多| 国产成人影院久久av| 久久精品91蜜桃| 男人和女人高潮做爰伦理| 欧美精品一区二区大全| 青春草国产在线视频 | 午夜激情福利司机影院| 国产精品久久久久久亚洲av鲁大| 青春草国产在线视频 | 日本撒尿小便嘘嘘汇集6| 91aial.com中文字幕在线观看| 亚洲欧美精品综合久久99| 久久亚洲精品不卡| 又黄又爽又刺激的免费视频.| 国产一区亚洲一区在线观看| 看片在线看免费视频| 亚洲无线在线观看| 伊人久久精品亚洲午夜| 欧美成人一区二区免费高清观看| 亚洲第一区二区三区不卡| 好男人在线观看高清免费视频| 99久久久亚洲精品蜜臀av| 国产麻豆成人av免费视频| 国产极品天堂在线| 特大巨黑吊av在线直播| 国产成人91sexporn| 久久久久久久亚洲中文字幕| 亚洲欧洲日产国产| 久久久久久久久久成人| 欧美成人a在线观看| 国产老妇女一区| 午夜精品在线福利| 青春草国产在线视频 | 精品久久久久久久末码| 国产一级毛片七仙女欲春2| 可以在线观看的亚洲视频| 国产三级在线视频| 九九爱精品视频在线观看| 亚洲一级一片aⅴ在线观看| 99精品在免费线老司机午夜| 国产一区二区激情短视频| 亚洲欧美日韩高清在线视频| 久久久久久伊人网av| 成年av动漫网址| 亚洲欧美精品专区久久| 狂野欧美白嫩少妇大欣赏| 我的老师免费观看完整版| 天天躁日日操中文字幕| 亚洲,欧美,日韩| 精品久久久久久久末码| 人妻制服诱惑在线中文字幕| 国产精品爽爽va在线观看网站| 大又大粗又爽又黄少妇毛片口| 国产精品免费一区二区三区在线| 青春草国产在线视频 | 亚洲国产欧洲综合997久久,| 高清在线视频一区二区三区 | 色哟哟哟哟哟哟| 国模一区二区三区四区视频| 免费观看精品视频网站| 日韩人妻高清精品专区| 99久久精品国产国产毛片| 精品久久久久久久人妻蜜臀av| 久久精品夜夜夜夜夜久久蜜豆| 中文字幕精品亚洲无线码一区| 中文亚洲av片在线观看爽| 日本av手机在线免费观看| 看片在线看免费视频| 国产成人91sexporn| 精品久久久久久成人av| 免费看a级黄色片| av女优亚洲男人天堂| 成人特级黄色片久久久久久久| av卡一久久| 免费看光身美女| 欧美激情在线99| 亚洲电影在线观看av| 日韩 亚洲 欧美在线| 97人妻精品一区二区三区麻豆| 亚洲第一电影网av| 色综合站精品国产| 岛国毛片在线播放| 好男人在线观看高清免费视频| 人人妻人人澡欧美一区二区| 亚洲图色成人| 男女边吃奶边做爰视频| 日本熟妇午夜| 一本一本综合久久| 少妇人妻一区二区三区视频| 高清在线视频一区二区三区 | 69av精品久久久久久| 国产午夜福利久久久久久| 麻豆乱淫一区二区| 热99在线观看视频| 欧美潮喷喷水| 亚洲欧美日韩卡通动漫| 成人毛片60女人毛片免费| 成人鲁丝片一二三区免费| www.色视频.com| 波多野结衣巨乳人妻| 欧美在线一区亚洲| 男的添女的下面高潮视频| 亚洲欧美精品综合久久99| 黑人高潮一二区| av在线亚洲专区| 一级毛片我不卡| 亚洲精品日韩在线中文字幕 | 麻豆国产97在线/欧美| 国产探花极品一区二区| 一本一本综合久久| 91av网一区二区| 亚洲av成人精品一区久久| 欧美一区二区亚洲| 人体艺术视频欧美日本| 一级黄片播放器| 少妇被粗大猛烈的视频| 最近最新中文字幕大全电影3| 国产精品日韩av在线免费观看| 婷婷亚洲欧美| 亚洲成人久久爱视频| 欧美bdsm另类| 久久这里有精品视频免费| 岛国在线免费视频观看| 我的老师免费观看完整版| 极品教师在线视频| 国产亚洲91精品色在线| 久久久久国产网址| 简卡轻食公司| 精品国产三级普通话版| 波多野结衣巨乳人妻| 亚洲精品影视一区二区三区av| 亚洲国产高清在线一区二区三| 亚洲成a人片在线一区二区| 美女国产视频在线观看| 国产精品人妻久久久久久| 18禁在线无遮挡免费观看视频| 久久精品人妻少妇| 国产乱人偷精品视频| 国产一区二区三区在线臀色熟女| 亚洲成人av在线免费| 麻豆乱淫一区二区| 久久中文看片网| 国产成人一区二区在线| 毛片女人毛片| 3wmmmm亚洲av在线观看| 99久久精品一区二区三区| av卡一久久| 久久欧美精品欧美久久欧美| 中文字幕人妻熟人妻熟丝袜美| 嫩草影院精品99| 夫妻性生交免费视频一级片| 麻豆精品久久久久久蜜桃| 日韩欧美三级三区| 天天一区二区日本电影三级| 简卡轻食公司| 国产蜜桃级精品一区二区三区| 日韩欧美在线乱码| 97热精品久久久久久| 欧美又色又爽又黄视频| 久久人妻av系列| 搡老妇女老女人老熟妇| 日韩欧美 国产精品| 免费黄网站久久成人精品| 综合色av麻豆| 国产亚洲精品久久久久久毛片| 干丝袜人妻中文字幕| 国产精品一区二区三区四区久久| 久久鲁丝午夜福利片| 日韩 亚洲 欧美在线| 亚洲综合色惰| 国产免费男女视频| 国产人妻一区二区三区在| 热99在线观看视频| 欧美日本视频| 最近手机中文字幕大全| 18禁黄网站禁片免费观看直播| 成人一区二区视频在线观看| 男女视频在线观看网站免费| 日产精品乱码卡一卡2卡三| 日本一本二区三区精品| 欧美激情在线99| 此物有八面人人有两片| 天堂影院成人在线观看| 观看美女的网站| 悠悠久久av| 亚洲第一电影网av| 在线观看美女被高潮喷水网站| 精品一区二区三区人妻视频| 内地一区二区视频在线| 国产精品精品国产色婷婷| 国产极品精品免费视频能看的| 老司机福利观看| 国产精品爽爽va在线观看网站| 亚洲中文字幕日韩| 亚洲av不卡在线观看| 国产精品日韩av在线免费观看| 九九在线视频观看精品| 国产单亲对白刺激| 麻豆国产97在线/欧美| 欧美区成人在线视频| 极品教师在线视频| 亚洲精品国产成人久久av| 成年女人看的毛片在线观看| 亚洲人成网站在线播| 成人漫画全彩无遮挡| 国产高潮美女av| 中文字幕人妻熟人妻熟丝袜美| a级毛片免费高清观看在线播放| 色综合色国产| 能在线免费观看的黄片| 在线观看一区二区三区| 黄色欧美视频在线观看| 一级毛片久久久久久久久女| 免费无遮挡裸体视频| 国产不卡一卡二| 亚洲三级黄色毛片|