• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Targeted thrombolysis strategies for neuroprotective effect

    2014-06-01 09:56:34JunpingZhangGuoxingMaZhiminLvYuZhouChunguangWenYaqingWuRuianXu

    Junping Zhang, Guoxing Ma, Zhimin Lv, Yu Zhou, Chunguang Wen, Yaqing Wu, Ruian Xu

    School of Biomedical Sciences, Huaqiao University & Engineering Research Center of Molicular Medicine, Ministry of Education, Xiamen, Fujian Province, China

    Targeted thrombolysis strategies for neuroprotective effect

    Junping Zhang, Guoxing Ma, Zhimin Lv, Yu Zhou, Chunguang Wen, Yaqing Wu, Ruian Xu

    School of Biomedical Sciences, Huaqiao University & Engineering Research Center of Molicular Medicine, Ministry of Education, Xiamen, Fujian Province, China

    Stroke is usually treated by systemic thrombolytic therapy if the patient presents within an appropriate time window. There is also widespread interest in the development of thrombolytic agents that can be used in cases of delayed presentation. Current agents that can be used in cases of delayed presentation of nerve damage by thrombus. Current systemic thrombolytic therapy is associated with adverse effects such as fi brinogenolysis and bleeding. In an attempt to increase the ef fi cacy, safety, and speci fi city of thrombolytic therapy, a number of targeted thrombolytic agents have been studied in recent years. This review focuses on the concepts underlying targeted thrombolytic therapy and describes recent drug developments in this fi eld.

    nerve regeneration; review; thrombolytic agent; fibrinolytic system; stroke; cerebrovascular disease; neuroprotective drug; fibrinolytic mechanism; fibrin targeting; platelet targeting; red blood cell targeting; cerebral hemorrhage; NSFC grant; neural regeneration

    Funding: This study was supported by the National Natural Science Foundation of China, No. 81271692.

    Zhang JP, Ma GX, Lv ZM, Zhou Y, Wen CG, Wu YQ, Xu RA. Targeted thrombolysis strategies for neuroprotective effect. Neural Regen Res. 2014;9(13):1316-1322.

    Introduction

    Cardiovascular diseases including pulmonary embolism, atherosclerosis, coronary heart disease, acute myocardial infarction, and stroke are major causes of morbidity and mortality worldwide (Capstick and Henry, 2005; Prasad et al., 2006; van der Worp and van Gijn, 2007; White and Chew, 2008; Jones et al., 2010; Collart et al., 2012; Siddiqui et al., 2013; Starmans et al., 2013). These diseases result from obstruction of blood fl ow by thrombus, and the most effective method of preventing morbidity and mortality associated with these diseases is to prevent thrombus formation. When thrombus has already formed, the best treatment strategy is to achieve rapid recanalization of the occluded vessel by angioplasty, surgery, or thrombolysis/ fi brinolysis to remove the thrombus and prevent further propagation (Absar et al., 2013). Stroke is usually treated by thrombolytic therapy, which works by interacting with the body’s intrinsic fibrinolytic system (Kowalski et al., 2009). Many thrombolytic agents have been found to effectively dissolve thrombus, including streptokinase, urokinase, and tissue-type plasminogen activator. These agents comprise proteolytic components of the blood clotting cascade, and as they are circulated throughout the cardiovascular system they do not selectively target speci fi c organs or tissues. The systemic side effects of these agents such as fi brinogenolysis and bleeding (Kowalski et al., 2009; Absar et al., 2013) result in unavoidable clinical dif fi culties

    (Oyama et al., 2013). Liu et al. (2006) reported that addition of a neuroprotective agent can increase the effectiveness of thrombolytic therapy, increase the therapeutic time window, and reduce cerebral ischemia-reperfusion injury. It is hoped that thrombolytic agents with neuroprotective effects can be developed for clinical use.

    Mechanism of thrombolysis

    Intravascular thrombus formation is a complex physiological process that involves interactions among many factors. When a blood vessel is injured, local accumulation of platelets and fi brin results in thrombus formation to prevent blood loss. Thrombus formation may also occur without vessel injury under some conditions. After thrombosis, plasminogen activator cleaves the sensitive Arg561-Val562 peptide bond of plasminogen (Lijnen and Collen, 2000; Lijnen, 2001; Oyama et al., 2013), thereby activating plasminogen to form plasmin (Gabriel et al., 1992; Castellino and Ploplis, 2005; Kunamneni et al., 2007; Baumer et al., 2013; Gomaraschi et al., 2013), which triggers the body’s mechanisms for dissolving thrombus into soluble fi brin degradation products and restores the blood fl ow (Guyatt et al., 2012) (Figure 1).

    Classes of thrombolytic drugs

    Figure 1 Thrombosis and thrombolysis pathways.

    In an attempt to increase the ef fi cacy and safety of thrombolytic therapy, recent research has focused on the development of targeted thrombolytic agents. Thrombolytic agents have been used with the aim of recanalizing the occluded vessel since streptokinase was first used in patients with acute myocardial infarction (Meyer et al., 1965). Four generations of thrombolytic agents have subsequently been used in clinical trials for the treatment of various clotting disorders (Kirmani et al., 2012). However, thrombolytic therapy is still associated with many problems. The fi rst-generation fi brinolytic agents are effective for thrombolysis, but are not fi brin speci fi c (Bentley and Sharma, 2005) and they may induce immunological responses resulting in drug resistance, fever, and allergic reactions (Verstraete, 2000). The second-generation fi brinolytic agents are more fi brin speci fi c, do not induce adverse immunological responses (Balami et al., 2013), and have a shorter half-life (Collen and Lijnen, 1991; Epplera et al., 1998; Kim et al., 2009). The majority of third- and fourth-generation fi brinolytic agents have advantages over second-generation agents, but are currently only available in clinical trials (Longstaff et al., 2008). There is a need to improve the specificity, efficacy, and safety of the drugs available for clinical use (Toombs, 2001). Current research is focused on enhancing the ability to target the site of the thrombus and reduce adverse effects and complications (Table 1).

    Targeted thrombolysis

    Thrombus is mainly composed of a mesh of fi brin and platelets (Cadroy and Hanson, 1990; Varin et al., 2013; Wadajkar et al., 2013) and may also include red blood cells (RBCs). Precise targeting of the thrombus site has been attempted by targeting these components.

    Fibrin targeting

    Fibrin (also called Factor Ia) is a fi brous, non-globular, insoluble protein that is produced in response to bleeding, and is the main protein component of thrombus (Ghasemi et al., 2012). There is a high concentration of fi brin in all types of thrombus, including acute and chronic, and arterial and venous thrombus (Sirol et al., 2005). Fibrin is a tough protein substance arranged in long fi brous chains that form from fibrinogen during blood coagulation (Mosesson, 2005). When tissue damage results in bleeding, fi brinogen in the wound is converted to fi brin monomers by the action of thrombin (Lord, 2007; Ariens, 2013). The fibrin monomers combine to form long fi brin threads that entangle platelets to build a spongy mass that gradually hardens and contracts, resulting in thrombus formation. Several proteins can bind to fi brinogen and/or fi brin and can thereby in fl uence thrombus formation, structure, and degradation.

    Carboxypeptidase N (CPN) is an enzyme that cleaves C-terminal arginine residues from bradykinin, and belongs to the same family of zinc metallocarboxy-peptidases as thrombin-activatable fi brinolysis inhibitor (Walker et al., 2008). Talens et al. studied and identi fi ed CPN as a novelthrombus component with possible anti fi brinolytic properties (Talens et al., 2012a), but could not prove the presence of CPN in thrombus (Talens et al., 2012b). CPN should therefore be investigated further to determine whether it binds directly to fi brin or fi brinogen. The above-mentioned studies used surface plasmon resonance to determine that thrombus-bound CPN has the same molecular forms as CPN in the plasma, and that CPN may bind to fi brinogen and fi brin.

    Table 1 Classes of thrombolytic drugs

    Fibrin has been considered as a molecular target for the selective delivery of thrombolytic agents to the thrombus. Recently, ultrasound-assisted drug delivery has been investigated as a method of targeting a speci fi c area (Klibanov et al., 2010), and intrinsically echogenic liposomes have been used as a vehicle to achieve ultrasound-triggered controlled drug release (Huang, 2008; Greineder et al., 2013). Ultrasound was found to improve the effectiveness of tissue plasminogen activator (tPA), but was associated with hemorrhagic side effects (Datta et al., 2006; Holland et al., 2008; Meunier et al., 2009). Use of tPA-loaded intrinsically echogenic liposomes was found to be similarly effective to other treatment methods, while offering the advantages of ultrasound monitoring and enhanced thrombolysis with site-speci fi c delivery (Shaw et al., 2009; Laing et al., 2012).

    The fi brin-speci fi city of thrombolytic agents may be improved by conjugating them with fi brin-speci fi c monoclonal antibodies (Vaidya et al., 2012). A hybrid molecule conjugated with tPA and the fi brin-speci fi c monoclonal antibody 59D8 by a disul fi de bond (Runge et al., 1987) has a 10-fold higher af fi nity for fi brin than urokinase and a 100-fold higher affinity for fibrin than tPA. Furthermore, experimental use of a hybrid recombinant plasminogen activator, antifibrin antibody 59D8-low-molecular-weight single-chain urokinase-type plasminogen activator, for antibody targeting of fi brin increased the thrombolytic and antithrombotic potency with less impairment of hemostasis compared with recombinant tPA and recombinant single-chain urokinase-type plasminogen activator (Runge et al., 1996).

    Current strategies for site-speci fi c delivery are focused primarily on the local release of therapeutic agents by drug-eluting stents. However, this technique is expensive and can only be used in limited situations (Muni and Gross, 2004; Huang et al., 2008). Nanoparticles have recently attracted attention as potential vehicles for targeted drug therapy, and have been shown to increase therapeutic effectiveness (Cyrus et al., 2008; Tsuruta et al., 2009; Gu et al., 2012; McCarthy et al., 2012). Yurko et al. (2009) used in vitro fi brinolysis assays to show that use of 40-nm polystyrene-latex nanoparticles covalently conjugated to tPA and anti- fi brin antibody could deliver tPA directly to the site of the thrombus, thereby lowering the risk of hemorrhage. Since then, a thrombolytic agent that conjugates an anti fi brin monoclonal antibody and urokinase to a perfluorocarbon nanoparticle has been developed, and its effectiveness for targeted thrombolysis has been evaluated (Marsh et al., 2007, 2011). In animal studies, the maximum lytic effect was achieved with an enzyme load of 100-400 per nanoparticle.

    Platelet targeting

    Platelets (also called thrombocytes) are small, disk-shaped, clear, anuclear cell fragments, 2-3 μm in diameter, which are derived from fragmentation of precursor megakaryocytes. Platelets circulate in the blood of mammals and play a vital role in the process of thrombus formation to maintain hemostasis (Langer and Gawaz, 2008). Under pathophysiological conditions, platelet activation can also play a critical rolein various thromboembolic diseases (Harrison, 2000). Platelet membrane glycoprotein IIb/IIIa (GPIIb/IIIa) receptor activation is the fi nal common pathway of platelet aggregation (Kulkarni et al., 2000; ten Berg et al., 2001; Davi and Patrono, 2007; Badimon and Vilahur, 2008; Gladding et al., 2008). The GPIIb/IIIa receptor is the most abundant protein on the platelet membrane (Jennings, 2009; Vaidya et al., 2011), and is a potential target for novel thrombolytic agents. L-arginine-glycine-aspartic acid peptide (RGD) is a GPIIb/IIIa antagonist that binds to activated GPIIb/IIIa receptors speci fi cally on aggregated platelets (Meyer et al., 2006), and has been used to develop targeted thrombolytic drugs. Under normal conditions, the spatial configuration of GPIIb/IIIa receptors is stable, and the platelet is inactive. When platelet agonists such as thrombin, collagen, adenosine diphosphate, and thromboxane A2 bind with their receptors on the platelet membrane, GPIIb/IIIa forms a functional dimer complex that exposes the platelet membrane (Huang et al., 2008), resulting in binding with RGD. Conversely, the GPIIb/IIIa receptors are hidden on the unactivated platelet membrane, and cannot bind with RGD. RGD therefore binds only with activated platelets in the thrombus, and has no effect on circulating platelets. The hexapeptide H-Pro-Ser-Nva-Gly-Asp-Trp-OH also binds to the GPIIb/IIIa receptor on activated platelets, and development of thrombus-targeted microbubbles has been attempted by binding this hexapeptide to microbubbles (Zhou et al., 2011). Binding of the hexapeptide to the GPIIb/IIIa receptor delivers the microbubbles speci fically to the thrombus (Wang et al., 2006). Platelet-targeted microbubbles have also been investigated for the prevention of thrombus recurrence. The microbubbles were found to be good carriers of thrombolytic drugs, and to be bene fi cial for preventing thrombus recurrence in vivo. GPIIb/IIIa receptors have been used as a target for the delivery of thrombolytic agents by conjugation with a monoclonal antibody modifi ed with N-succinimidyl-3-(2-pyridyldithio) propionate at 7E3 Fab’ (Bates et al., 1991) to selectively bind urokinase to GPIIb/IIIa on the platelet membrane. The conjugated urokinase was found to have higher thrombolytic activity than unconjugated urokinase (Bode et al., 1991). Platelet activation also exposes phosphatidylserine on the platelet membrane. Annexin V has a high af fi nity for phosphatidylserine, and binding of annexin V to the B chain of urokinase-type plasminogen activator by a disul fi de bond was found to increase the thrombolytic activity of the plasminogen activator in in vitro tests (Okabayashi et al., 1996).

    RBC targeting

    In most cases, labile and complex biotherapeutic agents such as enzymes require precise delivery to the target site. The best way to achieve this goal is to use coupling drugs such as synthetic or natural polymers with various geometric confi gurations, phospholipid liposomes, albumin, antibodies, or other biological molecules as carriers (Simone et al., 2008). RBCs (also called erythrocytes) are anuclear, biconcave, discshaped cells with a diameter of 7-8 μm, thickness of 2-3 μm, and membrane surface area of about 160 μm2, and are the most common type of blood cell (Pierige et al., 2008). RBCs have many features that make them ideal carriers for drugs in the bloodstream (Magnani et al., 2002; Danchin et al., 2008), especially when sustained action is needed (Bax et al., 1999; Millan et al., 2004; Muzykantov, 2010; Greineder et al., 2013; Muzykantov, 2013). RBCs can transport many substances, and the RBC membrane is supported by a complex cytoskeleton comprising a hexagonal lattice of actin-spectrin filaments interconnected by anchoring integral plasmalemmal proteins via numerous structural and connector proteins (Muzykantov, 2010; Luo et al., 2012). Ineffective delivery of plasminogen activators to the thrombus site limits their therapeutic effectiveness. This problem cannot be solved by increasing the dose because of the associated risk of adverse effects (Ganguly et al., 2006). However, the use of RBCs as drug carriers may help to solve this problem by enabling the use of plasminogen activators as thromboprophylactic agents (Ganguly et al., 2005). RBCs have recently been used as intravascular carriers for targeted drug delivery (Sera fi ni et al., 2004; Rossi et al., 2005).

    Once thrombus is established, it becomes progressively more impermeable to RBCs, and RBC carriers of plasminogen activators can therefore potentially prevent vascular occlusion in patients at imminent risk of thrombosis without lysing hemostatic clots. Murciano et al. (2003) hypothesized that tPA conjugated to RBCs would dissolve nascent clots while having minimal effects on preexisting hemostatic clots or extravascular tissues. This RBC-based drug delivery method alters the fi brinolytic pro fi le of tPA, thereby permitting prophylactic fibrinolytic therapy. Conjugating of tPA to RBCs also reduces its central nervous system toxicity by spatially con fi ning the drug to the vascular system. Administration of RBC-tPA before or after cerebral hypoxia/ischemia may preserve the responses to cerebral vasodilators and prevent neuronal injury mediated through the extracellular signal-related kinase (mitogen-activated protein kinase) pathway, indicating that use of RBC-tPA may increase the bene fi t/risk ratio of thrombolytic therapy (Armstead et al., 2009).

    Plasminogen activators are currently not used for thromboprophylaxis because of their rapid clearance, associated risk of bleeding, and extravascular toxicity. Zaitsev et al. (2006) conjugated tPA to a monoclonal antibody against complement receptor type 1 expressed primarily on human RBCs, and found that tPA bound rapidly to RBCs in the bloodstream and circulated safely for many hours after injection in mice, providing prophylactic thrombolysis without hemorrhagic side effects, similar to use of preformed RBC-tPA. This approach provided rapid and tight binding of tPA to RBCs, which markedly prolonged the circulation of tPA, accelerated lysis of venous and occlusive arterial thrombus that formed subsequent to injection, and reduced bleeding from preexisting hemostatic clots. Subsequently, a single-chain antibody fragment-tissue type plasminogen activator fusion targeted to RBC glycophorin-A related antigen was developed that bound safely to circulating RBCs and had anti-thrombotic effects in a mouse model of thrombosisthat were qualitatively similar to RBC-tPA and superior to tPA (Zaitzev et al., 2010).

    Conclusion

    Currently, the ability to dissolve thrombus using conventional thrombolytic therapy is limited. Pharmacological agents have generally targeted the transformation of plasminogen and plasmin, thereby facilitating the natural process of fibrinolysis. However, these agents do not discriminate between healthy and at-risk vasculature, and are widely distributed in the circulation. Development of newer targeted thrombolytic agents should enable selective delivery to speci fi c organs, tissues, or cells to enhance targeting of the thrombus and reduce adverse effects, thereby achieving superior ef fi cacy and safety compared with existing therapeutic options.

    Several approaches have been proposed for the targeted delivery of plasminogen activators, including conjugation with specific monoclonal antibodies, oligopeptides, and nanoparticles. Conjugation with fi brin-speci fi c immunoconjugates seems to be a less promising approach because of the poor speci fi city of antibody binding to fi brin, and the inability to distinguish between hemostatic clots and occlusive thrombus. The effects of platelet-speci fi c agents are obvious, but their safety and effectiveness need to be further studied. Strategies based on conjugating thrombolytic agents to RBCs are less practical. Use of a single-chain antibody fragment-tissue type plasminogen activator fusion targeted to RBC glycophorin-A related antigen appears to be at least as promising as use of tPA-loaded nanoparticles for the prevention of both venous and arterial thrombus formation. Effective clearance of preexisting thrombus using methods such as ultrasound (Uesugi et al., 2010) and enhancement of the effectiveness of thrombolytic agents may provide a good approach to the treatment of stroke.

    Acknowledgments:We thank the School of Biomedical Sciences, Huaqiao University, China for providing reference information resources.

    Author contributions:Zhang JP and Ma GX wrote the manuscript. Lv ZM and Wen CG performed the literature search. Zhou Y revised the manuscript. Wu YQ and Xu RA obtained funding. All authors approved the final version of the manuscript.

    Con fl icts of interest:None declared.

    Absar S, Nahar K, Kwon YM, Ahsan F (2013) Thrombus-targeted nanocarrier attenuates bleeding complications associated with conventional thrombolytic therapy. Pharm Res 30:1663-1676.

    Ari?ns RA (2013) Fibrin(ogen) and thrombotic disease. J Thromb Haemost 11 Suppl 1:294-305.

    Armstead WM, Ganguly K, Kiessling JW, Chen XH, Smith DH, Higazi AA, Cines DB, Bdeir K, Zaitsev S, Muzykantov VR (2009) Red blood cells-coupled tPA prevents impairment of cerebral vasodilatory responses and tissue injury in pediatric cerebral hypoxia/ischemia through inhibition of ERK MAPK activation. J Cereb Blood Flow Metab 29:1463-1474.

    Badimon L, Vilahur G (2008) Coronary atherothrombotic disease: progress in antiplatelet therapy. Rev Esp Cardiol 61:501-513.

    Balami JS, Chen R, Sutherland BA, Buchan AM (2013) Thrombolytic agents for acute ischaemic stroke treatment: the past, present and future. CNS Neurol Disord Drug Targets 12:145-154.

    Bates ER, McGillem MJ, Mickelson JK, Pitt B, Mancini GB (1991) A monoclonal antibody against the platelet glycoprotein IIb/IIIa receptor complex prevents platelet aggregation and thrombosis in a canine model of coronary angioplasty. Circulation 84:2463-2469.

    B?umer W, Herrling GM, Feige K (2013) Pharmacokinetics and thrombolytic effects of the recombinant tissue-type plasminogen activator in horses. BMC Vet Res 9:158.

    Bax BE, Bain MD, Talbot PJ, Parker-Williams EJ, Chalmers RA (1999) Survival of human carrier erythrocytes in vivo. Clin Sci 96:171-178.

    Bentley P, Sharma P (2005) Pharmacological treatment of ischemic stroke. Pharmacol Ther 108:334-352.

    Bode C, Meinhardt G, Runge MS, Freitag M, Nordt T, Arens M, Newell JB, Kubler W, Haber E (1991) Platelet-targeted fi brinolysis enhances clot lysis and inhibits platelet aggregation. Circulation 84:805-813.

    Cadroy Y, Hanson SR (1990) Effects of red blood cell concentration on hemostasis and thrombus formation in a primate model. Blood 75:2185-2193.

    Capstick T, Henry MT (2005) Efficacy of thrombolytic agents in the treatment of pulmonary embolism. Eur Respir J 26:864-874.

    Castellino FJ, Ploplis VA (2005) Structure and function of the plasminogen/plasmin system. Thromb Haemost 93:647-654.

    Collart P, Coppieters Y, Levêque A (2012) Trends in acute myocardial infarction treatment between 1998 and 2007 in a Belgian area (Charleroi). Eur J Prev Cardiol 19:738-745.

    Collen D, Lijnen HR (1991) Basic and clinical aspects of fibrinolysis and thrombolysis. Blood 78:3114-3124.

    Cyrus T, Zhang H, Allen JS, Williams TA, Hu G, Caruthers SD, Wickline SA, Lanza GM (2008) Intramural delivery of rapamycin with alphavbeta3-targeted paramagnetic nanoparticles inhibits stenosis after balloon injury. Arterioscler Thromb Vasc Biol 28:820-826.

    Danchin N, Coste P, Ferrières J, Steg PG, Cottin Y, Blanchard D, Belle L, Ritz B, Kirkorian G, Angioi M, Sans P, Charbonnier B, Eltchaninoff H, Guéret P, Khalife K, Asseman P, Puel J, Goldstein P, Cambou JP, Simon T, et al. (2008) Comparison of thrombolysis followed by broad use of percutaneous coronary intervention with primary percutaneous coronary intervention for ST-segment-elevation acute myocardial infarction: data from the french registry on acute ST-elevation myocardial infarction (FAST-MI). Circulation 118:268-276.

    Datta S, Coussios CC, McAdory LE, Tan J, Porter T, De Courten-Myers G, Holland CK (2006) Correlation of cavitation with ultrasound enhancement of thrombolysis. Ultrasound Med Biol 32:1257-1267.

    Davì G, Patrono C (2007) Platelet activation and atherothrombosis. N Engl J Med 357:2482-2494.

    Eppler S, Senn T, Gilkerson E, Modi NB (1998) Pharmacokinetics and pharmacodynamics of recombinant tissue-type plasminogen activator following intravenous administration in rabbits: a comparison of three dosing regimens. Biopharm Drug Dispos 19:31-38.

    Gabriel DA, Muga K, Boothroyd EM (1992) The effect of fi brin structure on fi brinolysis. J Biol Chem 267:24259-24263.

    Ganguly K, Krasik T, Medinilla S, Bdeir K, Cines DB, Muzykantov VR, Murciano JC (2005) Blood clearance and activity of erythrocyte-coupled fi brinolytics. J Pharmacol Exp Ther 312:1106-1113.

    Ganguly K, Goel MS, Krasik T, Bdeir K, Diamond SL, Cines DB, Muzykantov VR, Murciano JC (2006) Fibrin affinity of erythrocyte-coupled tissue-type plasminogen activators endures hemodynamic forces and enhances fi brinolysis in vivo. J Pharmacol Exp Ther 316:1130-1136.

    Ghasemi Y, Dabbagh F, Ghasemian A (2012) Cloning of a fi brinolytic enzyme (Subtilisin) gene from bacillus subtilis in Escherichia coli. Mol Biotechnol 52:1-7.

    Gladding P, Webster M, Ormiston J, Olsen S, White H (2008) Antiplatelet drug nonresponsiveness. Am Heart J 155:591-599.

    Gomaraschi M, Ossoli A, Vitali C, Pozzi S, Serdoz LV, Pitzorno C, Sinagra G, Franceschini G, Calabresi L (2013) Off-target effects of thrombolytic drugs: apolipoprotein A-I proteolysis by alteplase and tenecteplase. Biochem Pharmacol 85:525-530.

    Greineder CF, Howard MD, Carnemolla R, Cines DB, Muzykantov VR (2013) Advanced drug delivery systems for antithrombotic agents. Blood 122:1565-1575.

    Gu Z, Rolfe BE, Xu ZP, Campbell JH, Lu GQ, Thomas AC (2012) Antibody-targeted drug delivery to injured arteries using layered double hydroxide nanoparticles. Adv Healthc Mater 1:669-673.

    Guyatt GH, Norris SL, Schulman S, Hirsh J, Eckman MH, Akl EA, Crowther M, Vandvik PO, Eikelboom JW, McDonagh MS, Lewis SZ, Gutterman DD, Cook DJ, Schünemann HJ; American College of Chest Physicians (2012) Methodology for the development of antithrombotic therapy and prevention of thrombosis guidelines: Antithrombotic Therapy and Prevention of Thrombosis, 9thed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 141:53S-70S.

    Harrison P (2000) Progress in the assessment of platelet function. Br J Haematol 111:733-744.

    Holland CK, Vaidya SS, Datta S, Coussios CC, Shaw GJ (2008) Ultrasound-enhanced tissue plasminogen activator thrombolysis in an in vitro porcine clot model. Thromb Res 121:663-673.

    Huang GF, Zhou ZM, Srinivasan R, Penn MS, Kottke-Marchant K, Marchant RE, Gupta AS (2008) Affinity manipulation of surface-conjugated RGD peptide to modulate binding of liposomes to activated platelets. Biomaterials 29:1676-1685.

    Huang SL (2008) Liposomes in ultrasonic drug and gene delivery. Adv Drug Deliver Rev 60:1167-1176.

    Jennings LK (2009) Role of platelets in atherothrombosis. Am J Cardiol 103:4A-10A.

    Kim JY, Kim JK, Park JS, Byun Y, Kim CK (2009) The use of PEGylated liposomes to prolong circulation lifetimes of tissue plasminogen activator. Biomaterials 30:5751-5756.

    Kirmani JF, Alkawi A, Panezai S, Gizzi M (2012) Advances in thrombolytics for treatment of acute ischemic stroke. Neurology 79:S119-125.

    Klibanov AL, Shevchenko TI, Raju BI, Seip R, Chin CT (2010) Ultrasound-triggered release of materials entrapped in microbubble-liposome constructs: a tool for targeted drug delivery. J Control Release 148:13-17.

    Kowalski M, Brown G, Bieniasz M, Oszajca K, Chabielska E, Pietras T, Szemraj Z, Makandjou-Ola E, Bartkowiak J, Szemraj J (2009) Cloning and expression of a new recombinant thrombolytic and anthithrombotic agent - a staphylokinase variant. Acta Biochim Pol 56:41-53.

    Kulkarni S, Dopheide SM, Yap CL, Ravanat C, Freund M, Mangin P, Heel KA, Street A, Harper IS, Lanza F, Jackson SP (2000) A revised model of platelet aggregation. J Clin Invest 105:783-791.

    Kunamneni A, Abdelghani TT, Ellaiah P (2007) Streptokinase-the drug of choice for thrombolytic therapy. J Thromb Thrombolysis 23:9-23.

    Laing ST, Moody MR, Kim H, Smulevitz B, Huang SL, Holland CK, McPherson DD, Klegerman ME (2012) Thrombolytic efficacy of tissue plasminogen activator-loaded echogenic liposomes in a rabbit thrombus model. Thromb Res 130:629-635.

    Langer HF, Gawaz M (2008) Platelet-vessel wall interactions in atherosclerotic disease. Thromb Haemost 99:480-486.

    Lijnen HR (2001) Elements of the fi brinolytic system. Ann Ny Acad Sci 936:226-236.

    Lijnen HR, Collen D (2000) Molecular basis of thrombolytic therapy. J Nucl Cardiol 7:373-381.

    Liu H, Jia X, Yang J, Liu Z, Wang G, Li L (2006) Neuroprotective effect of Shenfu injection after intra-arterial thrombolysis. Neural Regen Res 1:428-431.

    Longstaff C, Williams S, Thelwell C (2008) Fibrin binding and the regulation of plasminogen activators during thrombolytic therapy. Cardiovasc Hematol Agents Med Chem 6:212-223.

    Lord ST (2007) Fibrinogen and fi brin: scaffold proteins in hemostasis. Curr Opin Hematol 14:236-241.

    Luo R, Mutukumaraswamy S, Venkatraman SS, Neu B (2012) Engineering of erythrocyte-based drug carriers: control of protein release and bioactivity. J Mater Sci Mater Med 23:63-71.

    Magnani M, Rossi L, Fraternale A, Bianchi M, Antonelli A, Crinelli R, Chiarantini L (2002) Erythrocyte-mediated delivery of drugs, peptides and modi fi ed oligonucleotides. Gene Ther 9:749-751.

    Marsh JN, Senpan A, Hu G, Scott MJ, Gaffney PJ, Wickline SA, Lanza GM (2007) Fibrin-targeted per fl uorocarbon nanoparticles for targeted thrombolysis. Nanomedicine 2:533-543.

    Marsh JN, Hu G, Scott MJ, Zhang H, Goette MJ, Gaffney PJ, Caruthers SD, Wickline SA, Abendschein D, Lanza GM (2011) A fi brin-specific thrombolytic nanomedicine approach to acute ischemic stroke. Nanomedicine (Lond) 6:605-615.

    McCarthy JR, Sazonova IY, Erdem SS, Hara T, Thompson BD, Patel P, Botnaru I, Lin CP, Reed GL, Weissleder R, Jaffer FA (2012) Multifunctional nanoagent for thrombus-targeted fibrinolytic therapy. Nanomedicine (Lond) 7:1017-1028.

    Meunier JM, Holland CK, Pancioli AM, Lindsell CJ, Shaw GJ (2009) Effect of low frequency ultrasound on combined rt-PA and epti fi batide thrombolysis in human clots. Thromb Res 123:528-536.

    Meyer A, Auemheimer J, Modlinger A, Kessler H (2006) Targeting RGD recognizing integrins: Drug development, biomaterial research, tumor imaging and targeting. Curr Pharm Des 12:2723-2747.

    Meyer JS, Gilroy J, Barnhart ME, Johnson JF (1965) Therapeutic thrombolysis in cerebral thromboembolism: randomized evaluation of intravenous streptokinase. In: Cerebral vascular diseases, Fourth Princeton Conference (Millikan CH, Siekert RG, Whisnant JP, eds). New York: Grune and Stratton.

    Millan CG, Marinero ML, Castaneda AZ, Lanao JM (2004) Drug, enzyme and peptide delivery using erythrocytes as carriers. J Control Release 95:27-49.

    Mosesson MW (2005) Fibrinogen and fi brin structure and functions. J Thromb Haemost 3:1894-1904.

    Muni NI, Gross TP (2004) Problems with drug-eluting coronary stents - The FDA perspective. New Engl J Med 351:1593-1595.

    Murciano JC, Medinilla S, Eslin D, Atochina E, Cines DB, Muzykantov VR (2003) Prophylactic fibrinolysis through selective dissolution of nascent clots by tPA-carrying erythrocytes. Nat Biotechnol 21:891-896.

    Muzykantov VR (2010) Drug delivery by red blood cells: vascular carriers designed by mother nature. Expert Opin Drug Deliv 7:403-427.

    Muzykantov VR (2013) Drug delivery carriers on the fringes: natural red blood cells versus synthetic multilayered capsules. Expert Opin Drug Del 10:1-4.

    Okabayashi K, Tsujikawa M, Morita M, Einaga K, Tanaka K, Tanabe T, Yamanouchi K, Hirama M, Tait JF, Fujikawa K (1996) Secretory production of recombinant urokinase-type plasminogen activator-annexin V chimeras in Pichia pastoris. Gene 177:69-76.

    Oyama E, Kitagawa Y, Takahashi H (2013) Primary structure and characterization of a non hemorrhagic metalloproteinase with fi brinolytic activity, from the snake venom of Protobothrops tokarensis (Tokara-habu). Toxicon 70:153-161.

    Pierige F, Sera fi ni S, Rossi L, Magnani M (2008) Cell-based drug delivery. Adv Drug Deliv Rev 60:286-295.

    Prasad S, Kashyap RS, Deopujari JY, Purohit HJ, Taori GM, Daginawala HF (2006) Development of an in vitro model to study clot lysis activity of thrombolytic drugs. Thromb J 4:14.

    Rossi L, Sera fi ni S, Pierige F, Antonelli A, Cerasi A, Fraternale A, Chiarantini L, Magnani M (2005) Erythrocyte-based drug delivery. Expert Opin Drug Deliv 2:311-322.

    Runge MS, Bode C, Matsueda GR, Haber E (1987) Antibody-enhanced thrombolysis: targeting of tissue plasminogen activator in vivo. Proc Natl Acad Sci U S A 84:7659-7662.

    Runge MS, Harker LA, Bode C, Ruef J, Kelly AB, Marzec UM, Allen E, Caban R, Shaw SY, Haber E, Hanson SR (1996) Enhanced thrombolytic and antithrombotic potency of a fi brin-targeted plasminogen activator in baboons. Circulation 94:1412-1422.

    Sera fi ni S, Rossi L, Antonelli A, Fraternale A, Cerasi A, Crinelli R, Chiarantini L, Schiavano GF, Magnani M (2004) Drug delivery through phagocytosis of red blood cells. Transfus Med Hemother 31:92-101.

    Shaw GJ, Meunier JM, Huang SL, Lindsell CJ, McPherson DD, Holland CK (2009) Ultrasound-enhanced thrombolysis with tPA-loaded echogenic liposomes. Thromb Res 124:306-310.

    Siddiqui TI, Kumar KS, Dikshit DK (2013) Platelets and atherothrombosis: causes, targets and treatments for thrombosis. Curr Med Chem 20:2779-2797.

    Simone EA, Dziubla TD, Muzykantov VR (2008) Polymeric carriers: role of geometry in drug delivery. Expert Opin Drug Deliv 5:1283-1300.

    Sirol M, Aguinaldo JGS, Graham PB, Weisskoff R, Lauffer R, Mizsei G, Chereshnev I, Fallon JT, Reis E, Fuster V, Toussaint JF, Fayad ZA (2005) Fibrin-targeted contrast agent for improvement of in vivo acute thrombus detection with magnetic resonance imaging. Atherosclerosis 182:79-85.

    Starmans LW, van Duijnhoven SM, Rossin R, Aime S, Daemen MJ, Nicolay K, Grüll H (2013) SPECT imaging of fibrin using fibrin-binding peptides. Contrast Media Mol Imaging 8:229-237.

    Talens S, Leebeek FW, Demmers JA, Rijken DC (2012a) Identi fi cation of fi brin clot-bound plasma proteins. PLoS One 7:e41966.

    Talens S, Lebbink JH, Malfliet JJ, Demmers JA, Uitte de Willige S, Leebeek FW, Rijken DC (2012b) Binding of carboxypeptidase N to fi brinogen and fi brin. Biochemical and biophysical research communications 427:421-425.

    ten Berg JM, Plokker HT, Verheugt FW (2001) Antiplatelet and anticoagulant therapy in elective percutaneous coronary intervention. Curr Control Trials Cardiovasc Med 2:129-140.

    Toombs CF (2001) New directions in thrombolytic therapy. Curr Opin Pharmacol 1:164-168.

    Tsuruta W, Tsurushima H, Yamamoto T, Suzuki K, Yamazaki N, Matsumura A (2009) Application of liposomes incorporating doxorubicin with sialyl Lewis X to prevent stenosis after rat carotid artery injury. Biomaterials 30:118-125.

    Uesugi Y, Kawata H, Jo J, Saito Y, Tabata Y (2010) An ultrasound-responsive nano delivery system of tissue-type plasminogen activator for thrombolytic therapy. J Control Release 147:269-277.

    Vaidya B, Agrawal GP, Vyas SP (2011) Platelets directed liposomes for the delivery of streptokinase: Development and characterization. Eur J Pharm Sci 44:589-594.

    Vaidya B, Agrawal GP, Vyas SP (2012) Functionalized carriers for the improved delivery of plasminogen activators. Int J Pharm 424:1-11.

    van der Worp HB, van Gijn J (2007) Clinical practice: Acute ischemic stroke. N Engl J Med 357:572-579.

    Varin R, Mirshahi S, Mirshahi P, Klein C, Jamshedov J, Chidiac J, Perzborn E, Mirshahi M, Soria C, Soria J (2013) Whole blood clots are more resistant to lysis than plasma clots--greater ef fi cacy of rivaroxaban. Thromb Res 131:e100-109.

    Verstraete M (2000) Third-generation thrombolytic drugs. Am J Med 109:52-58.

    Wadajkar AS, Santimano S, Rahimi M, Yuan BH, Banerjee S, Nguyen KT (2013) Deep vein thrombosis: Current status and nanotechnology advances. Biotechnol Adv 31:504-513.

    Walker JB, Binette TM, Mackova M, Lambkin GR, Mitchell L, Bajzar L (2008) Proteolytic cleavage of carboxypeptidase N markedly increases its anti fi brinolytic activity. J Thromb Haemost 6:848-855.

    Wang B, Zang WJ, Wang M, Ai H, Wang YW, Li YP, He GS, Wang L, Yu XJ (2006) Prolonging the ultrasound signal enhancement from thrombi using targeted microbubbles based on sulfur-hexafluoride- fi lled gas. Acad Radiol 13:428-433.

    White HD, Chew DP (2008) Acute myocardial infarction. Lancet 372:570-584.

    WRITING GROUP MEMBERS, Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, Ferguson TB, Ford E, Furie K, Gillespie C, Go A, Greenlund K, Haase N, Hailpern S, Ho PM, Howard V, Kissela B, Kittner S, Lackland D, et al. (2010) Heart disease and stroke statistics--2010 update: a report from the American Heart Association. Circulation 121:e46-e215.

    Yurko Y, Maximov V, Andreozzi E, Thompson GL, Vertegel AA (2009) Design of biomedical nanodevices for dissolution of blood clots. Mater Sci Eng C 29:737-741.

    Zaitsev S, Danielyan K, Murciano JC, Ganguly K, Krasik T, Taylor RP, Pincus S, Jones S, Cines DB, Muzykantov VR (2006) Human complement receptor type 1-directed loading of tissue plasminogen activator on circulating erythrocytes for prophylactic fi brinolysis. Blood 108:1895-1902.

    Zaitzev S, Spitzer D, Murciano JC, Ding BS, Tliba S, Kowalska MA, Bdeir K, Kuo A, Stepanova V, Atkinson JP, Poncz M, Cines DB, Muzykantov VR (2010) Targeting of a mutant plasminogen activator to circulating red blood cells for prophylactic fi brinolysis. J Pharmacol Exp Ther 332:1022-1031.

    Zhou XB, Qin H, Li J, Wang B, Wang CB, Liu YM, Jia XD, Shi N (2011) Platelet-targeted microbubbles inhibit re-occlusion after thrombolysis with transcutaneous ultrasound and microbubbles. Ultrasonics 51:270-274.

    Copyedited by Elgin M, Raye W, Li CH, Song LP, Zhao M

    10.4103/1673-5374.137580

    Ruian Xu, Ph.D., School of Biomedical Sciences, Huaqiao University & Engineering Research Center of Molcelaur Medicine, Ministry of Education, No. 902, Fanhua Science Building, 668 Jimei Avenue, Jimei District, Xiamen 362021, Fujian Province, China, hmmedu@hqu.edu.cn.

    http://www.nrronline.org/

    Accepted: 2014-05-12

    国产探花极品一区二区| 老女人水多毛片| 国产亚洲精品久久久com| 黄色怎么调成土黄色| 久久精品综合一区二区三区| 高清av免费在线| 日韩中字成人| 国产精品一区二区性色av| 日韩人妻高清精品专区| 午夜福利高清视频| 欧美日韩视频精品一区| 男女边摸边吃奶| 久久热精品热| 亚洲欧美精品专区久久| 国产91av在线免费观看| 亚洲在线观看片| 国产精品久久久久久久电影| 免费观看在线日韩| 午夜日本视频在线| 日本午夜av视频| 一级毛片 在线播放| 狂野欧美激情性xxxx在线观看| 久久精品久久精品一区二区三区| 亚洲最大成人av| 一个人看的www免费观看视频| 国产成人精品福利久久| 一级爰片在线观看| 国产欧美日韩一区二区三区在线 | 99热这里只有精品一区| 热re99久久精品国产66热6| 婷婷色综合www| 王馨瑶露胸无遮挡在线观看| 久久久久精品性色| 久久99热6这里只有精品| 特大巨黑吊av在线直播| 午夜激情福利司机影院| 欧美高清性xxxxhd video| 久久久久久久大尺度免费视频| 成人鲁丝片一二三区免费| 亚洲美女搞黄在线观看| 亚洲国产成人一精品久久久| 亚洲国产精品国产精品| 日韩在线高清观看一区二区三区| 国产精品一区二区三区四区免费观看| 亚洲欧美一区二区三区黑人 | 亚洲精品影视一区二区三区av| 丝袜脚勾引网站| 国产精品久久久久久久久免| 一级毛片aaaaaa免费看小| 尾随美女入室| 亚洲成人中文字幕在线播放| 色播亚洲综合网| 特大巨黑吊av在线直播| 国产白丝娇喘喷水9色精品| 婷婷色综合大香蕉| 亚洲国产最新在线播放| 女的被弄到高潮叫床怎么办| 夫妻性生交免费视频一级片| 蜜臀久久99精品久久宅男| 色哟哟·www| 久久综合国产亚洲精品| 免费黄色在线免费观看| 欧美成人午夜免费资源| 国产成人freesex在线| 街头女战士在线观看网站| 久久久国产一区二区| 国产亚洲精品久久久com| 高清毛片免费看| 色5月婷婷丁香| 永久网站在线| 国产av码专区亚洲av| 久久久亚洲精品成人影院| 亚洲美女视频黄频| av一本久久久久| 插阴视频在线观看视频| 好男人在线观看高清免费视频| 熟妇人妻不卡中文字幕| 久久久精品免费免费高清| 三级经典国产精品| 日韩欧美精品v在线| 精品久久久久久久久av| 少妇猛男粗大的猛烈进出视频 | 午夜福利在线观看免费完整高清在| 91午夜精品亚洲一区二区三区| www.色视频.com| 国产精品久久久久久精品电影| 久久久久久久午夜电影| 王馨瑶露胸无遮挡在线观看| 欧美xxxx性猛交bbbb| 亚洲不卡免费看| 欧美日本视频| av.在线天堂| 午夜日本视频在线| 最近最新中文字幕免费大全7| 激情 狠狠 欧美| 欧美日韩国产mv在线观看视频 | 中文字幕制服av| 人人妻人人爽人人添夜夜欢视频 | 最近最新中文字幕大全电影3| .国产精品久久| 丰满人妻一区二区三区视频av| 久久韩国三级中文字幕| 欧美高清性xxxxhd video| 欧美最新免费一区二区三区| 成人国产av品久久久| 三级经典国产精品| 精华霜和精华液先用哪个| 自拍偷自拍亚洲精品老妇| 成人国产av品久久久| 欧美人与善性xxx| 天堂中文最新版在线下载 | 一二三四中文在线观看免费高清| 国产片特级美女逼逼视频| 99热这里只有精品一区| 亚洲欧美成人精品一区二区| 国产精品久久久久久久电影| 99热国产这里只有精品6| 国产精品爽爽va在线观看网站| 国产免费一区二区三区四区乱码| 免费看av在线观看网站| 国产色婷婷99| 国产av码专区亚洲av| 欧美日韩精品成人综合77777| 九色成人免费人妻av| 精品久久久久久久末码| 99热6这里只有精品| 观看免费一级毛片| 黄色配什么色好看| 日韩一本色道免费dvd| 七月丁香在线播放| 一级毛片我不卡| 亚洲人成网站高清观看| 亚洲av日韩在线播放| 久久久国产一区二区| 国产黄色视频一区二区在线观看| 亚洲美女搞黄在线观看| 在线 av 中文字幕| 熟妇人妻不卡中文字幕| 免费av观看视频| 你懂的网址亚洲精品在线观看| 精品久久久久久久久亚洲| 一二三四中文在线观看免费高清| 晚上一个人看的免费电影| 一个人看视频在线观看www免费| 亚洲性久久影院| 国产精品一二三区在线看| 中文乱码字字幕精品一区二区三区| 国产亚洲一区二区精品| 热re99久久精品国产66热6| 在线播放无遮挡| 天天躁夜夜躁狠狠久久av| 少妇人妻 视频| 亚洲精品色激情综合| 国产视频首页在线观看| 丝袜脚勾引网站| 成人欧美大片| 蜜臀久久99精品久久宅男| 亚洲内射少妇av| 国产精品久久久久久精品电影| 久久6这里有精品| 黄色视频在线播放观看不卡| 香蕉精品网在线| 人人妻人人爽人人添夜夜欢视频 | av在线观看视频网站免费| 五月玫瑰六月丁香| 春色校园在线视频观看| 97精品久久久久久久久久精品| 国产乱人视频| 国产精品人妻久久久影院| 97超视频在线观看视频| 能在线免费看毛片的网站| 午夜爱爱视频在线播放| 婷婷色av中文字幕| 亚洲国产精品国产精品| 九九在线视频观看精品| 亚洲av.av天堂| 国产淫片久久久久久久久| 国产中年淑女户外野战色| 一级爰片在线观看| 国产成人精品福利久久| 日本色播在线视频| 欧美少妇被猛烈插入视频| av卡一久久| 国产 精品1| 国产高清三级在线| 国产精品.久久久| 亚洲欧美精品自产自拍| 国产精品国产三级国产av玫瑰| 少妇猛男粗大的猛烈进出视频 | 国内精品美女久久久久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 建设人人有责人人尽责人人享有的 | 欧美三级亚洲精品| 又大又黄又爽视频免费| 综合色丁香网| 日本黄色片子视频| 国产伦理片在线播放av一区| 日韩人妻高清精品专区| 亚洲内射少妇av| 免费观看的影片在线观看| 国产 一区 欧美 日韩| 99久久九九国产精品国产免费| 大又大粗又爽又黄少妇毛片口| 久久热精品热| 插阴视频在线观看视频| 岛国毛片在线播放| 99热国产这里只有精品6| 女人十人毛片免费观看3o分钟| 国产成人a区在线观看| 最近中文字幕2019免费版| 免费电影在线观看免费观看| 国产精品一二三区在线看| 九九在线视频观看精品| 欧美激情在线99| 国产色婷婷99| 亚洲精品成人久久久久久| 国产老妇伦熟女老妇高清| 看免费成人av毛片| 91久久精品国产一区二区三区| 熟妇人妻不卡中文字幕| 亚洲成人精品中文字幕电影| 久久97久久精品| 亚洲人成网站高清观看| 国产精品av视频在线免费观看| 中文乱码字字幕精品一区二区三区| 国产探花极品一区二区| 国产精品爽爽va在线观看网站| 精品人妻一区二区三区麻豆| 中文欧美无线码| 亚洲最大成人手机在线| 男人添女人高潮全过程视频| 七月丁香在线播放| 内地一区二区视频在线| 人妻夜夜爽99麻豆av| 嫩草影院新地址| 久久精品国产a三级三级三级| 九九在线视频观看精品| 国产免费视频播放在线视频| 高清视频免费观看一区二区| 精品久久国产蜜桃| 久久久a久久爽久久v久久| 国产 一区精品| 亚洲综合精品二区| 一个人看视频在线观看www免费| 久久久国产一区二区| 中文字幕免费在线视频6| 成人毛片60女人毛片免费| 卡戴珊不雅视频在线播放| 青春草视频在线免费观看| 3wmmmm亚洲av在线观看| 性色avwww在线观看| 美女xxoo啪啪120秒动态图| 国国产精品蜜臀av免费| 国产美女午夜福利| 日日啪夜夜爽| 麻豆久久精品国产亚洲av| 精品午夜福利在线看| 亚洲精品第二区| 日日啪夜夜爽| 中文在线观看免费www的网站| 一级毛片我不卡| 久久99热6这里只有精品| 男女无遮挡免费网站观看| 日本免费在线观看一区| 黄片无遮挡物在线观看| 亚洲一级一片aⅴ在线观看| 国语对白做爰xxxⅹ性视频网站| av在线老鸭窝| 日本熟妇午夜| 亚洲欧美日韩无卡精品| 一级a做视频免费观看| 女人被狂操c到高潮| 国产老妇女一区| 亚洲精品乱久久久久久| 99热6这里只有精品| 亚洲国产最新在线播放| 一个人观看的视频www高清免费观看| tube8黄色片| av在线观看视频网站免费| 亚洲婷婷狠狠爱综合网| 夜夜爽夜夜爽视频| 精华霜和精华液先用哪个| 女人十人毛片免费观看3o分钟| 在线观看一区二区三区激情| 免费高清在线观看视频在线观看| 色播亚洲综合网| 亚洲国产成人一精品久久久| 波野结衣二区三区在线| av又黄又爽大尺度在线免费看| 国产乱来视频区| 另类亚洲欧美激情| av播播在线观看一区| 国语对白做爰xxxⅹ性视频网站| 成人美女网站在线观看视频| 交换朋友夫妻互换小说| 国产一区二区亚洲精品在线观看| 嘟嘟电影网在线观看| 大陆偷拍与自拍| 大片电影免费在线观看免费| 亚洲欧美日韩另类电影网站 | 亚洲精品成人av观看孕妇| 亚洲国产精品999| 久久精品国产自在天天线| 国产亚洲av嫩草精品影院| 亚洲精品国产av成人精品| 国产精品久久久久久精品电影小说 | 91精品伊人久久大香线蕉| 美女被艹到高潮喷水动态| 国产 一区精品| 在现免费观看毛片| 欧美高清成人免费视频www| 国内少妇人妻偷人精品xxx网站| 亚洲精品久久午夜乱码| 亚洲人与动物交配视频| 国产欧美亚洲国产| 日日撸夜夜添| 久久精品夜色国产| 久久鲁丝午夜福利片| 亚洲国产精品专区欧美| 国产在视频线精品| 久久久精品免费免费高清| 亚洲欧美精品专区久久| 国产成人免费无遮挡视频| 亚洲丝袜综合中文字幕| 精华霜和精华液先用哪个| 能在线免费看毛片的网站| kizo精华| 国产精品秋霞免费鲁丝片| 精品一区二区三区视频在线| 日日摸夜夜添夜夜添av毛片| 五月伊人婷婷丁香| 国产亚洲精品久久久com| 国产又色又爽无遮挡免| 又大又黄又爽视频免费| 亚洲精品日本国产第一区| 十八禁网站网址无遮挡 | 白带黄色成豆腐渣| 激情五月婷婷亚洲| 日本三级黄在线观看| 免费看a级黄色片| 成人特级av手机在线观看| 三级国产精品片| 日韩,欧美,国产一区二区三区| 亚洲国产av新网站| 日韩av不卡免费在线播放| 综合色av麻豆| 麻豆精品久久久久久蜜桃| 内射极品少妇av片p| 精品久久久久久久久av| 内地一区二区视频在线| 国产高清不卡午夜福利| 成人特级av手机在线观看| 亚洲国产成人一精品久久久| 亚洲无线观看免费| 天天躁夜夜躁狠狠久久av| 免费电影在线观看免费观看| 大片免费播放器 马上看| 韩国高清视频一区二区三区| 国产成人精品一,二区| 日本一本二区三区精品| 看免费成人av毛片| 国产熟女欧美一区二区| 亚洲国产av新网站| 丝袜美腿在线中文| 欧美3d第一页| 成人亚洲精品av一区二区| 欧美xxⅹ黑人| 亚洲aⅴ乱码一区二区在线播放| 国产综合懂色| 国产欧美日韩精品一区二区| 高清午夜精品一区二区三区| 一本色道久久久久久精品综合| 晚上一个人看的免费电影| 国内少妇人妻偷人精品xxx网站| 亚洲av成人精品一二三区| 欧美一区二区亚洲| 日韩 亚洲 欧美在线| 又爽又黄a免费视频| 日韩,欧美,国产一区二区三区| 亚洲av中文av极速乱| 18禁在线无遮挡免费观看视频| 伦精品一区二区三区| 街头女战士在线观看网站| 听说在线观看完整版免费高清| 亚洲人与动物交配视频| 久久精品熟女亚洲av麻豆精品| av在线观看视频网站免费| 日韩 亚洲 欧美在线| 成人毛片60女人毛片免费| 国产成年人精品一区二区| 精品一区二区三区视频在线| 成年女人看的毛片在线观看| 久久韩国三级中文字幕| 亚洲性久久影院| 亚洲一级一片aⅴ在线观看| 内地一区二区视频在线| 亚洲精品久久久久久婷婷小说| 丰满少妇做爰视频| 日韩国内少妇激情av| 听说在线观看完整版免费高清| 黄色欧美视频在线观看| 街头女战士在线观看网站| 男人爽女人下面视频在线观看| 国产成人精品福利久久| av一本久久久久| 可以在线观看毛片的网站| 亚洲一级一片aⅴ在线观看| 亚洲av在线观看美女高潮| 亚洲激情五月婷婷啪啪| 好男人在线观看高清免费视频| 成人亚洲欧美一区二区av| 久久99热这里只频精品6学生| 久久亚洲国产成人精品v| 欧美少妇被猛烈插入视频| 午夜精品一区二区三区免费看| 亚洲av男天堂| 日本三级黄在线观看| 国产一区二区三区av在线| 麻豆乱淫一区二区| 天堂中文最新版在线下载 | 亚洲精品成人av观看孕妇| av在线app专区| 欧美bdsm另类| 建设人人有责人人尽责人人享有的 | 亚洲精品第二区| 日韩欧美 国产精品| 午夜福利视频1000在线观看| 欧美一级a爱片免费观看看| 成人国产av品久久久| 免费看光身美女| 国产高清国产精品国产三级 | 国产伦理片在线播放av一区| 久久久久久久大尺度免费视频| 亚洲色图综合在线观看| 久久精品熟女亚洲av麻豆精品| 七月丁香在线播放| 国产精品蜜桃在线观看| 成年版毛片免费区| 超碰av人人做人人爽久久| 天堂网av新在线| 亚洲第一区二区三区不卡| 亚洲内射少妇av| 热re99久久精品国产66热6| 边亲边吃奶的免费视频| 听说在线观看完整版免费高清| 又爽又黄无遮挡网站| 久久久久久久久久久免费av| 亚洲精品色激情综合| 香蕉精品网在线| 国产精品一区二区在线观看99| 日韩三级伦理在线观看| 少妇熟女欧美另类| 99视频精品全部免费 在线| 成人无遮挡网站| 色综合色国产| 国产男女内射视频| 一级爰片在线观看| 少妇人妻久久综合中文| 亚洲精品国产av蜜桃| 汤姆久久久久久久影院中文字幕| 久久99热这里只频精品6学生| 国产在线一区二区三区精| 我的老师免费观看完整版| 91久久精品国产一区二区成人| 国产黄片美女视频| 久久韩国三级中文字幕| 网址你懂的国产日韩在线| 天天躁日日操中文字幕| 久久久久久久久久人人人人人人| 91在线精品国自产拍蜜月| 真实男女啪啪啪动态图| 亚洲国产av新网站| 亚洲av在线观看美女高潮| 亚洲av成人精品一二三区| 伊人久久国产一区二区| 国产在线男女| av国产免费在线观看| 狂野欧美激情性bbbbbb| 交换朋友夫妻互换小说| 午夜爱爱视频在线播放| 午夜福利网站1000一区二区三区| 高清欧美精品videossex| 久久鲁丝午夜福利片| 成人漫画全彩无遮挡| 国产毛片在线视频| 亚洲av电影在线观看一区二区三区 | 日韩成人伦理影院| 欧美性猛交╳xxx乱大交人| 波多野结衣巨乳人妻| 一级片'在线观看视频| 国产淫语在线视频| 少妇的逼好多水| 联通29元200g的流量卡| 777米奇影视久久| videos熟女内射| 成人国产麻豆网| 久久精品国产a三级三级三级| 亚洲欧美成人综合另类久久久| 九九爱精品视频在线观看| 男女下面进入的视频免费午夜| 女的被弄到高潮叫床怎么办| 久久精品国产自在天天线| 欧美成人精品欧美一级黄| 亚洲自拍偷在线| 亚洲成人一二三区av| 少妇人妻一区二区三区视频| 又爽又黄无遮挡网站| 亚洲成人中文字幕在线播放| 亚洲国产成人一精品久久久| 久久精品国产自在天天线| 狠狠精品人妻久久久久久综合| 男女下面进入的视频免费午夜| 亚洲久久久久久中文字幕| 国产伦精品一区二区三区视频9| 内地一区二区视频在线| 精品一区二区免费观看| 国产午夜精品一二区理论片| 18禁在线无遮挡免费观看视频| 国内少妇人妻偷人精品xxx网站| 18禁动态无遮挡网站| 国产亚洲91精品色在线| 看免费成人av毛片| 丝袜脚勾引网站| 99热国产这里只有精品6| 久久精品熟女亚洲av麻豆精品| 69人妻影院| av在线蜜桃| 超碰97精品在线观看| 亚洲av免费在线观看| 欧美+日韩+精品| 一个人观看的视频www高清免费观看| 波野结衣二区三区在线| 97热精品久久久久久| 免费观看av网站的网址| 日韩欧美精品v在线| 舔av片在线| 国产精品一区二区三区四区免费观看| 一区二区三区四区激情视频| 白带黄色成豆腐渣| 禁无遮挡网站| 国产午夜福利久久久久久| 日本一二三区视频观看| av天堂中文字幕网| av女优亚洲男人天堂| 2022亚洲国产成人精品| 国产一级毛片在线| 搡女人真爽免费视频火全软件| 又爽又黄a免费视频| 亚洲自偷自拍三级| 国产精品人妻久久久久久| av在线播放精品| 日本免费在线观看一区| 狂野欧美白嫩少妇大欣赏| 三级经典国产精品| 久久久久网色| 国产精品无大码| 乱码一卡2卡4卡精品| 国产成人福利小说| 搞女人的毛片| 日韩欧美精品免费久久| 中文字幕av成人在线电影| 欧美3d第一页| 亚洲国产精品专区欧美| 日韩电影二区| 国产一区二区亚洲精品在线观看| 成人午夜精彩视频在线观看| av国产精品久久久久影院| 九九在线视频观看精品| 水蜜桃什么品种好| 深夜a级毛片| 亚洲美女搞黄在线观看| 大码成人一级视频| 久久精品熟女亚洲av麻豆精品| 久久久精品94久久精品| av在线亚洲专区| 国产综合精华液| 国产成人精品福利久久| 18禁裸乳无遮挡免费网站照片| 永久网站在线| 亚洲精品成人av观看孕妇| av免费观看日本| av在线app专区| 麻豆国产97在线/欧美| 免费看不卡的av| 久久97久久精品| 成年女人看的毛片在线观看| 国产人妻一区二区三区在| 神马国产精品三级电影在线观看| 91精品国产九色| 七月丁香在线播放| 秋霞伦理黄片| 综合色丁香网| 99精国产麻豆久久婷婷| 丝袜脚勾引网站| 日韩欧美精品v在线| 伊人久久国产一区二区| 有码 亚洲区| 不卡视频在线观看欧美| 久久午夜福利片| 欧美精品一区二区大全| 亚洲精品中文字幕在线视频 | 亚洲国产色片| 一区二区三区精品91| 国产在线一区二区三区精| 男女边吃奶边做爰视频| 不卡视频在线观看欧美| 欧美日韩国产mv在线观看视频 | 欧美日韩视频高清一区二区三区二| 大陆偷拍与自拍| 香蕉精品网在线| 国产精品爽爽va在线观看网站| 亚洲欧美一区二区三区黑人 | 免费看日本二区| 夫妻午夜视频| 在线天堂最新版资源|