• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Role of Notch-1 signaling pathway in PC12 cell apoptosis induced by amyloid beta-peptide (25-35)

    2014-06-01 09:56:34HuiminLiangYaozhouZhangXiaoyanShiTianxiangWeiJiyuLou

    Huimin Liang, Yaozhou Zhang, Xiaoyan Shi, Tianxiang Wei Jiyu Lou

    1 Second Af fi liated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China

    2 Huaihe Hospital of Henan University, Kaifeng, Henan Province, China

    3 Department of Biotechnology, Xinyang Agricultural College, Xinyang, Henan Province, China

    4 Pharmaceutical College of Henan University, Zhengzhou, Henan Province, China

    Role of Notch-1 signaling pathway in PC12 cell apoptosis induced by amyloid beta-peptide (25-35)

    Huimin Liang1,2, Yaozhou Zhang3, Xiaoyan Shi4, Tianxiang Wei1, Jiyu Lou1

    1 Second Af fi liated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China

    2 Huaihe Hospital of Henan University, Kaifeng, Henan Province, China

    3 Department of Biotechnology, Xinyang Agricultural College, Xinyang, Henan Province, China

    4 Pharmaceutical College of Henan University, Zhengzhou, Henan Province, China

    Recent studies have demonstrated that Notch-1 expression is increased in the hippocampus of Alzheimer’s disease patients. We speculate that Notch-1 signaling may be involved in PC12 cell apoptosis induced by amyloid beta-peptide (25-35) (Aβ25-35). In the present study, PC12 cells were cultured with different doses (0, 0.1, 1.0, 10 and 100 nmol/L) of N-[N-(3,5-Di fl uorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester, a Notch-1 signaling pathway inhibitor, for 30 minutes. Then cultured cells were induced with Aβ25-35for 48 hours. Pretreatment of PC12 cells with high doses of N-[N-(3,5-Di fl uorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (> 10 nmol/L) prolonged the survival of PC12 cells after Aβ25-35induction, decreased the expression of apoptosis-related proteins caspase-3, -8, -9, increased the activity of oxidative stress-related superoxide dismutase and catalase, inhibited the production of active oxygen, and reduced nuclear factor kappa B expression. This study indicates that the Notch-1 signaling pathway plays a pivotal role in Aβ25-35-induced PC12 apoptosis.

    nerve regeneration; Alzheimer’s disease; amyloid beta-peptide (25-35); Notch-1; PC12 cells; apoptosis; oxidative stress; nuclear factor kappa B; neural regeneration

    Liang HM, Zhang YZ, Shi XY, Wei TX, Lou JY. Role of Notch-1 signaling pathway in PC12 cell apoptosis induced by amyloid beta-peptide (25-35). Neural Regen Res. 2014;9(13):1297-1302.

    Introduction

    Alzheimer’s disease is one of the most common neural degenerative diseases in humans and is characterized by memory impairment (Glenner and Wong, 1984; Hardy and Higgins, 1992; Tomita, 2011; Drachman, 2014). Studies indicated that synaptic changes and β-amyloid (Aβ), a 39- to 43-amino acid β-sheet peptide derived from proteolytic processing at the N-terminus of the amyloid precursor protein, are characteristic histopathological features of Alzheimer’s disease patients (Selkoe, 1991; Levine, 1993; Selkoe, 1994; Hardy, 1997; Crump et al., 2013). From a physiological point of view, Aβ25-35, a derivative of Aβ1-40and Aβ1-42, has been demonstrated to be the shortest fragment that exhibits biological activity and retains toxicity of the full-length peptide(s) (Shearman et al., 1994; Terzi et al., 1994; Fuller et al., 1995; Iversen et al., 1995; Pike et al., 1995).

    Notch-1 signaling is an important signaling pathway and has an important role in individual developmental processes, cell proliferation, differentiation and cell fate decisions by interacting with transcriptional regulators (Yu et al., 2000; Selkoe, 2001; Sisodia and St George-Hyslop, 2002; Harper et al., 2003; Ahmed et al., 2014; Liao et al., 2014). Recently, some studies demonstrated that Notch-1 was also expressed in the hippocampus of adult human brains, indicating Notch-1 may have a specific function in neural developmental. Notch-1 expression was signi fi cantly increased in the hippocampus of Alzheimer’s disease patients compared with normal subjects (Berezovska et al., 1999; Mitani et al., 2014; Wagner et al., 2014). It is well known that the hippocampus relates to the generation and formation of new memories. Notch-1 potentially in fl uences neurogenesis and neuronal plasticity in the hippocampus (Albensi and Mattson, 2000; Wang et al., 2004; Oikawa et al., 2012). To date, whether the Notch signaling pathway is involved in Aβ-induced neuronal cell apoptosis and the underlying molecular mechanism are unknown.

    The present study demonstrated an effect of N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT), a Notch-1 signaling pathway inhibitor, on PC cell apoptosis induced by Aβ25-35and oxidative stress, in a broad attempt to explore the prevention and treatment of Alzheimer’s disease.

    Materials and Methods

    PC12 cell culture and intervention

    PC12 cells (American Type Culture Collection, Manassas, VA, USA) were cultured with complete RPMI-1640 medium (Hyclone, Logan, Utah, USA) supplemented with 5% fetal calf serum (Hyclone), 10% horse serum (Hyclone), 100 U/mL penicillin, and 100 mg/mL streptomycin at 37°C in a 5% CO2incubator. Logarithmic growth phase cells were digested and seeded at appropriate densities on poly-L-lysine-coated plates or chambers. PC12 cells were pre-incubated with different concentrations of DAPT (0, 0.1, 1.0, 10 and 100 nmol/L), a γ-secretase inhibitor and indirect inhibitor of Notch-1 sig-naling (Xiao et al., 2014) (Gene Operation, Ann Arbor, MI, USA) for 30 minutes. Subsequently, the cells were treated with 10 μmol/L Aβ25-35(Sigma-Aldrich, St. Louis, MO, USA) for 48 hours. Concentrations of 0, 1.0 or 10 nmol/L were used to study the mechanisms of DAPT in PC12 cell apoptosis.

    PC12 cell viability detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay

    MTT assay was used to detect cell viability by measuring levels of formazan produced. PC12 cells at a density of 1 × 104were plated in 96-well plates with 100 μL medium in every well. After 24 hours, the cells were incubated with 10 μmol/L Aβ25-35for 48 hours pretreated with various concentrations of DAPT (0.1-100 nmol/L) for 30 minutes. After incubation, cells were treated with 20 μL MTT solution (5 mg/mL; Beyotime Institute of Biotechnology, Shanghai, China) for an additional 4 hours. Then the medium was removed and 200 μL dimethylsulfoxide was added to every well. Absorbance was determined with a microplate reader (Becton Dickenson, San Francisco, CA, USA) at 570 nm. Cell viability was normalized as a percentage of the absorbance values compared to the controls, which were not exposed to DAPT or Aβ25-35.

    Measurement of intracellular reactive oxygen species generation in PC12 cells detected by fl ow cytometry

    The level of intracellular reactive oxygen species was determined by a change in fl uorescence resulting from intracellular esterases to non-fluorescent 2′,7′-dichlorofluorescin diacetate (DCFH), which was performed using a Becton Dickenson FACScanTMflow cytometer (Becton Dickenson) with a reactive oxygen species-sensitive dye, hydroethidine. PC12 cells were plated at a density of 3 × 105cells per 6-well dish. Twenty-four hours later, PC12 cells were pre-incubated for 30 minutes with DAPT, and then incubated with 10 μmol/L Aβ25-35. The cells were then placed in 10 μmol/L DCFH-DA for 20 minutes at 37°C, and washed three times with DMEM. Reactive oxygen species levels were detected by flow cytometry. A total of 10,000 events were recorded for each analysis and the value for each treatment group was shown as a percentage of the control value.

    Morphology of apoptotic PC12 cells observed by Hoechst 33342/propidium iodide double staining

    Hoechst 33342/propidium iodide double staining was used for detection of morphological changes of apoptotic cells. PC12 cells at a density of 1 × 106were plated in 6-well plates with 2 mL of medium in every well, and were treated as previously described. After treatment, cells were stained with the DNA dye Hoechst 33342/propidium iodide (Beyotime Institute of Biotechnology) for 15 minutes, followed by fi xing with 4% formaldehyde in PBS for 5 minutes at 4°C. After being washed with PBS three times, the cells were visualized under a fl uorescence microscope (Olympus, Tokyo, Japan).

    Superoxide dismutase activity in PC12 cells detected by microplate reader

    Superoxide dismutase activity was estimated according to the previously described method (Beauchamp and Fridovich, 1971; Marcus et al., 1998) by assaying the auto-oxidation and illumination of pyrogallol at 440 nm. This method employs xanthine and xanthine oxidase to generate superoxide radicals, which react with 2-(4-iodophenyl)-3-(4-nitrophenol)-5-phenyltetrazolium chloride to form a red formazan dye. Superoxide dismutase activity is then measured by the degree of inhibition of this reaction. Superoxide dismutase inhibits the reaction by converting the superoxide radical to oxygen. The absorbance at 505 nm was measured by spectrophotometer (Shimadzu UV-1700, Tokyo, Japan) and used to calculate superoxide dismutase activity.

    Catalase activity in PC12 cells detected by microplate reader

    Catalase activity was measured according to the instructions of the Catalase Assay Kit (Cayman Chemical, Ann Arbor, MI, USA), based on the reaction of catalase with methanol in the presence of an optimal concentration of H2O2. The cells were treated as previously, and equal amounts of total proteins were used for detection as described in the manufacturer’s instructions. The absorbance at 450 nm was measured by spectrophotometer and used to calculate catalase activity.

    Expression of caspase-9, caspase-8, caspase-3, Notch-1, nuclear factor kappa B, catalase, superoxide dismutase in PC12 cells detected by western blot analysis

    PC12 cells were subcultured and treated as previously described. After pretreatment with DAPT for 30 minutes and Aβ25-35for 48 hours, the cells were collected and lysed in RIPA buffer (including 1% Triton, 0.1% sodium dodecylsulfate, 0.5% deoxycholate, ethylenediaminetetraacetic acid 1 mmol/L, Tris 20 mmol/L (pH 7.4), NaCl 150 mmol/L, and NaF 10 mmol/L). Insoluble material was removed by centrifugation at 12,000 r/min for 20 minutes at 4°C. A bovine serum albumin kit was used for quantifying protein concentrations. The samples were equalized for protein concentration. Total proteins were separated by 12% SDS-PAGE, and transferred to polyvinyl difluoride membranes. The membranes were blocked with 5% non-fat milk in PBST buffer for 1 hour at room temperature prior to incubation with rabbit anti-rat caspase-9 (pro-form), caspase-8 (pro-form), caspase-3 (activated form), Notch-1, nuclear factor kappa B, catalase, and superoxide dismutase monoclonal antibodies (Santa Cruz Biotechnology, Santa Cruz, CA, USA) overnight at 4°C, followed by goat anti-rabbit IgG conjugated to HRP (1:1,000, Santa Cruz Biotechnology). The results were scanned and analyzed with ImageJ software (http://rsbweb. nih.gov/ij/download.html). The expression level was corrected to β-actin. The results are shown as relative absorbance detected by spectrophotometer (BioTek, Winooski, VT, USA).

    Statistical analysis

    SPSS 11.0 software (SPSS, Chicago, IL, USA) was used for statistical analysis. All data were expressed as mean ± SD. Statistical analysis was performed using the two sample independent t-test for comparison of two groups and differences of P < 0.05 were considered statistically signi fi cant. All experiments were repeated at least three times.

    Results

    Notch-1 signaling inhibitor inhibited Aβ25-35-induced reduction of PC12 cell viability

    MTT assay indicated that the viability of PC12 cells was reduced signi fi cantly after Aβ25-35treatment, which decreased to 40.22% of the control group (P < 0.05).

    The viability of PC12 cells incubated with Aβ25-35was significantly increased after pretreatment with different concentrations of DAPT (1-100 nmol/L) (P < 0.05 or P < 0.01). Cell viability increased slightly by treatment with 0.1 nmol/L DAPT, but there was no statistically signi fi cant difference compared with the Aβ25-35treatment group (P >0.05;Figure 1A).

    Notch-1 signaling inhibitor reduced PC12 cell apoptosis induced by Aβ25-35

    The morphological changes of apoptotic cells were con fi rmed by Hoechst 33342/propidium iodide double staining. PC12 cells treated with Aβ25-35alone appeared to undergo cellular nuclear condensation, contraction and fragmentation, suggesting that Aβ25-35induced apoptosis in PC12 cells. The number of Hoechst 33342/propidium iodide positive cells was decreased upon pretreatment with 1 and 10 nmol/L DAPT (P < 0.05;Figure 1B, C). We also examined the expression of apoptotic proteins by western blot analysis. Caspase-3, caspase-8, and caspase-9 expression was significantly increased in PC12 cells in response to treatment with Aβ25-35(P < 0.05, Aβ25-35vs. control). However, the expression of these proteins significantly decreased in groups pretreated with 1 or 10 nmol/L DAPT (P < 0.05;Figure 2).

    Notch-1 signaling inhibitor attenuated oxidative stress in PC12 cells induced by Aβ25-35

    After PC12 cells were pretreated with Aβ25-35, the activity of superoxide dismutase and catalase in cells was signi fi cantly decreased, while the production of intracellular reactive oxygen species was signi fi cantly increased (P < 0.05). Furthermore, the activity of superoxide dismutase and catalase in cells was signi fi cantly increased after DAPT treatment, and the levels of reactive oxygen species were reduced (P < 0.05;Figure 3). Western blot analysis showed that Aβ25-35treatment increased the levels of Notch-1, nuclear factor kappa B, superoxide dismutase and catalase proteins in PC12 cells (P < 0.05). Notch-1 and nuclear factor kappa B expression was reduced, while superoxide dismutase and catalase protein levels were increased by treatment with 1-10 nmol/L of DAPT (P < 0.05;Figure 4).

    Discussion

    The PC12 cell line is usually used as a cellular model to study neurodegenerative diseases (Vaudry et al., 2002; Yan et al., 2013). Previous studies have shown that Aβ25-35not only induced cytotoxicity, but also elicited excessive reactive oxygen species production, apoptosis and cell death in PC12 cells (Xiao et al., 2002; Ge et al., 2008; Chen et al., 2013; Dimitrov et al., 2013; Grimm et al., 2013; Prox et al., 2013). However, to date, the role of Notch signaling in the regulation of apoptosis induced by Aβ25-35remains unknown. Therefore, the present study explored whether DAPT has a protective role against Aβ25-35-induced apoptosis in PC12 cells. This study showed that PC12 cells treated with Aβ25-35underwent apoptotic cell death in accordance with previous studies. A signi fi cant cytotoxic effect of Aβ25-35on PC12 cells was detected by MTT assay and Hoechst 33342/propidium iodide double staining. Apoptosis induced by Aβ25-35was con fi rmed to be the activation of caspase-3 and high levels of caspase-8 and caspase-9. We also demonstrated that the cytotoxicity of Aβ25-35was associated with oxidative stress. The level of intracellular reactive oxygen species in PC12 cells increased and the activities of superoxide dismutase and catalase decreased when PC12 cells were treated with Aβ25-35.

    Notch signaling is an important pathway that is widely expressed in many tissues (Hansson et al., 2004; Lasky and Wu, 2005; Bonini et al., 2013; Newman et al., 2014). Recent research demonstrated that Notch is highly expressed and has high activity in the brain, particularly in Alzheimer’s disease patients, suggesting Notch signaling might play an important role in neuron development (Redmond and Ghosh, 2001; Gaiano and Fishell, 2002; Woo et al., 2009; Dimitrov et al., 2013; Shen, 2013; Singh et al., 2013). Studies also demonstrated that overexpression of Notch and exogenous Notch had a role in neuronal cell protection to oxidative and ischemic insults, and exogenous Notch reduced blood-brain barrier permeability and preserved tissue against injury (Deane and Zlokovic, 2007; Li et al., 2013; McKee et al., 2013). However, the molecular mechanisms by which Notch is involved in neuronal impairment remain unclear. We speculated that a Notch inhibitor might have a protective role in the neurodegenerative process in diseases such as Alzheimer’s disease by decreasing the oxidative stress induced by Aβ.

    Previous research suggested that Notch signaling was involved in the regulation of cell apoptosis through the nuclear factor kappa B signaling pathway (Wang et al., 2008; Abdallah and Kassem, 2012; Xie et al., 2012; García-Escudero et al., 2013). Many studies have shown that Aβ-induced neurotoxicity is mediated by free radicals in vitro (Butter fi eld et al., 2001; Cai et al., 2011; Alberi et al., 2013). Consistent with these fi ndings, results con fi rmed that Aβ stimulated reactive oxygen species production associated with nuclear factor kappa B signaling pathway. Furthermore, Aβ25-35treatment decreased survival and increased apoptosis of PC12 cells associated with reactive oxygen species overproduction. However, the effects were reversed signi fi cantly when PC12 cells were pretreated with DAPT before the addition of Aβ25-35. In addition, elevated reactive oxygen species levels by Aβ25-35were decreased after treatment with DAPT.

    To explore the molecular mechanism of Notch involvement in protection of PC12 cells against apoptosis induced by Aβ25-35, the generation of reactive oxygen species was detected. Administration of a Notch inhibitor reduced reactive oxygen species production by elevating superoxide dismutase and catalase levels. The expression of activated caspase-3 was signi fi cantly increased, indicating apoptosis initiation. Administration of the Notch inhibitor also signi fi cantly decreased theAβ-induced expression of activated caspase-3, suggesting it exerts protective effects against Aβ25-35-induced apoptosis.

    Figure 1 Effect of Notch-1 signaling on PC12 cell viability, apoptosis, and morphology induced by amyloid beta-peptide (25-35) (Aβ25-35) treatment.

    Figure 2 Role of Notch-1 signaling on the expression of apoptotic proteins after amyloid beta-peptide (25-35) (Aβ25-35) treatment.

    In summary, the present study demonstrated that Notch signaling is involved in the regulation of PC12 cell apoptosis induced by Aβ treatment. The use of Notch inhibitors might be useful in cellular defense against oxidative stress during the neurodegenerative process in Alzheimer’s disease.

    Author contributions:Liang HM and Lou JY designed the study and wrote the paper. Liang HM, Zhang YZ and Shi XY performed the experiments and data analysis. All authors approved the final version of the manuscript.

    Con fl icts of interest:None declared.

    Abdallah BM, Kassem M (2012) New factors controlling the balance between osteoblastogenesis and adipogenesis. Bone 50:540-545.

    Ahmed MM, Dhanasekaran AR, Block A, Tong S, Costa AC, Gardiner KJ (2014) Protein pro fi les associated with context fear conditioning and their modulation by memantine. Mol Cell Proteomics 13:919-937.

    Albensi BC, Mattson MP (2000) Evidence for the involvement of TNF and NF-κB in hippocampal synaptic plasticity. Synapse 35:151-159.

    Figure 3 Role of Notch-1 signaling on oxidative stress in PC12 cells after amyloid beta-peptide (25-35) (Aβ25-35) treatment.

    Figure 4Role of Notch-1 signaling on cellular redox regulation after amyloid beta-peptide (25-35) (Aβ25-35) treatment.

    Alberi L, Hoey SE, Brai E, Scotti AL, Marathe S (2013) Notch signaling in the brain: in good and bad times. Ageing Res Rev 12:801-814.

    Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276-287.

    Berezovska O, Frosch M, McLean P, Knowles R, Koo E, Kang D, Shen J, Lu FM, Lux SE, Tonegawa S, Hyman BT (1999) The Alzheimer-related gene presenilin 1 facilitates notch 1 in primary mammalian neurons. Brain Res Mol Brain Res 69:273-280.

    Bonini SA, Ferrari-Toninelli G, Montinaro M, Memo M (2013) Notch signalling in adult neurons: a potential target for microtubule stabilization. Ther Adv Neurol Disord 6:375-385.

    Butter fi eld DA, Drake J, Pocernich C, Castegna A (2001) Evidence of oxidative damage in Alzheimer’s disease brain: central role for amyloid β-peptide. Trends Mol Med 7:548-554.

    Cai Z, Zhao B, Ratka A (2011) Oxidative stress and β-amyloid protein in Alzheimer’s disease. Neuromolecular Med 13:223-250.

    Chen DL, Zhang P, Lin L, Shuai O, Zhang HM, Liu SH, Wang JY (2013) Protective e ff ect of bajijiasu against β-amyloid-induced neurotoxicity in PC12 cells. Cell Mol Neurobiol 33:837-850.

    Crump CJ, Johnson DS, Li YM (2013) Development and mechanism of γ-secretase modulators for Alzheimer’s disease. Biochemistry 52:3197-3216.

    Deane R, Zlokovic BV (2007) Role of the blood-brain barrier in the pathogenesis of Alzheimers disease. Curr Alzheimer Res 4:191-197.

    Dimitrov M, Alattia JR, Lemmin T, Lehal R, Fligier A, Houacine J, Hussain I, Radtke F, Dal Peraro M, Beher D, Fraering PC (2013) Alzheimer’s disease mutations in APP but not γ-secretase modulators a ff ect epsilon-cleavage-dependent AICD production. Nat Commun 4:2246.

    Drachman DA (2014) The amyloid hypothesis, time to move on: amyloid is the downstream result, not cause, of Alzheimer’s disease. Alzheimers Dement 10:372-380.

    Fuller SJ, Storey E, Li QX, Smith AI, Beyreuther K, Masters CL (1995) Intracellular production of beta A4 amyloid of Alzheimer’s disease:modulation by phosphoramidon and lack of coupling to the secretion of the amyloid precursor protein. Biochemistry 34:8091-8098.

    Gaiano N, Fishell G (2002) The role of notch in promoting glial and neural stem cell fates. Annu Rev Neurosci 25:471-490.

    García-Escudero V, Martín-Maestro P, Perry G, Avila J (2013) Deconstructing mitochondrial dysfunction in Alzheimer disease. Oxid Med Cell Longev 2013:162152.

    Ge J, Yu Y, Chui DH (2008) Protective e ff ect of Xylocoside G on Aβ25-35-induced neurotoxicity in PC12 cells. Zhongguo Yaoxue Zazhi 18:21-26.

    Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the puri fi cation and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120:885-890.

    Grimm MO, Mett J, Stahlmann CP, Haupenthal VJ, Zimmer VC, Hartmann T (2013) Neprilysin and Aβ clearance: impact of the APP intracellular domain in NEP regulation and implications in Alzheimer’s disease. Front Aging Neurosci 5:98.

    Hansson EM, Lendahl U, Chapman G (2004) Notch signaling in development and disease. Semin Cancer Biol 14:320-328.

    Hardy J (1997) Amyloid, the presenilins and Alzheimer’s disease. Trends Neurosci 20:154-159.

    Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256:184-185.

    Harper JA, Yuan JS, Tan JB, Visan I, Guidos CJ (2003) Notch signaling in development and disease. Clin Genet 64:461-472.

    Iversen LL, Mortishire-Smith RJ, Pollack SJ, Shearman MS (1995) The toxicity in vitro of beta-amyloid protein. Biochem J 311:1-16.

    Lasky JL, Wu H (2005) Notch signaling, brain development, and human disease. Pediatr Res 57:104R-109R.

    Levine H (1993) Thio fl avine T interaction with synthetic Alzheimer’s disease β-amyloid peptides: Detection of amyloid aggregation in solution. Protein Sci 2:404-410.

    Li Q, Yu S, Wu J, Zou Y, Zhao Y (2013) Sul fi redoxin-1 protects PC12 cells against oxidative stress induced by hydrogen peroxide. J Neurosci Res 91:861-870.

    Liao YF, Tang YC, Chang MY, Wang BJ, Hu MK (2014) Discovery of small molecular (d)-leucinamides as potent, Notch-sparing γ-secretase modulators. Eur J Med Chem 79:143-151.

    Marcus DL, Thomas C, Rodriguez C, Simberko ff K, Tsai JS, Strafaci JA, Freedman ML (1998) Increased peroxidation and reduced antioxidant enzyme activity in Alzheimer’s disease. Exp Neurol 150:40-44.

    McKee TD, Loureiro R, Dumin JA, Zarayskiy V, Tate B (2013) An improved cell-based method for determining the γ-secretase enzyme activity against both Notch and APP substrates. J Neurosci Methods 213:14-21.

    Mitani Y, Akashiba H, Saita K, Yarimizu J, Uchino H, Okabe M, Asai M, Yamasaki S, Nozawa T, Ishikawa N, Shitaka Y, Ni K, Matsuoka N (2014) Pharmacological characterization of the novel γ-secretase modulator AS2715348, a potential therapy for Alzheimer’s disease, in rodents and nonhuman primates. Neuropharmacology 79:412-419.

    Newman M, Wilson L, Verdile G, Lim A, Khan I, Nik SHM, Pursglove S, Chapman G, Martins RN, Lardelli M (2014) Di ff erential, dominant activation and inhibition of Notch signalling and APP cleavage by truncations of PSEN1 in human disease. Hum Mol Genet 23:602-617.

    Oikawa N, Goto M, Ikeda K, Taguchi R, Yanagisawa K (2012) The γ-secretase inhibitor DAPT increases the levels of gangliosides at neuritic terminals of di ff erentiating PC12 cells. Neurosci Lett 525:49-53.

    Pike CJ, Walencewicz-Wasserman AJ, Kosmoski J, Cribbs DH, Glabe CG, Cotman CW (1995) Structure-activity analyses of β-amyloid peptides: contributions of the β25-35region to aggregation and neurotoxicity. J Neurochem 64:253-265.

    Prox J, Bernreuther C, Altmeppen H, Grendel J, Glatzel M, D’Hooge R, Stroobants S, Ahmed T, Balschun D, Willem M, Lammich S, Isbrandt D, Schweizer M, Horré K, De Strooper B, Saftig P (2013) Postnatal disruption of the disintegrin/metalloproteinase ADAM10 in brain causes epileptic seizures, learning de fi cits, altered spine morphology, and defective synaptic functions. J Neurosci 33:12915-12928.

    Redmond L, Ghosh A (2001) The role of Notch and Rho GTPase signaling in the control of dendritic development. Curr Opin Neurobiol 11:111-117.

    Selkoe DJ (1991) The molecular pathology of Alzheimer’s disease. Neuron 6:487-498.

    Selkoe DJ (1994) Normal and abnormal biology of the beta-amyloid precursor protein. Annu Rev Neurosci 17:489-517.

    Selkoe DJ (2001) Presenilin, Notch, and the genesis and treatment of Alzheimer’s disease. Proc Natl Acad Sci U S A 98:11039-11041.

    Shearman MS, Ragan CI, Iversen LL (1994) Inhibition of PC12 cell redox activity is a speci fi c, early indicator of the mechanism of beta-amyloid-mediated cell death. Proc Natl Acad Sci U S A 91:1470-1474.

    Shen J (2013) Function and dysfunction of presenilin. Neurodegener Dis 13:61-63.

    Singh A, Zapata MC, Choi YS, Yoon SO (2013) GSI promotes vincristine-induced apoptosis by enhancing multi-polar spindle formation. Cell Cycle 13:157-166.

    Sisodia SS, St George-Hyslop PH (2002) gamma-Secretase, Notch, Abeta and Alzheimer’s disease: where do the presenilins fi t in? Nat Rev Neurosci 3:281-290.

    Terzi E, Hoelzemann G, Seelig J (1994) Reversible random coil-betasheet transition of the Alzheimer beta-amyloid fragment (25-35). Biochemistry 33:1345-1350.

    Tomita T (2011) Development of Alzheimer’s disease treatment based on the molecular mechanism of γ-secretase activity. Rinsho Shinkeigaku 52:1165-1167.

    Vaudry D, Stork PJ, Lazarovici P, Eiden LE (2002) Signaling pathways for PC12 cell differentiation: making the right connections. Science 296:1648-1649.

    Wagner SL, Zhang C, Cheng S, Nguyen P, Zhang X, Rynearson KD, Wang R, Li Y, Sisodia SS, Mobley WC, Tanzi RE (2014) Soluble γ-secretase modulators selectively inhibit the production of the 42-amino acid amyloid β peptide variant and augment the production of multiple carboxy-truncated amyloid β species. Biochemistry 53:702-713.

    Wang Y, Chan SL, Miele L, Yao PJ, Mackes J, Ingram DK, Mattson MP, Furukawa K (2004) Involvement of Notch signaling in hippocampal synaptic plasticity. Proc Natl Acad Sci U S A 101:9458-9462.

    Wang YL, Cai ZY, Luo Y, Gong JM (2008) In fl uence of edaravone on Notch1 and nuclear factor-kappaB in rats with cerebral ischemia/ reperfusion injury. Neural Regen Res 3:1342-1347.

    Woo HN, Park JS, Gwon A, Arumugam TV, Jo DG (2009) Alzheimer’s disease and Notch signaling. Biochem Biophys Res Commun 390:1093-1097.

    Xiao XQ, Zhang HY, Tang XC (2002) Huperzine A attenuates amyloid beta-peptide fragment 25-35-induced apoptosis in rat cortical neurons via inhibiting reactive oxygen species formation and caspase-3 activation. J Neurosci Res 67:30-36.

    Xiao YG, Wang W, Gong D, Mao ZF (2014) γ-Secretase inhibitor DAPT attenuates intimal hyperplasia of vein grafts by inhibition of Notch1 signaling. Lab Invest 94:654-662.

    Xie Z, Dong Y, Maeda U, Xia W, Tanzi RE (2012) RNAi-mediated knock-down of Dab and Numb attenuate Aβ levels via γ-secretase mediated APP processing. Transl Neurodegener 1:8.

    Yan FL, Han GL, Wu GJ (2013) Cytotoxic role of advanced glycation end-products in PC12 cells treated with β-amyloid peptide. Mol Med Rep 8:367-372.

    Yu G, Nishimura M, Arawaka S, Levitan D, Zhang L, Tandon A, Song YQ, Rogaeva E, Chen F, Kawarai T, Supala A, Levesque L, Yu H, Yang DS, Holmes E, Milman P, Liang Y, Zhang DM, Xu DH, Sato C, et al. (2000) Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and betaAPP processing. Nature 407:48-54.

    Copyedited by Croxford L, Norman C, Yu J, Yang Y, Li CH, Song LP, Zhao M

    10.4103/1673-5374.137577

    Jiyu Lou, Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, Henan Province, China, zzuljy12856@126.com. Huimin Liang, M.D., Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, Henan Province, China; Huaihe Hospital of Henan University, Kaifeng 475000, Henan

    Province, China, luciasyl@163.com.

    http://www.nrronline.org/

    Accepted: 2014-05-19

    制服人妻中文乱码| 十八禁人妻一区二区| 亚洲精品美女久久av网站| 国产一区二区三区综合在线观看| 91麻豆精品激情在线观看国产 | 黄频高清免费视频| 热99re8久久精品国产| 两性夫妻黄色片| 真人一进一出gif抽搐免费| 麻豆国产av国片精品| 午夜精品在线福利| 交换朋友夫妻互换小说| 国产精品久久视频播放| 又大又爽又粗| 午夜福利在线观看吧| 这个男人来自地球电影免费观看| 最近最新免费中文字幕在线| 久久精品91无色码中文字幕| 这个男人来自地球电影免费观看| 高清毛片免费观看视频网站 | 成人国语在线视频| 99久久综合精品五月天人人| 天堂影院成人在线观看| 亚洲男人的天堂狠狠| 伦理电影免费视频| 久久热在线av| 国产99久久九九免费精品| 中文字幕av电影在线播放| 国产99久久九九免费精品| 亚洲国产欧美网| 久久精品亚洲熟妇少妇任你| 国产乱人伦免费视频| 午夜激情av网站| 亚洲欧美激情在线| 亚洲国产欧美日韩在线播放| 不卡一级毛片| 韩国精品一区二区三区| 美女大奶头视频| av视频免费观看在线观看| 1024香蕉在线观看| 久久精品影院6| 亚洲人成77777在线视频| 日本免费a在线| 亚洲欧美一区二区三区黑人| a级毛片在线看网站| 国产精品成人在线| 视频区图区小说| 成人亚洲精品av一区二区 | 国产成人系列免费观看| 国产xxxxx性猛交| 两个人免费观看高清视频| 日本精品一区二区三区蜜桃| 亚洲精品国产精品久久久不卡| 视频区欧美日本亚洲| 天堂动漫精品| 精品久久久久久久毛片微露脸| 五月开心婷婷网| 啦啦啦 在线观看视频| 一个人免费在线观看的高清视频| 黄色视频不卡| 90打野战视频偷拍视频| 淫秽高清视频在线观看| 午夜亚洲福利在线播放| 亚洲七黄色美女视频| 最近最新中文字幕大全免费视频| 亚洲七黄色美女视频| 老鸭窝网址在线观看| 交换朋友夫妻互换小说| 久久久久国内视频| 男人的好看免费观看在线视频 | 久久久久久久久久久久大奶| 欧美日韩视频精品一区| 久久久国产成人免费| 国产成人av教育| 别揉我奶头~嗯~啊~动态视频| 亚洲欧美激情综合另类| svipshipincom国产片| 这个男人来自地球电影免费观看| 日韩大码丰满熟妇| 午夜精品久久久久久毛片777| 老司机午夜十八禁免费视频| 女人精品久久久久毛片| 欧美成人免费av一区二区三区| 国产人伦9x9x在线观看| 一本综合久久免费| 欧美日韩av久久| 一级a爱视频在线免费观看| 国产一区二区三区视频了| 自线自在国产av| 国产成人系列免费观看| 亚洲成人国产一区在线观看| 天堂动漫精品| 久久人妻福利社区极品人妻图片| 中亚洲国语对白在线视频| 欧美色视频一区免费| 国产精品亚洲av一区麻豆| 国产精品永久免费网站| 日日夜夜操网爽| 亚洲欧美一区二区三区久久| 99久久99久久久精品蜜桃| 亚洲国产精品合色在线| 国产99白浆流出| 久久婷婷成人综合色麻豆| av天堂在线播放| 日韩精品免费视频一区二区三区| 国产蜜桃级精品一区二区三区| 国产免费av片在线观看野外av| 亚洲精品粉嫩美女一区| 亚洲九九香蕉| 99国产精品一区二区蜜桃av| 国产av又大| √禁漫天堂资源中文www| 咕卡用的链子| 麻豆成人av在线观看| 亚洲伊人色综图| 精品国产美女av久久久久小说| 亚洲狠狠婷婷综合久久图片| 嫁个100分男人电影在线观看| 很黄的视频免费| 在线播放国产精品三级| 日韩大尺度精品在线看网址 | 亚洲国产精品合色在线| 国产成人欧美| 涩涩av久久男人的天堂| 深夜精品福利| 久久久久久久精品吃奶| 热99re8久久精品国产| 多毛熟女@视频| 黑人操中国人逼视频| 一级a爱视频在线免费观看| 999久久久国产精品视频| 久久久久亚洲av毛片大全| 少妇被粗大的猛进出69影院| 美女高潮到喷水免费观看| 国产精品久久视频播放| 狂野欧美激情性xxxx| 国产日韩一区二区三区精品不卡| 超碰成人久久| 每晚都被弄得嗷嗷叫到高潮| 久久精品aⅴ一区二区三区四区| 亚洲人成77777在线视频| 香蕉国产在线看| 精品久久蜜臀av无| 99国产精品99久久久久| 欧美日韩av久久| 久久久国产欧美日韩av| 日韩欧美三级三区| 亚洲精品中文字幕一二三四区| 国产成人一区二区三区免费视频网站| 校园春色视频在线观看| 色综合婷婷激情| 妹子高潮喷水视频| 男人舔女人下体高潮全视频| 长腿黑丝高跟| 男女下面插进去视频免费观看| 亚洲人成电影免费在线| 黑人猛操日本美女一级片| 亚洲专区字幕在线| 久久久久久人人人人人| 欧美黑人精品巨大| 久久中文字幕一级| 午夜精品久久久久久毛片777| 亚洲第一欧美日韩一区二区三区| 日日摸夜夜添夜夜添小说| 亚洲精品成人av观看孕妇| 久久人人精品亚洲av| 亚洲男人天堂网一区| 亚洲一码二码三码区别大吗| 日本wwww免费看| 淫妇啪啪啪对白视频| 老司机在亚洲福利影院| 亚洲欧美日韩无卡精品| 国产欧美日韩精品亚洲av| 亚洲aⅴ乱码一区二区在线播放 | 欧美日韩亚洲国产一区二区在线观看| 99国产精品99久久久久| 国产亚洲精品久久久久久毛片| 亚洲自拍偷在线| 国产午夜精品久久久久久| 母亲3免费完整高清在线观看| 极品人妻少妇av视频| 亚洲精品久久午夜乱码| 国产精品免费视频内射| 丁香欧美五月| 国产精品自产拍在线观看55亚洲| a在线观看视频网站| 中文字幕色久视频| 精品国产乱子伦一区二区三区| 午夜91福利影院| 亚洲全国av大片| 亚洲男人天堂网一区| 一个人观看的视频www高清免费观看 | 91av网站免费观看| 久久性视频一级片| 亚洲欧美精品综合久久99| 亚洲av片天天在线观看| 亚洲 欧美 日韩 在线 免费| 啦啦啦免费观看视频1| 天天添夜夜摸| 久久这里只有精品19| 一级毛片女人18水好多| 美女国产高潮福利片在线看| 99国产极品粉嫩在线观看| 在线天堂中文资源库| 在线观看午夜福利视频| 首页视频小说图片口味搜索| av国产精品久久久久影院| 身体一侧抽搐| 午夜福利,免费看| 日日干狠狠操夜夜爽| 亚洲成a人片在线一区二区| 一级毛片女人18水好多| 国产亚洲精品久久久久久毛片| 精品一品国产午夜福利视频| 中文字幕另类日韩欧美亚洲嫩草| 无人区码免费观看不卡| 人人澡人人妻人| 免费高清在线观看日韩| 免费观看人在逋| 国产麻豆69| 日日摸夜夜添夜夜添小说| 动漫黄色视频在线观看| 在线观看一区二区三区| 久久99一区二区三区| aaaaa片日本免费| 国产激情欧美一区二区| 夜夜看夜夜爽夜夜摸 | 在线看a的网站| 性欧美人与动物交配| 99国产精品99久久久久| 精品一区二区三区视频在线观看免费 | 一级a爱视频在线免费观看| 丰满饥渴人妻一区二区三| 波多野结衣高清无吗| 久热这里只有精品99| 亚洲精品国产精品久久久不卡| 视频区欧美日本亚洲| 高清黄色对白视频在线免费看| 这个男人来自地球电影免费观看| 人人妻人人澡人人看| 伦理电影免费视频| 香蕉久久夜色| 老汉色∧v一级毛片| 国产xxxxx性猛交| 日韩三级视频一区二区三区| 国产精品久久久久久人妻精品电影| 日本wwww免费看| 中文字幕精品免费在线观看视频| 无遮挡黄片免费观看| 黄色视频,在线免费观看| 很黄的视频免费| 99久久99久久久精品蜜桃| 亚洲伊人色综图| 久久精品人人爽人人爽视色| 后天国语完整版免费观看| av国产精品久久久久影院| 一进一出抽搐gif免费好疼 | 黄色怎么调成土黄色| 久久婷婷成人综合色麻豆| 视频区欧美日本亚洲| 精品一区二区三区四区五区乱码| 免费在线观看日本一区| 悠悠久久av| 亚洲精品粉嫩美女一区| 亚洲人成电影免费在线| 真人做人爱边吃奶动态| 亚洲全国av大片| 国产精品爽爽va在线观看网站 | 亚洲成人久久性| 老汉色av国产亚洲站长工具| 91国产中文字幕| 我的亚洲天堂| 成人av一区二区三区在线看| 女生性感内裤真人,穿戴方法视频| 麻豆国产av国片精品| 亚洲色图综合在线观看| 男人舔女人的私密视频| 黄色视频不卡| 99久久精品国产亚洲精品| 精品久久久精品久久久| 91成人精品电影| 叶爱在线成人免费视频播放| 狂野欧美激情性xxxx| 亚洲精品一卡2卡三卡4卡5卡| 日韩欧美一区二区三区在线观看| 这个男人来自地球电影免费观看| 久久国产精品人妻蜜桃| 精品一区二区三区视频在线观看免费 | www.999成人在线观看| 别揉我奶头~嗯~啊~动态视频| 国产亚洲精品综合一区在线观看 | www.999成人在线观看| 久9热在线精品视频| 99久久99久久久精品蜜桃| 国产精品香港三级国产av潘金莲| 国产精品久久视频播放| 国产高清国产精品国产三级| 国产无遮挡羞羞视频在线观看| 久久精品人人爽人人爽视色| 亚洲成国产人片在线观看| 国产精品99久久99久久久不卡| 亚洲,欧美精品.| 久久人妻福利社区极品人妻图片| 久久草成人影院| 亚洲国产精品合色在线| 婷婷六月久久综合丁香| 成人手机av| 真人做人爱边吃奶动态| 色在线成人网| 日韩av在线大香蕉| 级片在线观看| 久久欧美精品欧美久久欧美| 99精国产麻豆久久婷婷| 精品日产1卡2卡| 少妇 在线观看| 中文字幕人妻丝袜一区二区| 精品熟女少妇八av免费久了| 看黄色毛片网站| 久久国产精品男人的天堂亚洲| 国产成人影院久久av| 精品国产乱子伦一区二区三区| 韩国精品一区二区三区| 久久人妻熟女aⅴ| 亚洲国产中文字幕在线视频| 国产精品亚洲一级av第二区| 人人妻人人爽人人添夜夜欢视频| 麻豆国产av国片精品| 国产亚洲精品综合一区在线观看 | 国产三级黄色录像| 97超级碰碰碰精品色视频在线观看| 一本大道久久a久久精品| 一a级毛片在线观看| 欧美色视频一区免费| 麻豆一二三区av精品| 波多野结衣av一区二区av| 欧美在线一区亚洲| 正在播放国产对白刺激| 少妇粗大呻吟视频| 久久中文字幕一级| 一级片'在线观看视频| 亚洲精品中文字幕在线视频| 免费高清视频大片| 日本wwww免费看| a级毛片黄视频| 中文字幕人妻丝袜一区二区| 亚洲成a人片在线一区二区| 亚洲午夜精品一区,二区,三区| 日本精品一区二区三区蜜桃| 精品久久久久久电影网| 亚洲一区中文字幕在线| 宅男免费午夜| 18禁黄网站禁片午夜丰满| 好看av亚洲va欧美ⅴa在| 国产欧美日韩一区二区三| 欧美日韩福利视频一区二区| 国产亚洲精品综合一区在线观看 | 精品国产美女av久久久久小说| 欧美日韩一级在线毛片| 久久精品亚洲精品国产色婷小说| 国产精品国产av在线观看| 国产精品美女特级片免费视频播放器 | 男女做爰动态图高潮gif福利片 | 亚洲精品美女久久av网站| 两人在一起打扑克的视频| 亚洲精品一卡2卡三卡4卡5卡| 亚洲av成人av| 99久久国产精品久久久| 国产精品国产高清国产av| 欧美午夜高清在线| 欧美色视频一区免费| 欧美乱色亚洲激情| 男女做爰动态图高潮gif福利片 | 俄罗斯特黄特色一大片| 黑人猛操日本美女一级片| 午夜视频精品福利| 日本a在线网址| xxxhd国产人妻xxx| 天天影视国产精品| 男人操女人黄网站| av电影中文网址| 国产高清激情床上av| 在线观看免费午夜福利视频| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲一区二区三区色噜噜 | 老司机午夜十八禁免费视频| 激情在线观看视频在线高清| 国产成年人精品一区二区 | 91成人精品电影| 丝袜人妻中文字幕| 国产成人精品久久二区二区免费| 亚洲国产看品久久| 后天国语完整版免费观看| 欧美 亚洲 国产 日韩一| 国产成年人精品一区二区 | 亚洲av成人不卡在线观看播放网| 女性生殖器流出的白浆| 久久久久国产一级毛片高清牌| 精品国产亚洲在线| 免费观看人在逋| 国产在线精品亚洲第一网站| av天堂在线播放| 国产精品偷伦视频观看了| 久久精品亚洲精品国产色婷小说| 亚洲成人国产一区在线观看| 操出白浆在线播放| 欧美不卡视频在线免费观看 | 人成视频在线观看免费观看| 可以在线观看毛片的网站| 国产成人系列免费观看| 真人一进一出gif抽搐免费| 不卡av一区二区三区| 亚洲熟妇中文字幕五十中出 | 亚洲精品一区av在线观看| 国产成人影院久久av| 亚洲午夜理论影院| 亚洲男人天堂网一区| 成熟少妇高潮喷水视频| 亚洲av成人不卡在线观看播放网| 最近最新免费中文字幕在线| 精品高清国产在线一区| 国产一卡二卡三卡精品| 亚洲欧美精品综合久久99| 日本免费一区二区三区高清不卡 | 久久午夜亚洲精品久久| 国产免费男女视频| 国产一区二区在线av高清观看| 亚洲男人的天堂狠狠| 99久久人妻综合| 午夜精品在线福利| 欧美精品啪啪一区二区三区| 亚洲av美国av| av网站在线播放免费| 神马国产精品三级电影在线观看 | 成人国语在线视频| 欧美日韩黄片免| 日韩av在线大香蕉| 精品久久久精品久久久| 日本黄色日本黄色录像| 精品久久久久久成人av| 日韩精品青青久久久久久| 欧美乱妇无乱码| 九色亚洲精品在线播放| 国产有黄有色有爽视频| 一级毛片高清免费大全| 99精品在免费线老司机午夜| 亚洲精品中文字幕在线视频| av网站免费在线观看视频| 好看av亚洲va欧美ⅴa在| 美女高潮到喷水免费观看| 国产人伦9x9x在线观看| 国产在线观看jvid| 亚洲人成伊人成综合网2020| 免费在线观看影片大全网站| 免费看十八禁软件| 亚洲国产精品合色在线| 黄色视频,在线免费观看| 国产99久久九九免费精品| 成人亚洲精品av一区二区 | 久久天躁狠狠躁夜夜2o2o| 9191精品国产免费久久| 美女高潮到喷水免费观看| 中文字幕最新亚洲高清| 在线观看一区二区三区激情| 女警被强在线播放| 亚洲精品成人av观看孕妇| 人成视频在线观看免费观看| 日韩免费高清中文字幕av| 视频区欧美日本亚洲| 两个人看的免费小视频| 精品一品国产午夜福利视频| 国产单亲对白刺激| 亚洲伊人色综图| 一区在线观看完整版| 亚洲熟女毛片儿| 免费看十八禁软件| 欧美日韩精品网址| 亚洲七黄色美女视频| 91九色精品人成在线观看| 99在线人妻在线中文字幕| 久久人人爽av亚洲精品天堂| 国产av一区二区精品久久| 一级片'在线观看视频| 亚洲精品一区av在线观看| 久99久视频精品免费| 不卡一级毛片| 日韩人妻精品一区2区三区| 热99国产精品久久久久久7| av在线天堂中文字幕 | 嫩草影视91久久| 99香蕉大伊视频| 黄色 视频免费看| 欧美乱妇无乱码| 亚洲精品成人av观看孕妇| 国产成人精品无人区| 中文字幕精品免费在线观看视频| 成人亚洲精品一区在线观看| 国产精品电影一区二区三区| 中文字幕人妻丝袜一区二区| 国产高清国产精品国产三级| 国产免费av片在线观看野外av| 国产激情久久老熟女| 巨乳人妻的诱惑在线观看| 日本vs欧美在线观看视频| 99久久人妻综合| 久久这里只有精品19| 亚洲伊人色综图| 美女 人体艺术 gogo| 精品电影一区二区在线| 麻豆国产av国片精品| 免费在线观看影片大全网站| 如日韩欧美国产精品一区二区三区| 亚洲三区欧美一区| a级毛片在线看网站| 美女国产高潮福利片在线看| 91av网站免费观看| 国产伦一二天堂av在线观看| 午夜福利在线免费观看网站| 真人做人爱边吃奶动态| 久久精品影院6| 我的亚洲天堂| 88av欧美| 高潮久久久久久久久久久不卡| 18禁国产床啪视频网站| 最新美女视频免费是黄的| 在线免费观看的www视频| 国产日韩一区二区三区精品不卡| 丰满的人妻完整版| √禁漫天堂资源中文www| 少妇被粗大的猛进出69影院| 成人影院久久| 黄色女人牲交| svipshipincom国产片| 国产精品国产av在线观看| 国内久久婷婷六月综合欲色啪| 精品人妻在线不人妻| 男女高潮啪啪啪动态图| 一区二区日韩欧美中文字幕| 亚洲avbb在线观看| 国产主播在线观看一区二区| 国产精品永久免费网站| 在线永久观看黄色视频| 亚洲精品国产色婷婷电影| 国产高清激情床上av| 日本三级黄在线观看| 少妇被粗大的猛进出69影院| 黑人猛操日本美女一级片| 一进一出好大好爽视频| 中文字幕最新亚洲高清| 在线免费观看的www视频| 国产在线精品亚洲第一网站| 99国产精品免费福利视频| 亚洲 欧美一区二区三区| 久久久水蜜桃国产精品网| 日日摸夜夜添夜夜添小说| 国产一区二区在线av高清观看| 日日摸夜夜添夜夜添小说| 视频区欧美日本亚洲| 91九色精品人成在线观看| 香蕉丝袜av| 老司机深夜福利视频在线观看| 一夜夜www| 欧美日韩瑟瑟在线播放| 母亲3免费完整高清在线观看| 亚洲精品一卡2卡三卡4卡5卡| 久久精品成人免费网站| 日本黄色视频三级网站网址| 后天国语完整版免费观看| 久久久久久人人人人人| bbb黄色大片| 亚洲精品在线观看二区| 欧美丝袜亚洲另类 | 亚洲av第一区精品v没综合| 在线十欧美十亚洲十日本专区| 亚洲五月天丁香| 国产亚洲精品久久久久久毛片| 欧美成狂野欧美在线观看| 亚洲成人久久性| 免费在线观看亚洲国产| 欧美av亚洲av综合av国产av| 91麻豆av在线| 国产av一区二区精品久久| 最新美女视频免费是黄的| 亚洲精品美女久久久久99蜜臀| 在线观看免费高清a一片| 日韩视频一区二区在线观看| 美国免费a级毛片| 亚洲国产精品一区二区三区在线| 日韩国内少妇激情av| 最近最新免费中文字幕在线| 亚洲中文字幕日韩| 在线观看免费日韩欧美大片| 国产精品综合久久久久久久免费 | 国内毛片毛片毛片毛片毛片| 一本大道久久a久久精品| 99国产精品一区二区蜜桃av| 精品少妇一区二区三区视频日本电影| 成年人黄色毛片网站| 天天躁夜夜躁狠狠躁躁| 两人在一起打扑克的视频| 日韩 欧美 亚洲 中文字幕| 级片在线观看| 国产精品二区激情视频| 可以在线观看毛片的网站| 久久久精品欧美日韩精品| 国产成+人综合+亚洲专区| 亚洲欧美一区二区三区黑人| 97人妻天天添夜夜摸| 桃红色精品国产亚洲av| 午夜视频精品福利| 亚洲免费av在线视频| 国产高清激情床上av| 亚洲欧美日韩高清在线视频| 国产成人精品在线电影| 国产精品久久久久成人av| 最近最新免费中文字幕在线|