呂 磊 張忠培
?
多輸入多輸出廣播信道下基于有限反饋的最大輸出SINR線性天線合并算法
呂 磊*張忠培
(電子科技大學(xué)通信抗干擾國(guó)家級(jí)重點(diǎn)實(shí)驗(yàn)室 成都 611731)
在基于有限反饋的多天線MIMO廣播信道下,由信道量化誤差帶來(lái)的多用戶干擾(MUI)會(huì)嚴(yán)重地降低系統(tǒng)性能。天線合并技術(shù)可以利用多接收天線提供的多維自由度有效地改善系統(tǒng)性能。該文針對(duì)最近被證明為最優(yōu)的反饋資源分配策略,設(shè)計(jì)了一種線性天線合并算法,該算法在提高反饋精度和增強(qiáng)期望信號(hào)增益之間做出合理的折中,可使期望輸出信噪干擾比(SINR)最大化。首先導(dǎo)出了線性合并器期望輸出SINR的下界閉合表達(dá)式,然后利用這個(gè)表達(dá)式得到使輸出SINR最大化的線性合并器。仿真表明該線性合并算法與已有算法相比具有明顯的性能提升。
多輸入多輸出;線性天線合并器;最大信噪干擾比;迫零波束形成;有限反饋
在實(shí)際商用的閉環(huán)MIMO系統(tǒng)中,用來(lái)進(jìn)行用戶信道信息反饋的上行信道資源往往是固定有限的,而把這些固定的反饋資源分配給大量用戶來(lái)獲得多用戶分集增益還是分配給少量用戶來(lái)獲得更高的反饋精度是兩種不同的反饋資源分配策略。最近有文獻(xiàn)研究表明,即使對(duì)一個(gè)有大量用戶存在的MIMO廣播系統(tǒng)來(lái)說(shuō),把固定的反饋資源分配給少量用戶以提高反饋精度是更好的反饋資源分配策略[17]?;谶@樣一個(gè)少量用戶反饋的應(yīng)用場(chǎng)景,本文提出了一種以最大化合并輸出SINR為目標(biāo)的天線合并算法。雖然本文提出的線性合并器的設(shè)計(jì)目標(biāo)也是最大化SINR,但是與現(xiàn)有方案的區(qū)別主要體現(xiàn)在兩個(gè)方面:第一,本文提出的線性合并器是基于有限反饋設(shè)計(jì)的;第二,由于本文提出的線性合并器不依賴用戶調(diào)度,所以在設(shè)計(jì)的過(guò)程中考慮了不同用戶量化信道的非正交性帶來(lái)的額外的MUI。首先,分析給出了線性天線合并器輸出SINR期望值的下界閉合表達(dá)式;然后,利用這個(gè)表達(dá)式得到了最大化合并輸出SINR的天線合并算法。仿真表明本文提出的天線合并算法較現(xiàn)有的算法有明顯的性能提升,而且隨著反饋量或者接收天線數(shù)的增加,本文提出的天線合并算法會(huì)獲得更高的性能增益。
假設(shè)發(fā)射端使用迫零波束形成(ZFBF)[18]來(lái)消除MUI。首先發(fā)射端計(jì)算矩陣偽逆:
這里需要說(shuō)明的是,由于發(fā)射端獲得的信道信息是有量化誤差的,MUI無(wú)法被完全消除。
結(jié)合式(6),式(11),式(14)和詹森不等式,可以求得天線合并器輸出SINR期望值下界的閉式解:
且
而根據(jù)式(15),其合并后SINR期望值的估計(jì)下界為
利用式(19),可以計(jì)算天線合并后整個(gè)系統(tǒng)的容量:
在有限反饋閉環(huán)MIMO廣播信道中,將有限的反饋資源分配給少量的用戶被證明是一種更優(yōu)的反饋資源分配策略。本文結(jié)合這種反饋資源分配策略,設(shè)計(jì)了一種接收端天線合并算法。該天線合并算法以最大化輸出SINR為設(shè)計(jì)目標(biāo),使得天線合并器能夠在提高期望信號(hào)強(qiáng)度和提高信道量化精度之間做出合理的折中。蒙特卡洛仿真表明,本文提出的天線合并算法較現(xiàn)有的算法有明顯的性能提升,并且其性能優(yōu)勢(shì)隨著反饋量或者接收天線數(shù)的增加而變大。
圖1 MSLC算法下天線合并器輸出平均SINR的仿真結(jié)果
圖2 不同SNR下MSLC與現(xiàn)有天線合并算法的性能比較
圖3 不同反饋量下MSLC與現(xiàn)有天線合并算法的性能比較
[1] Choi H, Park S, LEE S,.. Distributed beamforming techniques for weighted sum-rate maximization in MISO interfering broadcast channels[J]., 2012, 11(4): 1314-1320.
[2] Park S, Park H, Kong H,.. New beamforming techniques based on virtual SINR maximization forcoordinated multi-cell transmission[J]., 2012, 11(3): 1034-1044.
[3] Yu S, Kong H, Kim Y,.. Novel feedback bit allocation methods for multi-cell joint processing systems[J]., 2012, 11(9): 3030-3036.
[4] Win W and Winters J H. Analysis of hybrid selection/ maximal-ratio combining in Rayleigh fading[J]., 1999, 47(12): 1773-1776.
[5] Winters J H, Salz J, and Gitlin R D. The impact of antenna diversity on the capacity of wireless communication systems [J]., 1994, 42(2/3/4): 1740-1751.
[6] Shah A and Haimovich A M. Performance analysis of optimum combining in wireless communications with Rayleigh fading and cochannel interference[J]., 1998, 46(4): 473-479.
[7] Mallik R K, Win M Z, Chiani M,.. Bit-error probability for optimum combining of binary signals in the presence of interference and noise[J]., 2004, 3(2): 395-407.
[8] Dao N D, Josep S G, Cepeda R,.. Design and evaluation of antenna selection method for interference rejection combining[J]., 2012, 11(8): 2751-2759.
[9] Gifford W M, Win M Z, and Chiani M. Antenna subset diversity with non-ideal channel estimation[J]., 2008, 7(5): 1527-1539.
[10] Conti A, Gifford W M, Win M Z,.. Optimized simple bounds for diversity systems[J]., 2009, 57(9): 2674-2685.
[11] Kristem V, Mehta N B, and Molisch A F. Optimal receive antenna selection in time-varying fading channels with practical training constraints[J]., 2010, 58(7): 2023-2034.
[12] Jindal N. Antenna combining for the MIMO downlink channel[J]., 2008, 7(10): 3834-3844.
[13] Trivellato M, Boccardi F, and Huang H. On transceiver design and channel quantization for downlink multiuser MIMO systems with limited feedback[J]., 2008, 26(8): 1494-1504.
[14] Hyukmin S, Seonghyun K, and Sanghoon L. A multi-user MIMO downlink receiver and quantizer design based on SINR optimization[J]., 2012, 60(2): 559-568.
[15] Desmond W H C,Tony Q S Q, and Chee W T. A unified analysis of max-min weighted SINR for MIMO downlink system[J]., 2011, 59(8): 3850-3862.
[16] Seok H, Kim S, and Lee S. A multi-user MIMO downlink receiver and quantizer design based on SINR optimization [J]., 2012, 60(2): 559-568.
[17] Ravindran N and Jindal N. Multi-user diversity vs. accurate channel state information in MIMO downlink channels[J]., 2012, 11(9): 3037-3046.
[18] Vishwanath S, Jindal N, and Goldsmith A. Duality, achievable rates, and sum-rate capacity of Gaussian MIMO broadcast channels[J]., 2003, 49(10): 2658-2668.
[19] Ramya B and Robert W H. Adaptive limited feedback for sum-rate maximizing beamforming in cooperative multicell systems[J]., 2011, 59(2): 800-811.
呂 磊: 男,1982年生,博士生,研究方向?yàn)镸IMO系統(tǒng)有限反饋預(yù)編碼技術(shù).
張忠培: 男,1967年生, 教授, 博士生導(dǎo)師,研究方向?yàn)橐苿?dòng)通信及抗干擾通信.
Limited Feedback-based Maximum SINR Linear AntennaCombiner for MIMO Broadcast Channels
Lü Lei Zhang Zhong-pei
(,,611731,)
MultiUser Interference (MUI) caused by channel quantization error degrades the performance of the limited feedback-based multiuser Multiple-Input Multiple-Output (MIMO) systems. Antenna combining techniques can effectively improve the system performance with the additional dimension of freedom. In this paper, a linear antenna combiner is proposed for the feedback overhead allocation strategy which is proved to be the optimal scheme. First, the closed-form lower bound of each user’s expected post-combining Signal-to-Interference- plus-Noise Ratio (SINR) is derived. Then, using this bound expression, the proposed combiner is obtained which aims to maximize the expected post-combining SINR. Monte Carlo simulations show that the proposed combiner achieves better performance compared with the existing antenna combining algorithms.
MIMO; Linear antenna combiner; Maximum SINR; Zero-forcing beamforming; Limited feedback
TN914
A
1009-5896(2014)06-1460-05
10.3724/SP.J.1146.2013.01307
呂磊 lvlei@uestc.edu.cn
2013-08-28收到,2013-11-22改回
國(guó)家科技重大專項(xiàng)(2012ZX03001027-003),國(guó)家自然科學(xué)基金(61101092)和中央高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金(ZYGX2010J010)資助課題