• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    3D Echo-Based Patient-Specific Computational Left Ventricle Models to Quantify Material Properties and Stress/Strain Differences between Ventricles with and without Infarct

    2014-05-11 02:51:54RuiFanDalinTangJingYaoChunYangandDiXu

    Rui FanDalin TangJing YaoChun Yang and Di Xu

    1 Introduction

    Medical images and computational modeling have been used more and more in cardiovascular research with the current trend to develop quantitative methods for personalized medicine[Desmond-Hellmann et al.(2011)].Accurate and reproducible evaluation of global and regional left ventricular(LV)function is of vital importance for the determination of diagnosis,prognosis,and therapeutic options of multiple cardiovascular diseases.Echocardiography is the main imaging modality for the assessment of left ventricular(LV)structure and function[Sabia et al.(1991);Emond et al.,(1994);Quinones et al.(2000);Moller et al.(2006);Thune et al.(2006)].However,in daily clinical practice echocardiographic evaluation of regional LV function is mainly performed by visual estimation on two-dimensional echocardiographic images,which is known to be subjective and not very reliable[Gopaletal.(1995);Mondelli etal.(2001)].In addition,itisbelieved thatmechanical forces play an important role in cardiovascular disease development.Quantitative image and mechanical stress/strain analysis may provide useful information for disease diagnosis and treatment recommendations[Tang et al.(2010a);Tang et al.(2010b)].

    In the past decade,echocardiographic imaging techniques for quantitatively evaluation of cardiac motion pattern were produced.Doppler tissue imaging,which permits direct interrogation of myocardial deformation,was first applied to assess regional wall deformation[Urheim et al.(2000);Edvardsen et al.(2002)].Nonetheless,owing to the use of the Doppler effect,angle dependency,noise artifacts,confounding of interpretation by tethering of adjacent myocardium and cardiac translational movements,and assessment being confined to myocardial segments that move along the direction of the ultrasound beam have limited its application[Sutherland et al.(2004)].Speckle tracking imaging(STI),which is based on tracking of speckle patterns created by interference of ultrasound beams in the myocardium,has been available to assess regional myocardial deformation.It is conceptually angle independent of the ultrasound beam,and can provide for measurement of 3 deformation components(longitudinal,circumferential,and radial)strain[Langeland et al.(2005);Amundsen et al.(2006);Reant et al.(2008)].However,the inherent limitation of this methodology is its 2D nature which limits its ability to track motion occurring within the imaging plane,while motion in and out of plane can only be detected as features appearing and disappearing from the image,resulting in noise and interfering with tracking[Seo et al.(2009);Y15].Recently,3D STI emerges as the newest technique which is conceptually more accurate in assessment of LV motion pattern by resolving the problem of out-of-plane.Nonetheless,the reproducibility and sensibility of 3D STI system commercially available still require are far from being acceptable.Therefore more accurate construct method is needed clinically.

    Recent advances in computational modeling,methods and computer technology have made it possible for computer-simulated procedures to be used in clinical decision-making process to replace empirical and often risky clinical experimentation to examine the efficiency and suitability of various reconstructive procedures in diseased hearts.Peskin pioneered heart modeling effort with his celebrated immersed boundary method[Peskin(1977);Peskin(1989)].Early MRI-based ventricle modelswere introduced by Axeland Saberet al.formechanicalanalysis and investigations[Axel(2002);Saber et al.(2001)]More recently,Hunter,McCulloch,Guccione,Kerckhoffs,Costa,and many other authors have made great contributions to passive and active ventricle modeling,including the Physiome Project and the Continuity package[McCulloch et al.(1992,2013);Kerckhoffs et al.(2007);Hunter et al.(2003);Nash and Hunter(2000);Costa et al.(1999);Guccione et al.(1993)].In our previous papers,patient-specific CMR-based computational RV/LV models with fluid-structure interactions were introduced to assess outcomes of various RV reconstruction techniques with different scar tissue trimming and patch sizes[Tang et al.(2008,2010a,2010b,2011)].A recent review can be found in Tang et al.(2010b).

    In this paper,echo-based 3D LV models were introduced to investigate morphological and mechanical stress/strain differences between ventricle with and without infarct.This will serve as a starting point to use computational models for infarct differentiation and surgical planning.

    2 Methods

    2.1 3D echo data acquisition

    Two subjects were chosen in our study.One is a healthy volunteer,male,58 years old.The other is a male patient,60 years old,who had an acute inferior myocardial infarction one week before echo image acquisition.Patient data are given in Table 1.

    Standard echocardiograms were obtained using an ultrasound machine(E9,GE Mechanical Systems,Milwaukee,Wisconsin)with a 3V probe.Patients were examined in the left lateral decubitus position,and images were acquired at end ex-piration in order to minimize global cardiac movement.Apical full-volume 4D acquisitions were obtained.Multi-slice function was activated which enables simultaneous display of equidistant nine short axis views generated from the apical full-volume 4D acquisition.Microsoft Visio(Microsoft Corporation)was used for tracing the endocardium and epicardium in each short axis view of LV and contours were used for model construction.Figures 1 and 2 show the echo images,segmented contours and re-constructed 3D LV geometries from the two patients.The location of infarction was defined as a decrease in or cessation of myocardial contractility,which was determined by two experienced observers through visualization of all LV wall segments.

    Table 1:Patient data and ventricle volume data.

    2.2 Two-layer anisotropic LV model construction with fiber orientations.

    The ventricle material was assumed to be hyperelastic,anisotropic,nearly-incompressible and homogeneous.Infarct tissue was assumed to be hyperelastic,isotropic,nearly-incompressible and homogeneous.The governing equations for the LV model were[Tang et al.,2010a,2010b]:

    whereσis the stress tensor,εis the strain tensor,v is displacement,andρis material density.The normal stress was assumed to be zero on the outer LV surface and equal to the pressure conditions imposed on the inner LV surface.Structureonly LV model was used to save model construction effort and computing time.This was adequate for our purpose in this paper to obtain LV stress/strain values for analysis.

    Figure 1:Echo image of a healthy volunteer,contour and re-constructed geometries.

    The nonlinear Mooney-Rivlin model was used to describe the nonlinear anisotropic and isotropic material properties.The strain energy function for the isotropic modified Mooney-Rivlin model is given by[Tang et al.(2008,2010a,2010b)]:

    C=[Cij]=XTXisthe rightCauchy-Green deformation tensor,X=[Xij]=[?xi/?aj],(xi)is the current position,(ai)is the original position,ciand Diare material parameters chosen to match experimentalmeasurements[Tang etal.(2010);Humphrey et al.(1990,2002);Novak et al.(1994)].The strain energy function for the anisotropic modified Mooney-Rivlin model anisotropic model was obtained by adding an additional anisotropic term in Eq.(3)[Tang et al.,(2008,2011)]:

    Figure 2:Echo image from a patient with infarct,segmented contours,recorded LV blood pressure profile,and re-constructed geometry.Infarct locations were marked by circles on the echo images.

    whereI4=Cij(nf)i(nf)j,Cijis the Cauchy-Green deformation tensor,nfis thefiber direction,K1and K2are material constants[19].A two-step least-squares method was used to determine the parameter values in Eq.(5)to fit the experimental data[McCulloch et al.(1992)].Choosing c1=0.351 kPa,c2=0,D1=0.0633 kPa,D2=5.3,K1=1.913 kPa,K2=6.00,it was shown in atng et al.(2011)that stress-strain curves derived from Eq.(5)agreed well with the stress-strain curves from the dog model given in McCulloch et al.(1992).Parameter values were then adjusted to fit echo-measured LV volume data.The stress-stretch curves and parameter values of the LV and infarct tissues are reported in next section.

    As patient-specific fiber orientation data was not available from these patients,we chose to construct a two-layer RV/LV model and set fiber orientation angles using fiber angles given in Hunter et al.(2003).Fiber orientation can be adjusted when patient-specific data becomes available[Sanchez-Quintana,Anderson and Ho,(1996)].Figure 3 shows ventricular fiber orientations on epicardium and endocardium layers from human and a pig hearts and fiber orientations marked on the two-layer LV model corresponding to end-systole and end-diastole conditions[Tang et al.,(2008,2010a,2010b,2011)].

    2.3 A pre-shrink process and geometry-fitting technique for mesh generation.

    Under thein vivocondition,the ventricles were pressurized and the zero-stress ventricular geometries were not known.In our model construction process,a preshrink process was applied to the in vivo end-systolic ventricular geometries to generate the starting shape(zero ventricle pressure)for the computational simulation.Figure 4 shows the no-load LV geometry obtained from the pre-shrink process and the LV geometries with end-systolic and end-diastolic pressure conditions applied,matching in vivo echo geometry data.The initial shrinkage for the short-axis and long-axis directions was 23%and 1%,respectively.Initial shrinkage was needed so that when the end-systolic pressure was applied,the ventricles would regain itsin vivomorphology.The short-axis shrinkage was larger because the ventricle expanded mostly in the short-axis direction.The outer surface of the ventricular shrinkage was determined by conservation of mass so that the total ventricular wall mass was conserved.Without this shrinking process,if we started from the in vivo end-systolic LV geometry,the ventricle would expand under pressure and its volume would be greater than the acquired in vivo end-systolic ventricle volume leading to large computational errors.The effect of the pre-shrink process will be further demonstrated in Section 3.

    A geometry-fitting mesh generation technique we developed in our previous studies was used to generate mesh for our models[Tang et al.,(2010a)].Using this technique,the 3D LV domain was divided into many small“volumes”to curve-fit the irregular ventricle geometry with the infarct tissue as an inclusion.Mesh analysis was performed by decreasing mesh size by 10%(in each dimension)until solution differences were less than 2%.The mesh was then chosen for our simulations.

    Figure 3:Modeling fiber orientation:(a)Fiber orientation from a pig model;(b)Fiber orientation from a human heart;(c)fiber orientation from our two-layer LV model,end-systolic;(d)end-diastolic condition.

    2.4 Solution methods and simulation procedures.

    The anisotropic LV computational models were constructed for the 2 patients and the models were solved by ADINA(ADINA R&D,Watertown,MA,USA)using unstructured finite elements and the Newton-Raphson iteration method.Material parameters were adjusted for each patient model to match Echo-measure LV volume data which served as our model validation.Stress/strain distributions were obtained for analysis.

    Figure 4:LV geometries corresponding to no-load,end-systolic and end-diastolic pressure condition.

    2.5 Ventricle wall thickness and curvature calculation,data for statistical analysis.

    Patients’end-diastolic LV geometries and stress/strain conditions were used for our comparative study to find out differences between the left ventricles with and without infarct.For each LV data set(P1:12 slices;P2:11 slices.Slices are short-axis cross sections),we divided each slice into 4 quarters,each quarter with equal inner wall circumferential length.Ventricle wall thickness,circumferential curvature(C-curvature),longitudinal curvature(L-curvature)and stress/strain were calculated at all nodal points(100 points/slice,25 points/quarter).Since stress and strain are tensors,the maximum principal stress and strain were used as the representative scalar values for stress and strain at each node,respectively.The “quarter”values of those parameters were obtained by taking averages of those quantities over the 25 points for each quarter and saved for analysis.The quarter values of those from the two patients were compared to see if there are any statistically significant differences.Student t-test was used to compare the data from the two patients.

    C-curvature(κc)at each point on an RV inner contour was calculated using:

    where the contour was a planar curve,x,y are treated as the function of arc,and the derivatives were evaluated using neighboring points on the contour.L-curvature(κ)at each point on an RV inner contour was calculated using:

    where the longitudinal curve is given by X=(x(t),y(t),z(t)),the derivatives were evaluated using points from neighboring slices vertically below and above the point being considered.

    3 Results

    3.1 Echo-based modeling to determine LV tissue material properties

    Human ventricle tissue material properties based on in vivo data are extremely hard to get.With patient-specific echo ventricle morphological data and the corresponding pressure conditions,we were able to determine parameter values in the Mooney-Rivlin models in Eq.(3)and(5).Using the fiber coordinates,the strain energy function takes the form(McCulloch):

    The parameter values for the two LVs considered are given in Table 2.Computational volume data matching echo-measured data were provided in Table 1 earlier.Figures 5 gives the stress-stretch ratio plots for the three sets of material curves.It should be noted that it was necessary to adjust the material parameters for the healthy LV to match the volume data,while only one set of material parameters was needed for the patient with infarct.To make the comparison easier,the leastsquares method was used to find the equivalent Young’s moduli(YM)for all the curves which are given in Table 2.Using the numbers corresponding to the enddiastole condition,the YM value for the fiber direction of LV2 was about 50%stiffer than that of LV1(108.9 kPa vs.77.8 kPa).Corresponding to end-systole condition,the YM value for the fiber direction of LV1 was about 100%stiffer than that of LV2(197.1 kPa vs.108.9 kPa).The variation of parameters of LV1 indicated that LV1 had more active contraction reflected by material stiffness variations.

    3.2 Impact of LV infarct on ventricle morphology and stress distributions.

    Comparison of LV quarterly-averaged wall thickness,circumferential and longitudinal curvature,stress and strain values are given in Table 3.Because stress and strain are tensors,maximum principal stress and strain were used as their scalar representatives in this paper.Among the 5 parameters,longitudinal curvature(L-curvature)and LV stress showed the largest differences.At end-systole,L-curvature from LV2 was 164%higher than that from LV1.LV stress from LV2 was 82%higher than that from LV1.At end-diastole,L-curvature from LV2 was still 132%higher than that from LV1,while LV stress from LV2 was only 9%higher than that from LV1 with p=0.0878.Differences in LV strain were controversial corresponding to end-diastole and end-systole conditions.Differences in wall thickness and circumferential curvature(C-curvature)were less meaningful.

    Figure 5:Stress-Stretch plots for the M1 and M2 Mooney-Rivlin models in fiber coordinates.Tff:stress in fiber direction;Tcc:stress in circumferential direction of the fiber.M1:model from the healthy ventricle.M2:ventricle with infarct.

    Figure 6:Stress/strain plots,M1:model for healthy LV,M2:model for LV with infarct.

    Figure 6 shows LV stress and strain plots from the two cases corresponding to both end-systole and end-diastole conditions.It is clear that the infarct caused higher stress and strain concentrations,especially at end-systole.

    Table 2:Material parameters.

    Table 3:Comparison of ventricle wall thickness,circumferential and longitudinal curvature,stress and strain from the two patients.Average quarter values were used in comparison.WT:wall thickness;C-cur:C-curvature;L-cur:L-curvature.

    3.3 Effect of infarct and pre-shrink on LV volume and stress/strain distributions.

    The LV with infarct was used to study the effect of infarct and pre-shrink on LV volume and stress/strain distributions.Model 3(M3)was made by changing the infarct tissue to normal tissue to see what differences it would cause.Model 4(M4)was made by using the end-systole in vivo geometry of LV2 as the no-load starting geometry of the model to observe the errors one might cause by not employing our pre-shrink technique.Figure 7 gives the volumes curves from M2,M3 and M4.The end-diastole volume of M3(154.77 ml)was 12.4%higher than that of M2(137.66),while the end-diastole volume of M4(231.08 ml)was 67.9%higher than that of M2.Figure 8 presents stress/strain plots from M3 and M4 corresponding to both end-systole and end-diastole conditions.Table 4 summarized the maximum stress/strain values of the 4 models corresponding to both end-systole and enddiastole conditions.

    Figure 7:Volume curves from three models.

    4 Discussion

    This may be the first effort to use echo-based computational modeling approach to investigate left ventricle mechanical stress/strain conditions and identify differences for ventricles with and without infarct.Ventricular morphological and mechanical conditions could serve as the basis for people to develop accurate and automatic methods to identify infarct area based on image data,which is of great clinical relevance.The method presented in this paper serves as the first step.With more patient data and more samples,identification of infarct area could be formulated as an inverse problem and solved numerically.This is closed tied to determination of local ventricle tissue material properties which will require tagging techniques when LV images were acquired.

    Model limitations include the following:a)ventricle valve mechanics was not included.Valve mechanicsplays an importantrole.However,including itwillrequire considerable more data and modeling effort;b)fluid-structure interaction was not included;c)local ventricle deformation imaging data(by particle tracking)was not included;such data will be very useful for determining tissue material properties and infarct area;d)only passive contraction was modeling in this paper;active contraction by adding active stress and techniques adjusting zero-stress sycamore fiber length could be included in the future.

    Figure 8:Stress/strain Plots for M3,M4.

    5 Conclusion

    An echo-based computational modeling approach was proposed to investigate left ventricle mechanical properties and stress conditions.With two samples studied,our results indicated that the modeling approach has the potential to be used to determine ventricle material properties.The pre-shrink technique in the model process has considerable effect on model results and stress/strain predictions.Longitudinal curvature and stress showed the largest differences between the two ventricles,with the LV with infarct having higher longitudinal curvature and stress values.More studies are needed to further confirm our findings.

    Acknowledgement:Thisresearch wassupported in partby NIH-1R01-HL 089269(del Nido,Tang,Geva).Chun Yang’s research is supported in part by National Sciences Foundation of China 11171030.

    Axel,L.(2002):Biomechanical dynamics of the heart with MRI.Annu.Rev.Biomed.Eng.,vol.4,pp.321-347.

    Amundsen,B.H.;Helle-Valle,T.;Edvardsen,T.;Torp,H.;Crosby,J.;L-yseggen,E.;St?ylen,A.;Ihlen,H.;Lima,J.A.;Smiseth,O.A.;Sl?rdahl,S.A.(2006):Noninvasive myocardial strain measurement by speckle tracking echocardiography:validation against sonomicrometry and tagged magnetic resonance imaging.J Am Coll Cardiol,vol.47,pp.789–793.

    Costa,K.D.;Takayama,Y.;McCulloch,A.D.;Covell,J.W.(1999):Laminarfiber architecture and three-dimensional systolic mechanics in canine ventricular myocardium.Am J Physiol.vol.276,no.2,H595-607.

    Desmond-Hellmann,S.;Sawyers,C.L.;Cox,D.R.;Fraser-Liggett,C.;Galli,S.J.;Goldstein,D.B.;Hunter,D.;Kohane,I.S.;Lo,B.;Misteli,T.;Morrison,S.J.;Nichols,D.G.;Olson,M.V.;Royal,C.D.;Yamamoto,K.R.(2011):National Research Council(US)Committee on A Framework for Developing a New Taxonomy of Disease.Toward precision medicine:building a knowledge network for biomedical research and a new taxonomy of disease.The National Academies Press,http://www.nap.edu/catalog.php?record_id=13284

    Edvardsen,T.;Gerber,B.L.;Garot,J.;Bluemke,D.A.;Lima,J.A.;Smiseth,

    O.A.(2002):Quantitative assessment of intrinsic regional myocardial deformation by Doppler strain rate echocardiography in humans:validation against threedimensional tagged magnetic resonance imaging.Circulation.106:50–56.

    Emond,M.;Mock,M.B.;Davis,K.B.;Fisher,L.D.;Holmes,D.R.;Chaitman,B.R.et al.(1994):Long-term survival of medically treated patients in the Coronary Artery Surgery Study(CASS)Registry.Circulation,vol.90,pp.2645-57.

    Gopal,A.S.;Shen,Z.;Sapin,P.M.;Keller,A.M.;Schnellbaecher,M.J.;Leibowitz,D.W.et al.(1995):Assessment of cardiac function by threedimensional echocardiography compared with conventional noninvasive methods.Circulation,vol.92,pp.842-53.

    Guccione,J.M.;Waldman,L.K.;McCulloch,A.D.(1993):Mechanics of active contraction in cardiac muscle:Part II–Cylindrical models of the systolic left ventricle.J Biomech Eng.,vol.115,no.1,pp.82-90.

    Humphrey,J.D.(2002):Cardiovascular Solid Mechanics,Springer-Verlag,New York.

    Humphrey,J.D.;Strumpf,R.K.;Yin,F.C.(1999):Biaxial mechanical behavior of excised ventricular epicardium.Am J Physiol.,vol.259,no.1 Pt 2,H101-8.

    Hunter,P.J.;Pullan,A.J.;Smaill,B.H.(2003):Modeling total heart function.Annu Rev Biomed Eng.,vol.5,pp.147-77.

    Kerckhoffs,R.C.;Neal,M.L.;Gu,Q.;Bassingthwaighte,J.B.;Omens,J.H.;McCulloch,A.D.(2007):Coupling of a 3D finite element model of cardiac ventricular mechanics to lumped systems models of the systemic and pulmonic circulation.Ann Biomed Eng.,vol.35,no.1,pp.1-18.

    Langeland,S.;D’hooge,J.;Wouters,P.F.;Leather,H.A.;Claus,P.;Bijnens,B.;Sutherland,G.R.(2005):Experimentalvalidation ofa new ultrasound method for the simultaneous assessment of radial and longitudinal myocardial deformation independent of insonation angle.Circulation,vol.112,pp.2157–2162.

    McCulloch,A.D.;Pfeiffer,E.;Tangney,J.;Omens,J.(2013):Biomechanics of cardiac electromechanical coupling and mechanoelectric feedback.J Biomech Eng.doi:10.1115/1.4026221.[Epub ahead of print]

    McCulloch,A.D.;Waldman,L.;Rogers,J.;Guccione,J.M.(1992):Largescale finite element analysis of the beating heart.Critical Rev.in Biomed Eng,vol.20,no.5,6,pp.427-449.

    Mondelli,J.A.;Di Luzio,S.;Nagaraj,A.;Kane,B.J.;Smulevitz,B.;Nagaraj,A.V.et al.(2001):The validation of volumetric real-time 3-dimensional echocardiography for the determination of left ventricular function.J Am Soc E-chocardiogr,vol.14,pp.994-1000.

    M?ller,J.E.;Hillis,G.S.;Oh,J.K.;Reeder,G.S.;Gersh,B.J.;Pellikka,P.A.(2006):Wall motion score index and ejection fraction for risk stratification after acute myocardial infarction.Am Heart J.,vol.151,pp.419-25.

    Nash,M.P.;Hunter,P.J.(2000):Computational Mechanics of the Heart,From tissue structure to ventricular function.Journal of Elasticity,vol.61,pp.113–141.

    Nesser,H.J.;Mor-Avi,V.;Gorissen,W.;Weinert,L.;Steringer-Mascherbauer,R.;Niel,J.et al.(2009):Quantification of left ventricular volumes using threedimensional echocardiographic speckle tracking:comparison with MRI.Eur Heart J.,vol.30,pp.1565-73.

    Novak,V.P.;Yin,F.C.;Humphrey,J.D.(1994):Regional mechanical properties of passive myocardium.J.Biomech.vol.27,no.4,pp.403-12.

    Peskin,C.S.(1977):Numerical analysis of blood flow in the heart.J.Com.Phys,vol.25,pp.220-252.

    Peskin,C.S.(1989):A three-dimensional computational method for blood flow in the heart.J.Comp.Physics,vol.81,pp.372-405.

    Quinones,M.A.;Greenberg,B.H.;Kopelen,H.A.;Koilpillai,C.;Limacher,M.C.;Shindler,D.M.et al.(2000):Echocardiographic predictors of clinical outcome in patients with left ventricular dysfunction enrolled in the SOLVD registry and trials:Significance of left ventricular hypertrophy.J.Am Coll Cardiol,vol.35,pp.1237-44.

    Reant,P.;Labrousse,L.;Lafitte,S.;Bordachar,P.;Pillois,X.;Tariosse,L.;Bonoron-Adele,S.;Padois,P.;Deville,C.;Roudaut,R.;Dos Santos,P.(2008):Experimental validation of circumferential,longitudinal,and radial 2-dimensional strain during dobutamine stress echocardiography in ischemic conditions.J.Am Coll Cardiol.vol.51,pp.149–157.

    Saber,N.R.;Gosman,A.D.;Wood,N.B.;Kilner,P.J.;Charrier,C.L.;Firman,D.N.(2001):Computational flow modeling of the left ventricle based on in vivo MRI data:initial experience.Annals of Biomech.Engng.,vol.29,pp.275-283.

    Sabia,P.;Afrookteh,A.;Touchstone,D.A.;Keller,M.W.;Esquivel,L.;Kaul,S.(1991):Value of regional wall motion abnormality in the emergency room diagnosis of acute myocardial infarction:a prospective study using two dimensional echocardiography.Circulation,vol.84,pp.I85-92.

    Sanchez-Quintana,D.;Anderson,R.;Ho,S.Y.(1996):Ventricular myoarchitecture in tetralogy of Fallot.Heart,vol.76,pp.280-286.

    Seo,Y.;Ishizu,T.;Enomoto,Y.;Sugimori,H.;Yamamoto,M.;Machino,T.;

    Kawamura,R.;Aonuma,K.(2009):Validation of 3-dimensional speckle tracking imaging to quantify regional myocardial deformation.Circ Cardiovasc Imaging.vol.2,no.6,pp.451-9.

    Sutherland,G.R.;Di Salvo,G.;Claus,P.;D’hooge,J.;Bijnens,B.(2004):Strain and strain rate imaging:a new clinical approach to quantifying regional myocardial function.J Am Soc Echocardiogr.vol.17,pp.788–802.

    Tang,D.;Yang,C.;Geva,T.;del Nido,P.J.(2010a):Image-Based Patient-Specific Ventricle Models with Fluid-Structure Interaction for Cardiac Function Assessment and Surgical Design Optimization.Progress in Pediatric Cardiology,vol.30,pp.51-62.

    Tang,D.;Yang,C.;Geva,T.;del Nido,P.J.(2008):Patient-specific MRI-based 3D FSI RV/LV/Patch models for pulmonary valve replacement surgery and patch optimization.J.of Biomech.Engineering,vol.130,no.4,041010.

    Tang,D.;Yang,C.;Geva,T.;Gaudette,G.;del Nido,P.J.(2010b):Effect of Patch Mechanical Properties on Right Ventricle Function Using MRI-Based Two-Layer Anisotropic Models of Human Right and Left Ventricles.CMES:Computer Modeling in Engineering and Sciences,vol.56,no.2,pp.113-130.

    Tang,D.;Yang,C.;Geva,T.;Gaudette,G.;del Nido,P.J.(2011):Multi-physics MRI-based two-layer fluid-structure interaction anisotropic models of human right and left ventricles with different patch materials:cardiac function assessment and mechanical stress analysis.Computers&Structures,vol.89,pp.1059-1068.

    Thune,J.J.;Kober,L,;Pfeffer,M.A.;Skali,H.;Anavekar,N.S.;Bourgoun,M.et al.(2006):Comparison of regional versus global assessment of left ventricular function in patients with left ventricular dysfunction,heart failure,or both after myocardial infarction:the valsartan in acute myocardial infarction echocardiographic study.J.Am Soc Echocardiogr,vol.19,pp.1462-5.

    Urheim,S.;Edvardsen,T.;Torp,H.;Angelsen,B.;Smiseth,O.A.(2000):Myocardial strain by Doppler echocardiography:validation of a new method to quantify regional myocardial function.Circulation.vol.102,pp.1158–1164.

    制服人妻中文乱码| 久久精品aⅴ一区二区三区四区 | 多毛熟女@视频| 好男人视频免费观看在线| 秋霞在线观看毛片| 天天躁狠狠躁夜夜躁狠狠躁| 免费高清在线观看日韩| 菩萨蛮人人尽说江南好唐韦庄| 精品少妇久久久久久888优播| 五月天丁香电影| 久久久久久人妻| 深夜精品福利| 亚洲av日韩在线播放| 日韩精品有码人妻一区| 丝袜美足系列| 国产欧美日韩一区二区三区在线| 国产一区二区激情短视频 | videos熟女内射| 美女高潮到喷水免费观看| 香蕉国产在线看| 亚洲欧洲精品一区二区精品久久久 | 日韩人妻精品一区2区三区| 亚洲成国产人片在线观看| 国产1区2区3区精品| 亚洲成人一二三区av| 欧美老熟妇乱子伦牲交| 日产精品乱码卡一卡2卡三| 国产精品 欧美亚洲| 中文乱码字字幕精品一区二区三区| av在线app专区| 成人亚洲精品一区在线观看| av片东京热男人的天堂| 亚洲四区av| 涩涩av久久男人的天堂| 亚洲第一区二区三区不卡| 七月丁香在线播放| 一区二区三区乱码不卡18| 久久99精品国语久久久| 国产日韩一区二区三区精品不卡| 在线观看www视频免费| 日韩在线高清观看一区二区三区| 国产 一区精品| 久久热在线av| 天堂俺去俺来也www色官网| 另类亚洲欧美激情| 日韩av不卡免费在线播放| 熟女少妇亚洲综合色aaa.| 2021少妇久久久久久久久久久| 97在线人人人人妻| 亚洲欧美一区二区三区黑人 | 另类亚洲欧美激情| 香蕉国产在线看| 天堂8中文在线网| 三级国产精品片| 国产不卡av网站在线观看| 亚洲激情五月婷婷啪啪| 久久久久久久久免费视频了| 香蕉精品网在线| 国产一区二区三区综合在线观看| 最新中文字幕久久久久| 一区二区三区乱码不卡18| 新久久久久国产一级毛片| 成人亚洲欧美一区二区av| 久久这里只有精品19| 美女福利国产在线| 国产深夜福利视频在线观看| 亚洲第一区二区三区不卡| 精品久久蜜臀av无| 国产精品嫩草影院av在线观看| 午夜影院在线不卡| 亚洲精品aⅴ在线观看| 日韩三级伦理在线观看| 下体分泌物呈黄色| 亚洲精华国产精华液的使用体验| 两性夫妻黄色片| 国产综合精华液| 丰满饥渴人妻一区二区三| 人妻一区二区av| 亚洲av中文av极速乱| 日韩三级伦理在线观看| 观看美女的网站| 嫩草影院入口| 一区二区三区激情视频| 亚洲,欧美,日韩| 欧美日韩视频精品一区| 久久97久久精品| 熟妇人妻不卡中文字幕| 波野结衣二区三区在线| 在线观看三级黄色| 秋霞在线观看毛片| 精品酒店卫生间| 国产精品秋霞免费鲁丝片| 91精品伊人久久大香线蕉| 黑人巨大精品欧美一区二区蜜桃| 国产高清不卡午夜福利| 亚洲一级一片aⅴ在线观看| 一本大道久久a久久精品| 亚洲第一av免费看| 亚洲av国产av综合av卡| 91在线精品国自产拍蜜月| 纯流量卡能插随身wifi吗| 五月开心婷婷网| 亚洲伊人久久精品综合| 在线 av 中文字幕| 少妇的逼水好多| 国产极品天堂在线| 久久韩国三级中文字幕| 国产成人精品一,二区| 国产女主播在线喷水免费视频网站| 午夜久久久在线观看| 亚洲精品第二区| 91精品三级在线观看| 免费在线观看黄色视频的| 精品国产国语对白av| 免费黄频网站在线观看国产| 国产成人精品久久二区二区91 | 最近中文字幕高清免费大全6| 午夜精品国产一区二区电影| 中文字幕另类日韩欧美亚洲嫩草| 国产精品 欧美亚洲| 久久精品久久久久久久性| 成年人免费黄色播放视频| 日韩不卡一区二区三区视频在线| 五月天丁香电影| 18+在线观看网站| 成人黄色视频免费在线看| 久久 成人 亚洲| videos熟女内射| 天天操日日干夜夜撸| 伦理电影免费视频| 国产成人欧美| 精品国产露脸久久av麻豆| 在线观看三级黄色| 成人二区视频| 精品国产一区二区三区久久久樱花| 一本色道久久久久久精品综合| 免费日韩欧美在线观看| 黄片小视频在线播放| 久久精品久久久久久噜噜老黄| 午夜老司机福利剧场| 国产又爽黄色视频| 街头女战士在线观看网站| 中文字幕av电影在线播放| 老汉色∧v一级毛片| 久久毛片免费看一区二区三区| 18在线观看网站| av在线播放精品| 一个人免费看片子| 这个男人来自地球电影免费观看 | 精品99又大又爽又粗少妇毛片| 国产男女超爽视频在线观看| 欧美国产精品一级二级三级| 国产精品久久久久久精品古装| 亚洲经典国产精华液单| 777米奇影视久久| 韩国av在线不卡| 亚洲国产日韩一区二区| 精品久久蜜臀av无| 亚洲国产欧美日韩在线播放| 亚洲国产精品一区二区三区在线| 天美传媒精品一区二区| 日本91视频免费播放| 伊人亚洲综合成人网| 校园人妻丝袜中文字幕| 欧美在线黄色| 日本色播在线视频| 色婷婷久久久亚洲欧美| 黄色一级大片看看| 国产亚洲午夜精品一区二区久久| 女的被弄到高潮叫床怎么办| 成人毛片60女人毛片免费| 青春草亚洲视频在线观看| 纯流量卡能插随身wifi吗| 天堂中文最新版在线下载| 国产精品 欧美亚洲| 久久久久久人人人人人| 欧美av亚洲av综合av国产av | 黑人猛操日本美女一级片| 婷婷色av中文字幕| 最近最新中文字幕大全免费视频 | 有码 亚洲区| 蜜桃国产av成人99| 精品福利永久在线观看| 免费观看性生交大片5| 国产亚洲av片在线观看秒播厂| 老鸭窝网址在线观看| 黄色怎么调成土黄色| 丝袜喷水一区| 91国产中文字幕| 丰满少妇做爰视频| a级片在线免费高清观看视频| 国产欧美日韩综合在线一区二区| 青青草视频在线视频观看| 另类精品久久| 免费大片黄手机在线观看| 日韩人妻精品一区2区三区| 高清不卡的av网站| 久久毛片免费看一区二区三区| 成人国产麻豆网| 9热在线视频观看99| 老汉色av国产亚洲站长工具| 国产成人精品婷婷| 丝瓜视频免费看黄片| 男的添女的下面高潮视频| 久久97久久精品| 精品视频人人做人人爽| 少妇人妻久久综合中文| 欧美精品亚洲一区二区| 色网站视频免费| 久久午夜综合久久蜜桃| 国产日韩欧美在线精品| 久久久久精品久久久久真实原创| 秋霞在线观看毛片| 国产有黄有色有爽视频| 免费观看性生交大片5| 久久国产精品男人的天堂亚洲| 亚洲美女黄色视频免费看| 精品久久久精品久久久| 尾随美女入室| 成人国语在线视频| 免费看av在线观看网站| 交换朋友夫妻互换小说| 精品少妇内射三级| 日本黄色日本黄色录像| 丰满乱子伦码专区| 国产日韩欧美在线精品| 亚洲美女视频黄频| 久热久热在线精品观看| 国产女主播在线喷水免费视频网站| 啦啦啦在线免费观看视频4| 男人添女人高潮全过程视频| 一区二区av电影网| 一区二区三区激情视频| av网站免费在线观看视频| 黄色毛片三级朝国网站| 尾随美女入室| 国产亚洲欧美精品永久| 久久精品国产亚洲av天美| 最新的欧美精品一区二区| 婷婷色综合www| 99re6热这里在线精品视频| 大码成人一级视频| 亚洲av在线观看美女高潮| 这个男人来自地球电影免费观看 | 国产成人精品一,二区| 日本午夜av视频| 下体分泌物呈黄色| 午夜福利在线观看免费完整高清在| 伦理电影免费视频| 国产淫语在线视频| 女人精品久久久久毛片| 久久久久久人人人人人| 91aial.com中文字幕在线观看| 2021少妇久久久久久久久久久| 九草在线视频观看| 精品第一国产精品| 午夜免费男女啪啪视频观看| 一边亲一边摸免费视频| 丝袜喷水一区| 精品国产一区二区久久| 国产一级毛片在线| 亚洲精品久久久久久婷婷小说| 我要看黄色一级片免费的| 国产欧美亚洲国产| 国产高清国产精品国产三级| 人妻 亚洲 视频| 美女国产视频在线观看| 久久久久久久国产电影| 国产精品无大码| 成年人午夜在线观看视频| 成人免费观看视频高清| 色视频在线一区二区三区| 久热这里只有精品99| 最近最新中文字幕免费大全7| 亚洲av综合色区一区| 欧美精品人与动牲交sv欧美| 精品卡一卡二卡四卡免费| 久久av网站| 免费久久久久久久精品成人欧美视频| 亚洲第一av免费看| 极品人妻少妇av视频| 性色av一级| 天天操日日干夜夜撸| 国产精品一区二区在线不卡| 黑人巨大精品欧美一区二区蜜桃| 26uuu在线亚洲综合色| 欧美精品亚洲一区二区| 中文字幕另类日韩欧美亚洲嫩草| 校园人妻丝袜中文字幕| tube8黄色片| 成人手机av| 王馨瑶露胸无遮挡在线观看| 日韩精品免费视频一区二区三区| 又大又黄又爽视频免费| 亚洲国产成人一精品久久久| 国产精品无大码| 亚洲欧美一区二区三区国产| 中文天堂在线官网| 国产精品嫩草影院av在线观看| 欧美最新免费一区二区三区| 91精品伊人久久大香线蕉| 国产成人一区二区在线| av一本久久久久| 国产成人精品一,二区| 亚洲国产av新网站| 熟妇人妻不卡中文字幕| 国产欧美日韩综合在线一区二区| 欧美日韩亚洲高清精品| 欧美日韩精品成人综合77777| 麻豆精品久久久久久蜜桃| 国产福利在线免费观看视频| 国产精品熟女久久久久浪| 久久久久久久久久人人人人人人| 好男人视频免费观看在线| 久久精品国产亚洲av涩爱| 欧美精品国产亚洲| 亚洲国产看品久久| 啦啦啦在线观看免费高清www| av线在线观看网站| 成人国产麻豆网| 婷婷成人精品国产| 男人操女人黄网站| 晚上一个人看的免费电影| 日产精品乱码卡一卡2卡三| a 毛片基地| 欧美激情高清一区二区三区 | 亚洲av在线观看美女高潮| 69精品国产乱码久久久| 女的被弄到高潮叫床怎么办| 少妇被粗大猛烈的视频| 亚洲国产欧美日韩在线播放| 美女主播在线视频| 久久久久久久大尺度免费视频| 黄片无遮挡物在线观看| 成人二区视频| 亚洲色图 男人天堂 中文字幕| 国产日韩欧美视频二区| freevideosex欧美| 亚洲五月色婷婷综合| 永久免费av网站大全| 日韩免费高清中文字幕av| 久久女婷五月综合色啪小说| 午夜日韩欧美国产| 人人妻人人澡人人爽人人夜夜| 日本爱情动作片www.在线观看| 精品少妇一区二区三区视频日本电影 | 午夜福利,免费看| 国产视频首页在线观看| 尾随美女入室| 国产综合精华液| 久久av网站| 在线观看国产h片| 人妻 亚洲 视频| 欧美中文综合在线视频| 80岁老熟妇乱子伦牲交| 国产高清国产精品国产三级| 久久亚洲国产成人精品v| 免费av中文字幕在线| 久久这里有精品视频免费| 一级片'在线观看视频| 巨乳人妻的诱惑在线观看| 亚洲成国产人片在线观看| 丁香六月天网| 久久久久视频综合| 精品一区二区三卡| 免费久久久久久久精品成人欧美视频| 两个人免费观看高清视频| 国产亚洲欧美精品永久| 两个人免费观看高清视频| www.精华液| 国产精品香港三级国产av潘金莲 | 国产麻豆69| 丝瓜视频免费看黄片| 精品国产一区二区久久| videos熟女内射| 国产97色在线日韩免费| 巨乳人妻的诱惑在线观看| av又黄又爽大尺度在线免费看| 丝袜喷水一区| 中文精品一卡2卡3卡4更新| 久久国产精品男人的天堂亚洲| 777米奇影视久久| 国产免费又黄又爽又色| 有码 亚洲区| 两个人免费观看高清视频| 丰满乱子伦码专区| 午夜福利,免费看| 天堂8中文在线网| 99国产精品免费福利视频| 综合色丁香网| 伦理电影大哥的女人| 美女福利国产在线| 国产高清不卡午夜福利| 99久国产av精品国产电影| 在线看a的网站| 成年人午夜在线观看视频| 亚洲精品aⅴ在线观看| 黄色视频在线播放观看不卡| 最新的欧美精品一区二区| 青春草国产在线视频| 国产极品天堂在线| 飞空精品影院首页| 菩萨蛮人人尽说江南好唐韦庄| 极品少妇高潮喷水抽搐| 日韩中文字幕视频在线看片| 久久精品熟女亚洲av麻豆精品| 日韩av免费高清视频| 日韩精品免费视频一区二区三区| 久久ye,这里只有精品| 免费在线观看完整版高清| 午夜免费鲁丝| 日韩熟女老妇一区二区性免费视频| 精品少妇内射三级| 国产av码专区亚洲av| 婷婷色综合www| 高清黄色对白视频在线免费看| 亚洲国产色片| freevideosex欧美| 女人被躁到高潮嗷嗷叫费观| 日日撸夜夜添| 久久狼人影院| 国产精品一区二区在线不卡| 在线天堂中文资源库| 免费观看无遮挡的男女| 99国产综合亚洲精品| 日本欧美国产在线视频| 亚洲精品视频女| 丰满饥渴人妻一区二区三| 观看av在线不卡| 韩国精品一区二区三区| 日韩中文字幕视频在线看片| 亚洲人成网站在线观看播放| xxxhd国产人妻xxx| 亚洲av电影在线进入| 春色校园在线视频观看| 母亲3免费完整高清在线观看 | 高清黄色对白视频在线免费看| 国产成人aa在线观看| 国产精品国产三级专区第一集| 热re99久久精品国产66热6| 日韩伦理黄色片| 久久精品国产鲁丝片午夜精品| 七月丁香在线播放| 亚洲精品久久成人aⅴ小说| 欧美精品av麻豆av| 岛国毛片在线播放| 国产精品久久久久成人av| 日本免费在线观看一区| 一级a爱视频在线免费观看| av在线观看视频网站免费| 国产精品蜜桃在线观看| 成人国产av品久久久| av有码第一页| 春色校园在线视频观看| 人成视频在线观看免费观看| 亚洲精品在线美女| 菩萨蛮人人尽说江南好唐韦庄| 高清av免费在线| 青春草视频在线免费观看| 中文字幕最新亚洲高清| www.av在线官网国产| 天天躁日日躁夜夜躁夜夜| 亚洲精品aⅴ在线观看| 建设人人有责人人尽责人人享有的| 国产精品一国产av| 精品亚洲乱码少妇综合久久| www.精华液| 国产精品二区激情视频| 精品久久久精品久久久| 亚洲激情五月婷婷啪啪| 中文字幕亚洲精品专区| 精品午夜福利在线看| 亚洲视频免费观看视频| 午夜福利视频精品| 亚洲欧美精品自产自拍| 人妻系列 视频| 婷婷色综合大香蕉| 一级爰片在线观看| 久久久久人妻精品一区果冻| 日韩熟女老妇一区二区性免费视频| 久久国内精品自在自线图片| 国产黄色免费在线视频| 日韩制服丝袜自拍偷拍| 亚洲内射少妇av| 99re6热这里在线精品视频| videossex国产| 边亲边吃奶的免费视频| 亚洲国产欧美日韩在线播放| 少妇的丰满在线观看| kizo精华| 9191精品国产免费久久| 一级片免费观看大全| 香蕉精品网在线| 18禁裸乳无遮挡动漫免费视频| 久久毛片免费看一区二区三区| 日日爽夜夜爽网站| 高清黄色对白视频在线免费看| 性色av一级| 99热网站在线观看| 国产不卡av网站在线观看| 国产1区2区3区精品| 最近最新中文字幕大全免费视频 | 人妻少妇偷人精品九色| 69精品国产乱码久久久| 日韩视频在线欧美| 欧美日韩视频高清一区二区三区二| 最近中文字幕2019免费版| 丝袜脚勾引网站| 最黄视频免费看| 久久国产精品男人的天堂亚洲| 久久人人爽av亚洲精品天堂| 色网站视频免费| 亚洲五月色婷婷综合| 搡女人真爽免费视频火全软件| 精品视频人人做人人爽| 日日爽夜夜爽网站| 中文天堂在线官网| 久久久久久久国产电影| 午夜久久久在线观看| 黄色一级大片看看| 9热在线视频观看99| 中文字幕人妻熟女乱码| 精品视频人人做人人爽| 免费观看无遮挡的男女| 亚洲av欧美aⅴ国产| 亚洲国产欧美日韩在线播放| 中文精品一卡2卡3卡4更新| 亚洲在久久综合| 99久国产av精品国产电影| 香蕉国产在线看| 天天躁狠狠躁夜夜躁狠狠躁| 国产日韩一区二区三区精品不卡| 熟女电影av网| 热re99久久精品国产66热6| 一本色道久久久久久精品综合| 尾随美女入室| 中文字幕精品免费在线观看视频| 在线观看免费日韩欧美大片| 日本91视频免费播放| 黑人欧美特级aaaaaa片| 久久人妻熟女aⅴ| 亚洲精品中文字幕在线视频| 国产精品人妻久久久影院| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产成人午夜福利电影在线观看| 色播在线永久视频| 男女啪啪激烈高潮av片| videossex国产| 2022亚洲国产成人精品| 涩涩av久久男人的天堂| 久久综合国产亚洲精品| 欧美日韩一区二区视频在线观看视频在线| 亚洲精品在线美女| 自拍欧美九色日韩亚洲蝌蚪91| 欧美日本中文国产一区发布| 9热在线视频观看99| 免费播放大片免费观看视频在线观看| 久久精品aⅴ一区二区三区四区 | 中文字幕人妻丝袜一区二区 | 久久狼人影院| 91精品国产国语对白视频| 一级,二级,三级黄色视频| 国产在线一区二区三区精| 久久午夜综合久久蜜桃| av.在线天堂| 国产成人欧美| 午夜久久久在线观看| 90打野战视频偷拍视频| 一边摸一边做爽爽视频免费| 99热网站在线观看| 亚洲,欧美,日韩| 中文乱码字字幕精品一区二区三区| 欧美日韩精品成人综合77777| 午夜免费观看性视频| 嫩草影院入口| 大香蕉久久成人网| 久久国产精品男人的天堂亚洲| 国产av国产精品国产| 老鸭窝网址在线观看| 伊人久久国产一区二区| 国产综合精华液| 永久免费av网站大全| 丝瓜视频免费看黄片| 丰满迷人的少妇在线观看| 大话2 男鬼变身卡| 自线自在国产av| 青春草亚洲视频在线观看| 亚洲欧美一区二区三区黑人 | 2018国产大陆天天弄谢| 亚洲中文av在线| 国产日韩欧美视频二区| 极品人妻少妇av视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲在久久综合| 丝袜脚勾引网站| 日日撸夜夜添| 亚洲精品美女久久av网站| 国产 精品1| 99久久中文字幕三级久久日本| 精品少妇黑人巨大在线播放| 水蜜桃什么品种好| 十分钟在线观看高清视频www| 捣出白浆h1v1| 侵犯人妻中文字幕一二三四区| 爱豆传媒免费全集在线观看| 美女高潮到喷水免费观看| 日韩一区二区三区影片| 中文精品一卡2卡3卡4更新| 国产成人精品在线电影| 精品国产超薄肉色丝袜足j| 国产精品免费大片| 老司机影院毛片| 国产一级毛片在线| 男女国产视频网站| 久久精品国产亚洲av高清一级|