• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Local Defect Correction for Boundary Integral Equation Methods

    2014-05-11 02:51:50KakubaandAnthonissen

    G.Kakuba and M.J.H.Anthonissen

    1 Introduction

    Often boundary value problems have small localised regions of high activity where the solution varies very rapidly compared to the rest of the domain.This behaviour maybe either due to boundary conditions or due to an irregular boundary.One therefore has to use relatively fine meshes to capture the high activity.Since the activity is localised,one may also choose to solve on a uniform structured grid.That is,instead of a uniform global grid,the solution is approximated using several uniform grids with different grid sizes that cover different parts of the domain.The size of each grid is chosen in agreement with the activity of the solution in that part of the domain.This refinement strategy is calledlocal uniform grid refinement[Ferket and Reusken(1996)].The solution is approximated on a composite grid which is the union of the various uniform local grids.One way of approximating this composite grid solution that is simple and less complex is byLocal Defect Correction(LDC).

    In LDC,at least one grid,theglobal coarse grid,covers the entire domain.Then a uniformlocal fine gridis used in a small part of the domain containing the high activity.In[Ferket and Reusken(1996);Hackbusch(1984)],LDC has been shown to be a useful way of approximating the composite grid solution in which a global coarse grid solution is improved by a local fine grid solution through a process whereby the right hand side of the global coarse grid problem iscorrectedby thedefectof a local fine grid approximation.This method has been well explored for other numerical methods such as finite differences and finite volumes,see[Ferket and Reusken(1996);Hackbusch(1984);Anthonissen(2001);Minero,Anthonissen,and Mattheij(2006)].In this paper we explore potential analogues and develop an LDC strategy for boundary integral equation(BIE)methods,in particular,the boundary element method(BEM).The BEM is now a well established technique for potential problems as it leads to a reduction in the dimensionality of the problem,due to the need to discretise only the domain boundary.Moreover it provides accurate solutions due to the use of fundamental solutions and,in electrostatics,has many numerical advantages over other methods as finite differences methods as discussed in Liang and Subramaniam(1997).However,although reduction in dimensionality is guaranteed,the accuracy depends a lot on the mesh used[Guiggiani(1990);Liapis(1994)].Although a lot has been done for the finite element methods,BEM’s main competitor,comparatively little has been done on adaptive mesh refinement in BEM[Carsten and Stephan(1995,1996)].This paper therefore seeks to add to a gradually growing literature on mesh refinement in BEM.

    The initial attempts on LDC for BEM were in[Kakuba,Mattheij,and Anthonissen(2006)]and[Kakuba and Mattheij(2007)]where an algebraic approach was suggested and studied.The algorithm in[Kakuba,Mattheij,and Anthonissen(2006)]was based on block decomposition and manipulation of the coefficient matrix and right hand side of the BEM equations in three dimension space.That formulation ignores the inherent nature of the Boundary Integral Equation(BIE)that it is glob-al,that is,each node of the grid contributes to all the others in the grid through integration.In this paper we consider a new and better approach to the LDC algorithm that is based on the global integration.This approach takes into account the global integral properties of BEM in the computation of the defects and in the formulation of the local problem.Since in BEM we discretise the boundary,we are concerned with problems in which the high activity occurs at the boundary.

    One ofthe most important steps in adaptive refinementis error estimation.One way of estimating the error in collocation BEM is by using higher order interpolation at the elements to estimate the exact solutions and then use an appropriate norm of the difference between the BEM solution and the estimated exact solution to measure the error[Kita and Kamiya(2001)].Since the focus of this paper is to develop the essential steps of the LDC algorithm in BEM,we use simple examples whose exact solutions are known.We also consider high activity due to boundary conditions.Then we use the infinity norm||·||∞of the difference between the exact and the BEM solutions as the measure for the error.

    The paper is organised as follows:First,we give a brief introduction to the BIE and its discretisation using BEMin Section 2.In Section 3,we develop an LDCstrategy for BEM alongside an example.In Section 4 we test the strategy on a typical example and discuss results.In Section 5 we give the advantages of the algorithm and finish in Section 6 with a summary of the concepts and results presented in the paper.

    2 The Boundary Integral Equation and the Boundary Element Method discretisation

    The BEM results from a numerical discretisation of a BIE.Consider a domain ?with boundary?? on which we have the following Laplace problem:

    where??1∪??2=?? and??1∩??2=/0 andgandhare given functions,see Fig.1.If??1≡?? we have a Dirichlet problem and if??2≡?? we have a Neumann problem,otherwise we have a mixed problem.The boundary integral equation gives relations for the potentialu(s)at different locations of the domain ?.These relations have been abundantly derived in literature and are readily available in various books on boundary element methods such as[Paris and Canas(1997),Katsikadelis(2002),Pozrikidis(1992)].The BIE is

    Figure 1:Domain illustration for a Dirichlet or Neumann problem

    α(s)is the internal angle ats,?c=R2? is the complement of ? andv(s;r)is the fundamental solution of the Laplace equation.

    At the boundary,the discretised BIE leads to the linear system of equations

    We also have introduced the vectors

    The solution of the system(8)gives a BEM approximation of the unknowns in x in the grid nodesri.We denote by xLa BEM approximation on a grid of sizeL.ThusuLj(orqLj)is a BEM approximation ofuj(orqj)using a grid of sizeL.Solving(8)gives the unknown boundary quantities ofuandq.Therefore we now have all the boundary quantities.The solutionuiat any pointri∈? can then be computed using

    3 Local Defect Correction

    Consider the Neumann problem(10)whose domain is a unit square in two dimension.That is,

    The Neumann problem(10)results in a Fredholm integral equation of the second kind[Atkinson(1997);Hackbusch(1995);Kress(1989)].It is singular and hence has no unique solution[Atkinson(1967)].To ensure a unique solution in the discretised problem,a value ofuis prescribed in one of the nodes[Chen and Zhou(1992);Strese(1984)].In the implementations in this paper,the value ofuin thefirst element node is prescribed.This will also help us compare the numerical solutions directly with the exact solutions for error measurement.The solution in ?,shown in Fig.2,has a small area close to the boundary where it changes rapidly.As a result,the solutionu(r)in the boundary has a region of high activity in a small part of the boundary,see Fig.2.Therefore we can identify a small region inside ? which contains the high activity.This region we call thelocal domainand denote it by ?local,see Fig.3.Its boundary Γlocal,which we will call thelocal boundary,consists of two parts:a part Γactivethat is also part of the global boundary and a part Γinsidethat is contained in the global domain ?,Fig.3(b).We will call the part Γactivethelocal active boundary.For instance,in the problem corresponding to the solutions shown in Fig.2,the boundary Γactive,may be identified as Γactive={(x,y):y=0,x∈[0.2,0.8]}.The part of the global boundary Γ that is outside the active region Γactivewill be denoted Γc,that is,Γc:= ΓΓactive.

    The interest in BEM is to compute a numerical approximation ofu(r)at the boundary as accurately as possible.For such kind of multiscaled variations one is faced with the option of using a global uniform grid with a mesh of relatively small sizelin order to capture the high activity.This would result in very large systems which are computationally expensive since BEM matrices are full matrices.Besides,outside the local active boundary Γactive,the variation of the solution is smooth and a relatively coarse grid would suffice.The other option is to use a uniform structured grid designed to capture the different activities.This would be a composite grid with a relatively fine mesh of sizelin the local active region and a coarse grid of sizeLelsewhere.

    Figure 2:Solution in the domain and solution at the boundary 0≤x≤1,y=0,for problem(10).

    With LDC we approximate the solution on a composite grid in an iterative way that involves solving a so calledlocal problemwhich is a boundary value problem defined on the local domain.The local problem is solved on a fine mesh whose size is chosen in agreement with the local activity.The solution on the local fine grid is combined with the solution on the global coarse grid throughdefect correctionto obtain a composite grid solution on Γ.The advantage of this approach is that instead of solving a large composite grid system,two smaller systems;a global coarse grid system and a local fine grid system,are solved independently.For problemswith various local activities the local problems can be solved separately in parallel giving a tremendously cheaper way of obtaining a composite grid solution other than solving directly on the composite grid.

    Let Γ be the numerical representation of?? in BEM.Theglobal coarse gridΓLis a uniform mesh ofNelements each of sizeLcovering the whole of Γ,that is,

    Figure 3:An example of a multiscaled solution with localised high activity in 3(a)and,in 3(b),an illustration of a local problem domain.The boundary of ?local is

    where|ΓLj|=Lfor allj.Thelocal fine gridΓllocalis a uniform mesh ofNlocalelements each of sizelcovering Γlocal,that is,

    where|Γllocal,i|=lfor alli=1,2,...,Nlocal.The size of the local fine gridlis chosen in agreement with the activity of the solution in Γactive.Since the solution varies much more rapidly in Γactivethan elsewhere,we expectlto be much smaller thanL.Part of the grid Γllocalbelongs to Γactiveand part belongs to Γinside.The part that belongs to Γactiveis denoted Γlactiveand that that belongs to Γinsideis denoted

    Figure 4:Global coarse and local fine grids.The small dots are the nodes rl localof the local fine grid Γl local and the big circles are the nodes rL of the global coarse grid ΓL.Node 2 belongs to rL∩rl active.

    First we discretise the BIE on ΓLto yield

    which gives the initial global coarse grid system of equations

    Once we have solved(18),the next step is to use the initial global coarse grid solution uL0to formulate a local problem on ?local.This local problem on ?localsatisfies the same operator as in the global problem.The boundary conditions on Γactiveare the same as those in the global problem,that is,q(r)=h(r),since Γactive?Γ.On Γinsidewe prescribe an artificial boundary condition?g(r)defined below.So we have

    The functiong?(r)is piecewise constant on Γinsideand takes on values ofuinside(ri)whereriis a node of Γlinside,i,that is,

    Equation(21)means that we use the solution of the initial global coarse grid problem to obtain artificial Dirichlet boundary conditions at Γinside.Since at Γactiveqis known,the local problem is mixed and the BIE for(19)is,forr,r(χ)∈Γlocal,

    Discretising(22)on the local fine grid defined in(13)and(14)we have

    The solution ul0activeis expected to be more accurate than the coarse grid solution uL0in Γactive.The next step of LDC is to use the local fine grid solution to update the global coarse grid problem.In updating,the right hand side of the global coarse grid problem is corrected by the defect of the local fine grid approximation,we will call this step thedefect correctionstep.The two approximations are then used to define a composite grid approximation ofu(r).The question now is:how do we compute the defect?

    Consider the coarse grid discretisation(17).If we knew the exact continuous functionu(r)and hence the exact solutionuj:=u(rj)in the nodes we would use it in(17)to obtain

    Subtracting(27)from(26)gives

    Therefore if we know the exact continuous functionu(r)we can compute the local defectdiL,add it to the right hand side of(17)and solve for the exact solutionujon each element.Howeveru(r)is not known and therefore we cannot compute the defect using(29).All we can do is estimatediLjas accurately as possible using the best solution available,which is

    So for elements in the high activity region we have the fine grid solution which we can use to estimate the local defect as follows.

    Figure 5:A coarse element that is refined into three elements in the local fine grid

    Therefore,using the initial fine grid solution,we have the following best approximation of the initial defect per element

    By default,integration in the BIE is global.Each node of the global coarse grid communicateswith the active region through integration.So although the activity is local,it affetcs the entire system of equations.The defectdL0iis therefore computed for all nodes of the global coarse grid to generate the local defect vector

    The next step now is the updating step.The global coarse grid discretisation is updated with the defect of the local fine grid solution.So we have

    Solving(36)gives the updated coarse grid solution uL1.At this stage we use the fine grid solution on Γlactiveand the global coarse grid solution to form a composite grid solutionul,Las

    The composite grid solution(37)can now be used to compute better boundary conditions on Γinsideand then form and solve the updated fine grid problem

    Then we obtain the updated composite grid solution given by

    This step marks the end of one complete cycle of the LDC algorithm.The iteration process is summarised in the following algorithm:

    BEM-LDC Algorithm

    (i)Initialisation

    –Solve the global coarse grid system

    –Solve the initial fine grid system

    –Compute the initial defect

    (ii)Fori=1,2,...

    4 Examples and results

    The LDC procedure above has been used to solve the problem(10).The results are shown in Fig.6 and Fig.7.The figures show the solution on the sidey=0 of the unit square.The coarse grid used is of sizeL=0.2 and the fine grid is of

    Figure 6:Results of a typical LDC process for a Neumann problem in one iteration.The solid line is the exact solution.

    sizel=0.2/9.Fig.6 shows how the initial results compare with the exact solution(the solid line),the initial coarse grid solution in Fig.6(a)and the initial fine grid solution in Fig.6(b).Fig.7 shows the results after the first update,the updated coarse grid solution in Fig.7(a)is better than the initial one in Fig.6(a)and the updated local fine grid solution is better than the initial one in Fig.6(b).Fig.8 shows how fast the global error decreases.Basically the algorithm has converged already in the first iteration since the error reduction between successive iterations after the first one is much smaller compared to that in the first iteration.

    5 Advantages of LDC of the BEM-LDC algorithm

    In brief,the LDC iterative process involves the following:solve the global coarse grid problem on Γ,computeuon Γinside,solve a fine grid problem on Γlocaland then update the global coarse grid problem.

    Suppose we haveplocally active small regions and thusplocal problems.Let,for each local problem,Mlbe the number of elements on ΓlocalandMinthe number of elements on Γinside.For instance in the illustration in Fig.4,Ml=3 andMin=9.We can increaseMlwithout necessarily increasingMinsince the activity is on Γlocal.LetMinbe so small compared toMlthat the size of the local problem isM≈Ml.LetNbe the size of the global problem andNlLocalthe number of global elements in Γlocal.We assume Γlocalis such a small part of the global boundary thatN?NlLocal≈N.Then the equivalent composite grid on Γ would be of sizepM+N.The operational count for LU-decomposition isN3/3 for a sizeNmatrix.So the complexity of the equivalent composite grid problem would be

    Figure 7:Results of a typical LDC process for a Neumann problem in one iteration.The solid line is the exact solution.

    Figure 8:Graph of the global coarse grid error||u??uLi||∞,i=0,1,2,...,12 where u?is the exact solution.A logarithmic scale is used on the error axis.

    The BEM-LDC algorithm converges in one step which involves solving two coarse grid problems andplocal problems and so has total complexity

    6 Conclusions

    We have presented the technique of Local Defect Correction for BEM,a technique for solving problems with high local activity in the boundary using BEM.The focus of the paper has been to develop the LDC algorith for BEM that takes into account the global integral nature of the BIE,a property that was ignored in Kakuba,Mattheij,and Anthonissen(2006).This technique offers an alternative to solving directly on a composite grid or a uniform fine grid both of which would result in large matrices that are more expensive than using LDC.What is also interesting to note is that one iteration of the algorithm suffices.

    Anthonissen,M.(2001):Local Defect Correction Techniques:Analysis and Ap-plication to Combustion.PhD thesis,Eindhoven University of Technology,Eindhoven,The Netherlands,2001.

    Atkinson,K.E.(1967): The solution on non-unique linear integral equations.Numerische Mathematik,vol.10,pp.117–124.

    Atkinson,K.E.(1997):The Numerical Solution of Integral Equations of the Second Kind.Cambridge University Press.

    Carsten,C.;Stephan,E.P.(1995): A posteriori error estimates for boundary element methods.Mathematics of Computation.,vol.64,pp.483–500.

    Carsten,C.;Stephan,E.P.(1996): Adaptive boundary element methods for some first kind integral equations.SIAM Journal of Numerical Analysis.,vol.33,pp.2166–2183.

    Chen,G.;Zhou,J.(1992):Boundary Element Methods.Academic press,London,San Diego.

    Ferket,P.J.J.;Reusken,A.A.(1996): Further Analysis of the Local Defect Correction Method.Computing,vol.56,pp.117–139.

    Guiggiani,M.(1990):Errorindicators foradaptive mesh refinementin the boundary element method-a new approach.International Journal for Numerical Methods in Engineering.,vol.29,pp.1247–1269.

    Hackbusch,W.(1984):Local defect correction method and domain decomposition technique.Computing[Suppl.],vol.5,pp.89–113.

    Hackbusch,W.(1995):Integral Equations:Theory and Numerical Treatment.Birkhauser Verlag,Basel.

    Kakuba,G.;Mattheij,R.M.M.(2007):Convergence analysis of Local Defect Correction for the BEM.Advances in Boundary Integral Methods.Proceedings of the sixth UK conference on Boundary Integral Methods,vol.15,pp.251–261.

    Kakuba,G.;Mattheij,R.M.M.;Anthonissen,M.J.(2006): Local Defect Correction for the Boundary Element Method.Computer Modeling in Engineering Sciences,vol.15,pp.127–135.

    Katsikadelis,J.T.(2002):Boundary Elements theory and applications.Elsevier.

    Kita,E.;Kamiya,N.(2001): Error estimation and adaptive mesh refinement in boundary element method,an overview.Engineering Analysis with Boundary Elements,vol.25,pp.479–495.

    Kress,R.(1989):Linear Integral Equations.Springer-Verlag.

    Liang,J.;Subramaniam,S.(1997): Computation of molecular electrostatics with boundary element methods.Biophysical Journal,vol.13,pp.1830–1841.

    Liapis,S.(1994): A review of error estimation and adaptivity in the boundary element method.Engineering analysis with boundary elements.,vol.14,pp.315–323.

    Minero,R.;Anthonissen,M.J.H.;Mattheij,R.M.M.(2006): A Local Defect Correction Technique for Time-Dependent Problems.Numerical Methods for Partial Differential Equations,vol.22,pp.128–144.

    Paris,F.;Canas,J.(1997):Boundary Element Method:Fundamentals and Applications.Oxford University Press,Oxford.

    Pozrikidis,C.(1992):Boundary integral and singularity methods for linearised viscous flow.Cambridge University Press.

    Strese,H.(1984):Remarks concerning the boundary element method in potential theory.Appl.Math.Modelling,vol.8,pp.40–44.

    香蕉国产在线看| 精品一区二区三区视频在线观看免费 | 不卡一级毛片| av天堂久久9| 一级,二级,三级黄色视频| 在线观看一区二区三区| 久久精品国产综合久久久| 国产欧美日韩综合在线一区二区| 亚洲激情在线av| 久久国产精品影院| 国产高清videossex| 一级片免费观看大全| 免费少妇av软件| a级毛片黄视频| 亚洲国产中文字幕在线视频| 99国产精品一区二区蜜桃av| 国产又色又爽无遮挡免费看| 两性午夜刺激爽爽歪歪视频在线观看 | 一a级毛片在线观看| 欧美日韩av久久| 午夜久久久在线观看| 久久久久国内视频| 99在线人妻在线中文字幕| 精品高清国产在线一区| 日韩高清综合在线| 欧美在线黄色| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品国产一区二区精华液| 一个人观看的视频www高清免费观看 | 国产免费男女视频| 欧美中文日本在线观看视频| 久久99一区二区三区| av欧美777| 国产精品亚洲一级av第二区| 9色porny在线观看| 欧美成狂野欧美在线观看| 国产精品九九99| 久久人人97超碰香蕉20202| 搡老熟女国产l中国老女人| 精品日产1卡2卡| a级毛片在线看网站| 欧美激情 高清一区二区三区| 老司机靠b影院| 精品卡一卡二卡四卡免费| 免费看十八禁软件| 在线观看一区二区三区| 午夜激情av网站| 国内久久婷婷六月综合欲色啪| 老鸭窝网址在线观看| 80岁老熟妇乱子伦牲交| 亚洲欧美精品综合一区二区三区| www.精华液| 母亲3免费完整高清在线观看| 国产欧美日韩一区二区三| 在线观看66精品国产| 又大又爽又粗| 91成人精品电影| 韩国av一区二区三区四区| 国产麻豆69| 久久人妻福利社区极品人妻图片| 国产亚洲精品第一综合不卡| 久久精品亚洲精品国产色婷小说| 欧美黄色淫秽网站| 69av精品久久久久久| 国产主播在线观看一区二区| 国产精品一区二区精品视频观看| 高清在线国产一区| 欧美日韩一级在线毛片| 免费观看人在逋| 国产蜜桃级精品一区二区三区| 999久久久精品免费观看国产| 久久久久久久久中文| 欧美丝袜亚洲另类 | 一区二区三区精品91| 久久久久久大精品| 一a级毛片在线观看| 久久精品91蜜桃| 韩国av一区二区三区四区| 搡老乐熟女国产| 两人在一起打扑克的视频| 欧美人与性动交α欧美精品济南到| 亚洲激情在线av| 欧美久久黑人一区二区| 精品福利永久在线观看| 丁香欧美五月| www日本在线高清视频| 免费女性裸体啪啪无遮挡网站| 大型黄色视频在线免费观看| 黄色怎么调成土黄色| 午夜精品在线福利| 精品人妻在线不人妻| 老司机亚洲免费影院| 日本wwww免费看| 91精品三级在线观看| 中文亚洲av片在线观看爽| 久久午夜综合久久蜜桃| 日韩高清综合在线| 88av欧美| 国产亚洲av高清不卡| 黑人猛操日本美女一级片| 国产成人影院久久av| 国产蜜桃级精品一区二区三区| 欧美成人午夜精品| 国产精品 欧美亚洲| 欧美在线一区亚洲| 巨乳人妻的诱惑在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 日韩精品免费视频一区二区三区| 超碰成人久久| 国产成人一区二区三区免费视频网站| 精品一区二区三区视频在线观看免费 | 夫妻午夜视频| 亚洲精品美女久久久久99蜜臀| 久久国产精品影院| 美女扒开内裤让男人捅视频| 精品国产美女av久久久久小说| 精品久久久久久,| 欧美 亚洲 国产 日韩一| 日本wwww免费看| 露出奶头的视频| 91精品三级在线观看| 欧美不卡视频在线免费观看 | 中文字幕精品免费在线观看视频| 夜夜夜夜夜久久久久| 成年人免费黄色播放视频| 久久人人97超碰香蕉20202| 在线国产一区二区在线| e午夜精品久久久久久久| 国内毛片毛片毛片毛片毛片| 久久久国产欧美日韩av| 超碰成人久久| 欧美中文日本在线观看视频| 久久99一区二区三区| 1024香蕉在线观看| 午夜两性在线视频| 国产成人av激情在线播放| 国产精品成人在线| 美女高潮到喷水免费观看| 久久久久亚洲av毛片大全| 91九色精品人成在线观看| 午夜久久久在线观看| 久久久久国内视频| 亚洲成av片中文字幕在线观看| 亚洲成人久久性| 欧美乱码精品一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 国产精品 国内视频| 人人妻人人爽人人添夜夜欢视频| 精品国产国语对白av| 久久久久国产一级毛片高清牌| 欧美在线一区亚洲| 99国产精品免费福利视频| 身体一侧抽搐| 精品高清国产在线一区| 99久久综合精品五月天人人| 精品国产乱码久久久久久男人| 亚洲国产看品久久| 久热爱精品视频在线9| 我的亚洲天堂| 亚洲九九香蕉| 在线永久观看黄色视频| 亚洲成人久久性| 成人永久免费在线观看视频| 日本三级黄在线观看| 亚洲色图 男人天堂 中文字幕| a级片在线免费高清观看视频| 18禁观看日本| 亚洲专区国产一区二区| 国产激情欧美一区二区| 人妻久久中文字幕网| 国产色视频综合| 人人妻人人爽人人添夜夜欢视频| 日韩精品青青久久久久久| 欧美精品啪啪一区二区三区| 国产99久久九九免费精品| 琪琪午夜伦伦电影理论片6080| 9热在线视频观看99| 一区二区三区国产精品乱码| 午夜免费激情av| av在线天堂中文字幕 | 身体一侧抽搐| 亚洲人成网站在线播放欧美日韩| 一级毛片精品| 国产亚洲欧美98| 亚洲熟妇熟女久久| 日韩成人在线观看一区二区三区| 亚洲欧洲精品一区二区精品久久久| 久久九九热精品免费| 香蕉丝袜av| 丰满的人妻完整版| 国产高清视频在线播放一区| 欧美日韩乱码在线| 成年人免费黄色播放视频| 国产精品综合久久久久久久免费 | 亚洲国产精品sss在线观看 | 国产精品免费视频内射| 在线国产一区二区在线| 久久久久精品国产欧美久久久| 三级毛片av免费| 高清毛片免费观看视频网站 | 丝袜在线中文字幕| 岛国在线观看网站| 真人做人爱边吃奶动态| 免费在线观看黄色视频的| av超薄肉色丝袜交足视频| 国产三级黄色录像| 男女下面进入的视频免费午夜 | 少妇的丰满在线观看| 日韩高清综合在线| 91av网站免费观看| 欧美老熟妇乱子伦牲交| 精品一区二区三区视频在线观看免费 | 日本a在线网址| 91精品三级在线观看| 亚洲第一av免费看| 又黄又粗又硬又大视频| 伦理电影免费视频| 美女 人体艺术 gogo| 69av精品久久久久久| 天堂动漫精品| 男女下面进入的视频免费午夜 | 国产精品爽爽va在线观看网站 | 一区在线观看完整版| 男女之事视频高清在线观看| 国产91精品成人一区二区三区| 精品福利观看| 黑人操中国人逼视频| 成人18禁高潮啪啪吃奶动态图| 麻豆国产av国片精品| 国产成人精品无人区| 一二三四社区在线视频社区8| 一级a爱视频在线免费观看| 久久久久久亚洲精品国产蜜桃av| av福利片在线| 啪啪无遮挡十八禁网站| 国产精品免费一区二区三区在线| 村上凉子中文字幕在线| 悠悠久久av| 在线观看舔阴道视频| 一级毛片精品| 国产高清videossex| 欧美一级毛片孕妇| 18禁黄网站禁片午夜丰满| 免费搜索国产男女视频| 叶爱在线成人免费视频播放| 日韩三级视频一区二区三区| 亚洲欧美日韩无卡精品| 女人被躁到高潮嗷嗷叫费观| 一边摸一边抽搐一进一出视频| 国产成人精品久久二区二区免费| 大码成人一级视频| 亚洲欧美激情综合另类| 欧美日韩亚洲综合一区二区三区_| 88av欧美| 国产高清激情床上av| 波多野结衣av一区二区av| 久久精品91蜜桃| 久久精品亚洲熟妇少妇任你| 黄色毛片三级朝国网站| 最近最新中文字幕大全电影3 | 欧美+亚洲+日韩+国产| 精品少妇一区二区三区视频日本电影| 日韩国内少妇激情av| 99精品在免费线老司机午夜| 成人18禁在线播放| 亚洲免费av在线视频| 99久久国产精品久久久| 亚洲精华国产精华精| 18禁美女被吸乳视频| 成人亚洲精品一区在线观看| 88av欧美| 最好的美女福利视频网| 女人被躁到高潮嗷嗷叫费观| 九色亚洲精品在线播放| 久久久久国产精品人妻aⅴ院| 亚洲国产欧美网| xxxhd国产人妻xxx| 国产高清国产精品国产三级| 97超级碰碰碰精品色视频在线观看| 99热国产这里只有精品6| 一区二区三区精品91| 中国美女看黄片| 国产成人精品无人区| 99精国产麻豆久久婷婷| 国产精品九九99| a级片在线免费高清观看视频| 久久欧美精品欧美久久欧美| 悠悠久久av| 国产成人欧美| 国产一区二区三区视频了| 999精品在线视频| 久久久久久免费高清国产稀缺| 侵犯人妻中文字幕一二三四区| 超碰成人久久| 不卡av一区二区三区| 久久 成人 亚洲| 窝窝影院91人妻| 啦啦啦在线免费观看视频4| 国产精品永久免费网站| 操美女的视频在线观看| 精品午夜福利视频在线观看一区| 91国产中文字幕| 成在线人永久免费视频| av有码第一页| 亚洲人成77777在线视频| 女生性感内裤真人,穿戴方法视频| 日本黄色日本黄色录像| 免费av毛片视频| 不卡一级毛片| 精品一区二区三区视频在线观看免费 | 他把我摸到了高潮在线观看| 在线观看一区二区三区| 欧美+亚洲+日韩+国产| 国产深夜福利视频在线观看| 18禁观看日本| 亚洲伊人色综图| 少妇 在线观看| 亚洲熟女毛片儿| 精品少妇一区二区三区视频日本电影| 超碰成人久久| 国产精品久久久久成人av| 亚洲一区二区三区不卡视频| 咕卡用的链子| 欧美人与性动交α欧美软件| a级毛片黄视频| 曰老女人黄片| 老司机在亚洲福利影院| av国产精品久久久久影院| 看免费av毛片| 国产成人免费无遮挡视频| 国产成人精品久久二区二区免费| 91在线观看av| 国产亚洲精品一区二区www| a级毛片黄视频| 一级a爱视频在线免费观看| 国产成+人综合+亚洲专区| 成年版毛片免费区| 成人特级黄色片久久久久久久| 日本黄色视频三级网站网址| 国产精品综合久久久久久久免费 | 两个人免费观看高清视频| 亚洲av美国av| videosex国产| 欧美日韩乱码在线| 国产一区二区三区综合在线观看| 天堂动漫精品| 久久久精品欧美日韩精品| 少妇裸体淫交视频免费看高清 | 亚洲精品成人av观看孕妇| 黑人操中国人逼视频| 久久精品亚洲熟妇少妇任你| 高清欧美精品videossex| 亚洲va日本ⅴa欧美va伊人久久| 美国免费a级毛片| 9热在线视频观看99| 亚洲五月色婷婷综合| 日本黄色视频三级网站网址| 999久久久国产精品视频| 欧美日本亚洲视频在线播放| 亚洲欧美激情综合另类| 精品欧美一区二区三区在线| 黄色丝袜av网址大全| 亚洲 欧美一区二区三区| 一边摸一边做爽爽视频免费| 男女下面进入的视频免费午夜 | 一区在线观看完整版| 久久人人爽av亚洲精品天堂| 黑人巨大精品欧美一区二区mp4| 欧美在线黄色| 精品国产美女av久久久久小说| 国产三级黄色录像| 国产精品 国内视频| 电影成人av| 日韩人妻精品一区2区三区| 一个人观看的视频www高清免费观看 | 精品国产乱子伦一区二区三区| 校园春色视频在线观看| 多毛熟女@视频| 久久久久久久久免费视频了| 看片在线看免费视频| 欧美日韩瑟瑟在线播放| 日本黄色视频三级网站网址| 亚洲av成人不卡在线观看播放网| 亚洲自拍偷在线| 国产一卡二卡三卡精品| 欧美激情极品国产一区二区三区| 丝袜美腿诱惑在线| 母亲3免费完整高清在线观看| 精品熟女少妇八av免费久了| 日本撒尿小便嘘嘘汇集6| 黑人猛操日本美女一级片| 精品日产1卡2卡| 久久国产精品人妻蜜桃| 国产激情欧美一区二区| 精品久久久精品久久久| 国产精品一区二区精品视频观看| 亚洲三区欧美一区| 97碰自拍视频| 亚洲片人在线观看| 国产一区二区在线av高清观看| 亚洲欧美一区二区三区黑人| 大香蕉久久成人网| 国产亚洲欧美98| 最近最新中文字幕大全电影3 | 国产无遮挡羞羞视频在线观看| 亚洲专区中文字幕在线| 啦啦啦免费观看视频1| 亚洲第一青青草原| 嫩草影院精品99| 中国美女看黄片| 日本wwww免费看| 国产av一区在线观看免费| 真人做人爱边吃奶动态| 一边摸一边抽搐一进一出视频| 日韩精品青青久久久久久| 成人免费观看视频高清| 可以免费在线观看a视频的电影网站| 最近最新中文字幕大全电影3 | 亚洲成人国产一区在线观看| 岛国视频午夜一区免费看| 亚洲久久久国产精品| 日本a在线网址| 男人的好看免费观看在线视频 | 大型av网站在线播放| tocl精华| 如日韩欧美国产精品一区二区三区| 国产片内射在线| 咕卡用的链子| 又紧又爽又黄一区二区| 999久久久精品免费观看国产| 中文亚洲av片在线观看爽| 国产高清视频在线播放一区| 国产野战对白在线观看| 一区二区日韩欧美中文字幕| 午夜福利一区二区在线看| 97碰自拍视频| 国产精品香港三级国产av潘金莲| 久久精品成人免费网站| 免费观看精品视频网站| 成人国产一区最新在线观看| 欧美日韩乱码在线| 国产片内射在线| 欧美一区二区精品小视频在线| 俄罗斯特黄特色一大片| www.精华液| 丝袜在线中文字幕| 久久中文字幕人妻熟女| 精品久久久久久成人av| 欧美日韩黄片免| 俄罗斯特黄特色一大片| √禁漫天堂资源中文www| 色哟哟哟哟哟哟| 叶爱在线成人免费视频播放| 亚洲男人的天堂狠狠| 久久婷婷成人综合色麻豆| 99精国产麻豆久久婷婷| 国产精品 欧美亚洲| 女人被躁到高潮嗷嗷叫费观| 欧美日韩亚洲综合一区二区三区_| 法律面前人人平等表现在哪些方面| 欧美日韩黄片免| 久久中文字幕一级| 国产成人啪精品午夜网站| 每晚都被弄得嗷嗷叫到高潮| 中文字幕另类日韩欧美亚洲嫩草| 黄色丝袜av网址大全| 91字幕亚洲| 亚洲av熟女| 脱女人内裤的视频| 国产亚洲精品第一综合不卡| 中国美女看黄片| 看黄色毛片网站| 80岁老熟妇乱子伦牲交| 日韩有码中文字幕| 在线十欧美十亚洲十日本专区| 日韩欧美三级三区| 欧美丝袜亚洲另类 | 激情在线观看视频在线高清| 国产精品一区二区三区四区久久 | 女人爽到高潮嗷嗷叫在线视频| 少妇被粗大的猛进出69影院| 18禁裸乳无遮挡免费网站照片 | 午夜精品国产一区二区电影| 狠狠狠狠99中文字幕| xxxhd国产人妻xxx| 巨乳人妻的诱惑在线观看| 男人操女人黄网站| 免费日韩欧美在线观看| 亚洲av成人av| 成人亚洲精品av一区二区 | 18禁裸乳无遮挡免费网站照片 | 国产精品一区二区精品视频观看| 日本精品一区二区三区蜜桃| 亚洲国产中文字幕在线视频| 在线观看免费视频日本深夜| 久久精品人人爽人人爽视色| 久久久久精品国产欧美久久久| 人人妻,人人澡人人爽秒播| 亚洲五月天丁香| 黑人操中国人逼视频| 日韩精品免费视频一区二区三区| 这个男人来自地球电影免费观看| 午夜91福利影院| 精品人妻在线不人妻| 日本撒尿小便嘘嘘汇集6| 亚洲三区欧美一区| 天堂中文最新版在线下载| 亚洲 欧美一区二区三区| 亚洲片人在线观看| aaaaa片日本免费| 午夜两性在线视频| 狠狠狠狠99中文字幕| 免费一级毛片在线播放高清视频 | 亚洲欧美日韩无卡精品| 久久香蕉激情| 777久久人妻少妇嫩草av网站| 国产一区二区三区在线臀色熟女 | 国产精品香港三级国产av潘金莲| 人人妻人人澡人人看| 在线观看66精品国产| 欧美日韩乱码在线| 中文字幕av电影在线播放| 国产欧美日韩一区二区三| 成年女人毛片免费观看观看9| 人人妻,人人澡人人爽秒播| 超色免费av| 激情在线观看视频在线高清| 久久久精品欧美日韩精品| 人人妻人人添人人爽欧美一区卜| 午夜a级毛片| 成人国语在线视频| ponron亚洲| 久久精品成人免费网站| 老司机深夜福利视频在线观看| 五月开心婷婷网| 9色porny在线观看| 亚洲精品久久成人aⅴ小说| e午夜精品久久久久久久| 一进一出抽搐gif免费好疼 | 亚洲午夜精品一区,二区,三区| 黑丝袜美女国产一区| 黄色a级毛片大全视频| 80岁老熟妇乱子伦牲交| 久久草成人影院| 亚洲精品在线观看二区| 欧美精品一区二区免费开放| 国产精品一区二区精品视频观看| 日韩欧美免费精品| 看片在线看免费视频| 91精品三级在线观看| 级片在线观看| 午夜福利欧美成人| 女人被狂操c到高潮| 亚洲 国产 在线| 国产av又大| 少妇 在线观看| 人成视频在线观看免费观看| 成人永久免费在线观看视频| 亚洲精品美女久久久久99蜜臀| 成人影院久久| 午夜a级毛片| 婷婷丁香在线五月| 村上凉子中文字幕在线| 精品一区二区三区四区五区乱码| 女人被躁到高潮嗷嗷叫费观| 国产精品偷伦视频观看了| 亚洲五月色婷婷综合| 一级片免费观看大全| 色老头精品视频在线观看| 国产有黄有色有爽视频| 精品国产国语对白av| 90打野战视频偷拍视频| 啦啦啦在线免费观看视频4| 国产精品一区二区三区四区久久 | 精品少妇一区二区三区视频日本电影| 交换朋友夫妻互换小说| 国产精品久久久久成人av| 欧美日韩亚洲综合一区二区三区_| 午夜日韩欧美国产| 欧美日韩中文字幕国产精品一区二区三区 | 国产三级在线视频| 日本撒尿小便嘘嘘汇集6| 好男人电影高清在线观看| 操出白浆在线播放| 麻豆久久精品国产亚洲av | 日韩免费高清中文字幕av| 极品教师在线免费播放| 美女福利国产在线| 久久精品人人爽人人爽视色| 美女福利国产在线| 国产精品日韩av在线免费观看 | www国产在线视频色| 12—13女人毛片做爰片一| 一区在线观看完整版| 亚洲成人久久性| 日韩有码中文字幕| 久久人人97超碰香蕉20202| 国产成人一区二区三区免费视频网站| 12—13女人毛片做爰片一| 中文字幕人妻熟女乱码| 身体一侧抽搐| 别揉我奶头~嗯~啊~动态视频| 成人av一区二区三区在线看| 日韩有码中文字幕| 伊人久久大香线蕉亚洲五| 国产麻豆69| 亚洲美女黄片视频| 两人在一起打扑克的视频| 久久久国产欧美日韩av| 久久草成人影院| 国产精品香港三级国产av潘金莲| 日韩欧美在线二视频| 欧美午夜高清在线| 精品久久久久久久久久免费视频 | 丝袜人妻中文字幕|