【摘 要】現行的高等數學教材幾乎很少涉及數學史,絕大多數都是系統(tǒng)的數學知識。這說明數學史沒有得到相應的重視甚至被忽略,但并不是說數學史在高等數學教學中不重要。本文將討論數學史在激發(fā)學生學習數學的興趣、培養(yǎng)學生的創(chuàng)新精神和培養(yǎng)民族自豪感等方面的作用。
【關鍵詞】高等數學 數學史 教學 創(chuàng)新精神
【中圖分類號】G642 【文獻標識碼】A 【文章編號】1674-4810(2014)27-0096-02
高等數學幾乎是所有理、工、醫(yī)科大學生都要學習的課程,部分高校中文科的學生也要學習這門課程。它不僅是必修課,而且也是后繼課程的基礎。目前,高等數學的教學情況是,內容非常多,課時總量較少。比如,對于高等數學下冊的教學來說,要在96個課時里講解五章三十六節(jié)的內容,平均每節(jié)2.7個課時。對于高度抽象、知識豐富的高等數學的教學是很緊張的,這也是數學史很少被提及的一個重要原因。但數學史的重要作用又是不容忽視的,她是數學之所以是今天這個樣子的原因,也是決定高等數學教學內容的一個重要原因。正如Henri Poincare 所言:“如果我們想要預見數學的將來,適當的途徑是研究這門科學的歷史和現狀。”同時,數學科學的積累性也告訴我們數學史在教學中的重要性。很多學科,如物理、化學等幾乎是在推翻前人的結果上不斷發(fā)展起來的,而數學是一輩又一輩的人積累起來的。就數學的三次危機而言,起先好像是對以前理論的否定,但事實證明它們都是一次又一次地豐富了數學的內容。鑒于數學的這些特點,本文將討論數學史在高等數學教育中的幾個作用。
一 數學史可以激發(fā)學生學習高等數學的興趣
翻開高等數學的教材大家可以很真實地感受到高等數學高度的抽象性、強烈的邏輯性、證明的嚴謹性。高等數學的教學套路也基本是給出抽象的概念,給出一些例子,再引出一些重要的定理,最后給出嚴謹地證明以及推論。對于絕大多數學生來說,高等數學的學習就是一個枯燥乏味、艱深難懂以及備受煎熬的過程。就現在大學的教育來說,不管是工科、理科還是醫(yī)科的學生都必須學習高等數學。然而,很多學生覺得高等數學沒有什么用處。其實不然,正如我國著名數學家華羅庚所言:“宇宙之大,粒子之微,火箭之速,化工之巧,地球之變,生物之謎,日用之繁,無處不用數學?!奔热粩祵W的作用如此之大,那么怎樣才能讓學生熱愛數學、學習數學和運用數學呢?
興趣是最好的老師。只有學生對數學產生了濃厚的興趣,才能坐下來認真學習高等數學這門重要而難懂的課程。如果教師能把枯燥乏味、抽象艱深的數學知識納入一個個妙趣橫生、活靈活現的歷史故事中,就可以增加學生的興趣,提高學生的注意力,達到提高學習效率的目的。例如,在講微分學基本公式——牛頓-萊布尼茨公式的時候,不僅可以講述牛頓和萊布尼茨不同的生平故事,還可以講述著名的“牛頓與萊布尼茨的微積分發(fā)明權之爭”??茖W家的生平可以增加數學的感受性、興趣性以減少數學的枯燥性,而這場著名的爭論被認為是“科學史上最不幸的一章”?!安恍摇倍忠馕吨@場爭論留給后人不少歷史的教訓,這些教訓也可以讓學生受益匪淺。
二 數學史可以培養(yǎng)學生的創(chuàng)新精神
教材上的數學公式、定理、理論都是前人苦心鉆研經過無數次的探索、挫折和失敗后才形成的,是與當時社會背景、哲學思想、數學家的獨創(chuàng)精神密不可分的數學成果。但是,單從這些數學公式、定理、理論上是看不出其被創(chuàng)造的歷史過程的。高等數學的教育不僅僅是讓學生掌握一定的知識,會做一些題目,最重要的是要他們能夠從數學的學習中領悟到數學的精神本質,增加學生的創(chuàng)新能力。
數學史是理解數學本質的一種重要途徑。在高等數學的教學中融入相應的數學史知識,把這些知識發(fā)生的過程、形成的背景展示給學生,使學生能夠親歷發(fā)現知識的過程,體驗成功的喜悅,從而真正地理解和掌握相應的知識。數學史讓學生認識數學發(fā)展的規(guī)律,加深理解數學概念、定理、公式和數學思維,從而提高學生的原創(chuàng)能力,培養(yǎng)創(chuàng)新精神。例如,在講解了牛頓-萊布尼茨公式、格林公式、高斯公式和斯托克斯公式之后,就可以把相關的數學史稍加介紹,并引導學生去發(fā)現這些公式之間的關系。這不僅能夠使學生對公式的內在聯系有更深刻的認識,還能夠引導學生發(fā)現數學研究的一個重要方法,即對已有的知識進行推廣。推廣可以是從低維到高維、從有限到無限等。只有掌握了重要的研究方法,學生才能真正掌握知識,理解數學思想,提升創(chuàng)造能力。
三 數學史可以培養(yǎng)學生的民族自豪感
數學是中國古代最為發(fā)達的基礎科學學科之一,約公元前3世紀至公元14世紀初一直處于世界先進水平。夏、商、周三代雖無數學著作流傳到現在,但是完成了世界上最方便的計數制——十進位制記數法,創(chuàng)造出當時世界上最先進的計算工具——算籌,是具有世界意義的兩項成就。西漢完成《九章算術》《周髀算經》等著作的編撰,是中國傳統(tǒng)數學的第一個高潮。劉徽《九章算術注》“析理以辭,解體用圖”,提出許多嚴格的數學定義,并以演繹邏輯為主要方法全面證明了《九章算術》的算法。他對圓面積公式和劉徽原理的證明在世界數學史上首次將極限思想和無窮小分割方法引入數學證明。祖沖之父子的數學水平不會低于劉徽,可惜對他們在數學上的造詣,我們只知道只鱗片爪。此外,《數術記遺》《孫子算經》《張丘建算經》《緝古算經》等在計算工具的改進、不定方程解法、三次方程上也有貢獻。《綴術》是中國古代水平最高的數學著作(可惜已經失傳)。北宋賈憲、劉益,南宋秦九昭、楊輝,金元李治、朱世杰等在高次方程、高次方程組解法、一次同余方程組解法、垛積術和招差術等高深數學的許多分支取得了超前其他文化傳統(tǒng)幾個世紀的成果。
教育是有意識地、以影響人的身心發(fā)展和以培養(yǎng)人為目的的,在一定社會背景下發(fā)生的促進個體的社會化和社會的個體化的實踐活動。在高等數學的教育教學中,教師可充分利用中國數學的成就和中國數學家的人格魅力,去影響學生的身心發(fā)展,增強學生的愛國主義精神和民族自豪感以及學好高等數學的自信心,使學生成長為擁有崇高的社會主義理想、強烈的民族自豪感、百折不撓的進取精神以及充足知識儲備和創(chuàng)新精神的社會主義建設者。
總之,要充分發(fā)揮數學史在高等數學教育教學中的作用,就應當在教授學生數學知識的同時,有意識、有目的、有策略地把數學的歷史發(fā)展和數學家的生平故事及科學精神滲透其中。在使學生體驗問題的提出背景和知識的發(fā)生、發(fā)展過程的同時,認識數學的發(fā)展規(guī)律,把握數學成果中所蘊含的思想和方法。為此,高校教師不僅要有充足的專業(yè)知識儲備,還應對數學史中特別有趣的數學故事和著名的數學家如數家珍,對現行的有關數學史和數學家的代表性著作有較多的了解,并能夠根據學生的實際情況為他們推薦一些優(yōu)秀的數學史、數學家傳記以及著作,這樣不僅可以增進學生對數學的興趣,而且可培養(yǎng)學生的創(chuàng)新精神和民族自豪感。
〔責任編輯:林勁〕