• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    電化學蝕刻鉭箔制備高容量薄膜鉭電解電容器

    2021-02-02 05:17:42郭永富王日明于淑會初寶進
    集成技術 2021年1期
    關鍵詞:電解電容器薄膜

    郭永富 王日明 于淑會 初寶進 孫 蓉

    1(深圳先進電子材料國際創(chuàng)新研究院 深圳 518103)

    2(中國科學院深圳先進技術研究院 深圳 518055)

    3(中國科學技術大學納米科學技術學院 蘇州 215123)

    4(中國科學技術大學 中國科學院能量轉換材料重點實驗室 合肥 230026)

    1 Introduction

    Fig. 1 Schematic illustration of (a) commercially available copper/dielectric layer/copper structured embedded capacitors, and (b) discrete thin film tantalum electrolytic capacitors圖1 埋入式電容與分立式薄膜電解電容對比圖: (a)商用銅/介電層/銅結構嵌入式電容器;(b)分立薄膜電解電容器

    Electronic devices are continuously progressing toward miniaturization, which puts forward requirements on the size of constituent components. However, the limited surface area on an integrated circuit (IC) board creates a bottleneck on the development of high-density integrated circuits. To solve this problem, the idea of embedding components in the printed circuit board or IC substrate has been proposed[1-6]. Capacitors account for more than half of the passive components on an IC board, covering around 40% of the surface area[7]. Thus, the development of embedded capacitors with high energy density is of vital importance in the advancement of high-density IC[8-9]. However, the current commercial embedded capacitors with BaTiO3filled polymer as dielectric layer (Fig. 1(a)) can only afford very small capacitance of <0.1 nF/mm2, which hinders its wide application[10]. Due to its small specific capacitance value, the embedded capacitance of this ceramic/polymer composite material needs to occupy a large internal space in the circuit board when a large capacitance is needed. So an alternative strategy of using small-sized surface-mounted capacitors as embedded components (Fig. 1(b)) is put forward[11]. Among all types of capacitors, multilayered ceramic capacitors (MLCC) and Tantalum (Ta) electrolytic capacitors are playing dominant roles. Although MLCC has been widely used in electronic devices for its excellent high-voltage and high-frequency performance, MLCC severely suffers from the unstable capacitance with the fluctuation of voltage, temperature, and stress[12-16]. By comparison, Ta possesses a small thermal expansion coefficient[17], and tantalum pentoxide (Ta2O5) exhibits stable physical and chemical properties[18], which both contribute to the outstanding stability of Ta electrolytic capacitors, endowing Ta electrolytic capacitors great potential for their application as embedded capacitors in high-density IC system. Traditionally, the anode of Ta electrolytic capacitors is produced by the sintering of Ta powders[19-20], and the Ta electrolytic capacitor based on sintered Ta anode can provide a high specific capacitance of 0.1 μF~1 000 μF. However, the sintering process is complicated, and usually requires a highly vacuum condition under a temperature of over 1 200 °C[21-25]. The thickness of the obtained Ta electrolytic capacitor is usually beyond millimeter level, and such a huge thickness impedes its application as embedded capacitors, because the substrate where the passives are embedded has a limited thickness of several hundred micrometers.

    Ta and Niobium (Nb) foils etchings have been reported, which involves the electrolyte containing hydrofluoric acid or its mixture[26], and the etched foils were used for catalysis. Similarly, isopropyl alcohol and n-butanol solutions of hydrofluoric acid were used to etch niobium foil, and a better etching effect was obtained[27-28]. Herein, we propose the utilization of invasive electrolyte (hydrofluoric acid n-butyl alcoholic solution) for the electrochemical etching of the Ta foils to fabricate anode for Ta electrolytic capacitors. The equation to calculate the capacitance of a parallel plate capacitor is listed as follows:

    whereεis the permittivity of the dielectric (ε=25 for the anodic oxide of Ta),ε0=8.85×10-14F/cm is the permittivity of free space,Sis the surface area, anddis the dielectric thickness. Based on this equation, it is clear that large capacitance requires largeSwhendis fixed.

    With the electrochemical etching approach, a thin Ta foil can be controllably etched, and the thin foil with enlarged surface area shows a specific capacitance as high as 74 nF/mm2with an oxidation voltage of 12 V when measured in 0.1 mol/L H2SO4. The etched Ta foils is then fabricated into electrolytic capacitors after the deposition of cathode layer, graphite layer, and silver paste[29]in sequence. The electrolytic capacitors based on electrochemically etched Ta foils demonstrate a stable capacitance of >30 nF/mm2over the frequency range of 100 Hz~1 MHz and a low leakage current of 2.7×10-6A. The electrolytic capacitor has a thickness of 75 μm, which is thin enough for their application as embedded capacitors.

    2 Experimental

    2.1 Materials

    Tantalum foils (99.9% purity) with a thickness of 50 μm were purchased from Sigma-Aldrich, China. Phosphoric acid (H3PO4, ≥85wt%) and hydrofluoric acid (HF, ≥40wt%) were purchased from Sinopharm Chemical Reagent. n-butanol (AR, 99%) was purchased from Aladdin. Platinum electrodes were used as counter electrode for both Ta etching and oxidation process. A polytetrafluoroethylene electrolytic cell (Shanghai Honghe Sealing Material Co. LTD), with a volume of 50 mL, was used for etching.

    2.2 Electrochemical etching of Ta foils

    Hydrofluoric acid was diluted to 2 wt% with n-butanol, and was used as etching electrolyte. The tantalum foil was cut to an area of 5 mm×5 mm, the same size as the counter electrode. Tantalum foils were ultra-sonicated in 2-butanone for 10 min, followed by washing with ethanol and drying in oven at 80 ℃, and 20 mL etching electrolyte was added into an electrolytic cell. A series of samples were obtained by applying a pre-defined etching voltage (in the range of 20~80 V) at ambient temperature. The duration of etching time was 2~5 h. The electrochemically etched Ta foils were denoted as Ta-20V2H, Ta-40V2H, Ta-60V2H, Ta-80V2H, Ta-40V3H, Ta-40V4H, and Ta-40V5H, respectively, where the first two digits represented the applied voltage, i.e., 20 V, 40 V, 60 V, and 80 V, and the last digit represented etching hours, i.e., 2 hours, 3 hours, 4 hours, and 5 hours. During the etching process, the speed of the magnetic stirring was set as 800 r/min.

    2.3 Oxidation (Ta2O5 formation)

    The Ta foils were oxidized at a constant voltage of 12 V (formation voltage) for 3 h in 0.1 wt% H3PO4aqueous solution at 80 ℃.

    2.4 Characterizations

    The morphology of pristine and etched Ta foils was examined by field-emission scanning electric microscope (FE-SEM, FEI NovaNano SEM450). The surface elements of tantalum foil before etching, after etching and after oxidation were analyzed by X-ray photoelectron spectroscopy (XPS, Thermo Fisher EscaLab 250Xi). 3D Laser Scanning Microscope was used to analyze the surface of etched tantalum foil. Three 1 000 μm×1 000 μm areas were randomly selected for measurement, and the multi-line roughness Ra was measured.

    2.5 Measurement of specific capacitance

    The capacitance (C) was measured in 0.1 mol/L H2SO4by Precision Impedance Analyzer (Agilent 4294a) in the frequency range of 100 Hz~110 MHz as shown in Fig. 2 (a, c). The counter electrode material is platinum foil. The capacitor lead reserved on the tantalum anode is clamped with a platinum clip and the anode is immersed in sulfuric acid solution. The specific capacitance was acquired by dividing C tested at 100 Hz with the surface area of tantalum foils.

    Fig. 2 Schematic illustration of (a) and (c) measuring capacitance of anode in 0.1 mol/L H2SO4, (b) and (d) measuring capacitance of tantalun capacitor圖2 鉭薄膜電容的濕法測試和器件測試過程: (a)、(c)鉭電容陽極電容值的測量,(b)、(d)鉭電容器件的測試

    The oxidized Ta foils are also fabricated into Ta electrolytic capacitor by the deposition of Poly (2,3-dihydrothieno-1,4-dioxin), graphite layer, and silver paste. The leakage current was measured by an electrochemical workstation (Shanghai Chenhua Instrument Co., Ltd), and the testing process is shown in Fig. 2(b, d). The capacitive performance of Ta electrolytic capacitor is measured by Precision Impedance Analyzer (Agilent 4294A) in the frequency range of 100 Hz~110 MHz as shown in Fig. 2 (b, d).

    3 Results and Discussions

    3.1 Physical characterizations of electrochemically etched Ta foils

    The surface of pristine Ta foil is not absolutely smooth and has certain roughness before etching (Fig. 3(a)). After electrochemical etching, the surface roughness is enhanced. SEM images (Fig. 3(b-d)) indicate that the surface roughness is linked with the applied voltage, and the surface is more roughened with higher applied voltage. Although the surface of Ta-80V2H appears to be less rough (Fig. 3(e)), large density of holes and even cracks can be found under higher magnification (Fig. 3(f)). The cracks in Ta-80V2H significantly lowers the mechanical property of Ta foils, which makes it impossible to fabricate electrolytic capacitors.

    Fig. 3 SEM images of (a) pristine Ta foils, (b) Ta-20V2H, (c) Ta-40V2H, (d) Ta-60V2H, and (e-f) Ta-80V2H圖3 不同蝕刻條件下得到的鉭箔表面 SEM 圖:(a)無蝕刻,(b) Ta-20V2H,(c) Ta-40V2H,(d) Ta-60V2H,(e-f) Ta-80V2H

    The SEM images of Ta foils etched with 40 V for different hours are shown in Fig. 4, and deep etched holes can be found on all the samples. However, limited by the qualitative nature of SEM images, no significant difference is identified among the SEM images of different etching hours under either low magnification (Fig. 4(a, c, e, g)) or high magnification (Fig. 4(b, d, f, h)). Therefore, 3D Laser Scanning Microscope is used to quantify the influence of electrochemical etching on the Ta surface roughness.

    Fig. 4 SEM images of (a-b) Ta-40V2H, (c-d) Ta-40V3H, (e-f) Ta-40V4H, and (g-h) Ta-40V5H圖4 不同蝕刻條件下得到的鉭箔表面 SEM 圖:(a-b) Ta-40V2H,(c-d) Ta-40V3H,(e-f) Ta-40V4H,(g-h) Ta-40V5H

    Fig. 6 XPS regional spectra of (a) pristine Ta foils, (b) Ta-40V2H foil, and (c) oxidized Ta-40V2H foil圖6 蝕刻和氧化前后鉭箔表面元素的 XPS 區(qū)域光譜變化:(a)無蝕刻鉭箔;(b)蝕刻后鉭箔;(c)氧化后鉭箔

    Ra represents the arithmetic mean of the absolute value of contour offset on the sample surface, and can be used to approximately quantify the surface roughness. Fig. 5 shows the Ra value of the pristine Ta foil and etched Ta foils. The Ra shows a steady increasing trend with both etching voltage and etching time, both of which first undergo a slight increase and then go up sharply. The pristine Ta foil has a Ra of 3 μm, while the Ra of Ta-80V2H foil is almost twice of pristine Ta foil (Fig. 5(a)). Ta-40V5H foil possesses a Ra of ~17 μm, about 5.7 times higher than pristine Ta foil (Fig. 5(b)).

    The surface elements of pristine Ta foil, Ta-40V2H foil, and oxidized Ta-40V2H foil are analyzed by XPS. Ta4f regional spectra of all three samples exhibit strong Ta2O5peaks, and the regional Ta4f spectra of the above-mentioned foils are shown in Fig. 6. And pristine Ta foils (Fig. 6(a)) and HFetched Ta foils also show clear peaks corresponding to metallic Ta (Fig. 6(b)), while no metallic Ta peaks are seen on oxidized Ta foils (Fig. 6(c)). The Ta2O5observed on pristine Ta foils is native oxide as reported in literature[30], which also explains the difficulty of Ta electrochemical etching in noninvasive electrolytes, i.e. the inert native oxide films on the surface of pristine Ta foils severely impede the electrochemical etching.

    After electrochemical etching in HF electrolyte, the Ta2O5is still obvious in XPS regional spectra (Fig. 6(b)), which may be caused by the continuous formation of Ta2O5during electrochemical etching. Considering that metallic Ta is resistant to HF corrosion, we speculate that the electrochemical etching of Ta foils is a combination of the following two reactions[31]:

    The XPS results (Table 1) also demonstrate that a large percent of oxygens exist in all three samples.

    Table 1 Elemental contents of pristine Ta foil, Ta-40V2H, and oxidized Ta-40V2H as determined by XPS表1 原始鉭箔、Ta-40V2H 鉭箔和氧化 Ta-40V2H 鉭箔的元素含量數(shù)據(jù)

    Since Ta is leaching into the electrolyte during electrochemical etching, the weight loss percentage is measured (Fig. 7). The weight loss percentage shows a nearly linear relation with etching voltage and etching time, highlighting the controllable manner of electrochemical methods. Similar with Ra values, the weight loss percentage shows a steeper slope with etching time than etching voltage.

    3.2 Capacitance enhancement by electrochemical etching

    The specific capacitance of the pristine Ta foil and etched Ta foils are summarized in Fig. 8. In line with Ra and weight loss percentage, the specific capacitance steadily increases with etching voltage (Fig. 8(a)) and time (Fig. 8(b)). Fig. 8(a) shows that the increase of etching voltage leads to the increase of weight loss, and accordingly, the specific capacitance goes up, except for the etching voltage of 80 V, where the specific capacitance almost levels up with 60 V. The weight loss is nearly proportional to the applied voltage in the range from 20 V to 80 V, while the increase of specific capacitance slows down at higher voltage, which may indicate the limited effect of applied voltage on the specific capacitance. It means that the high voltage, such as 80 V, can still increase the weight loss, but does not contribute to the enhancement of surface roughness.

    Fig. 7 Weight loss percentage of (a) Ta foils etched with various voltages for 2 hours, and (b) Ta foils etched with 40 V voltage for various hours圖7 以電壓和時間為變量時鉭箔蝕刻后質(zhì)量變化:(a) 鉭箔在不同電壓下蝕刻 2 h 的失重百分比;(b) 鉭箔在 40 V 電壓下蝕刻不同時間的失重百分比

    Fig. 8 Specific capacitance of (a) Ta foils etched with various voltages for 2 hours, and (b) Ta foils etched with 40 V voltage for various hours圖8 以電壓和時間為變量時鉭箔蝕刻并氧化后電容值的變化:(a) 鉭箔在不同電壓下蝕刻 2 h 的電容值;(b) 鉭箔在 40 V 電壓下蝕刻不同時間的電容值

    The longer etching time results in more weight loss, and the specific capacitance is raised simultaneously, as displayed in Fig. 8(b). Although the SEM images does not show clear difference between the samples with difference etching time, the specific capacitance varies among these samples. It is speculated that the longer etching time at 40 V contributes to deeper etching, thereby increasing the weight loss. At the same time, deeper etching results in the increase of specific area, thus, the specific capacitance is raised.

    3.3 Capacitive performance of Ta electrolytic capacitors fabricated with etched Ta foils

    Fig. 9 Capacitive performance of the Ta electrolytic capacitor fabricated with Ta-40V5H anode, (a) capacitance over the frequency range of 100 Hz~110 MHz with the capacitor area 3 mm×3 mm, (b) equivalent series resistance (ESR) over the frequency range of 100 Hz~110 MHz, (c) the leakage current under 10 V DC voltage, and (d) the comparison of capacitance variation between the thin-film tantalum capacitor and commercial tantalum capacitor over the frequency range of 100 Hz~110 MHz圖9 采用 Ta-40V5H 鉭芯子制作鉭電解電容器,在頻率為 100 Hz~110 MHz 時測試其電學性能:(a)電容值的變化; (b)等效串聯(lián)電阻的變化; (c)10 V 直流電壓下的泄漏電流;(d)薄膜鉭電容器和商業(yè)鉭電容器電容變化對比

    The electrochemically etched Ta foil, Ta-40V5H, was fabricated into Ta electrolytic capacitor after oxidation and the deposition of cathode material (Poly(2,3-dihydrothieno-1,4-dioxin), graphite layer and silver layer). The frequency dependent capacitance and Equivalent Series Resistance (ESR) are summarized in Fig. 9(a) & (b). The Ta electrolytic capacitor based on etched Ta foils shows a high capacitance of >250 nF at the frequency of 1 kHz, and more than 70% of the capacitance is maintained even when the frequency rises to 1 MHz, as shown in Fig. 9(a). As seen from Fig. 9(b), the ESR is about 1 Ω at the low frequency range (<10 kHz), and gradually decreases to 0.5 Ω at MHz level. The leakage current under 10 V is shown in Fig. 9(c), and a relatively stable leakage current of ~10-6A is exhibited which is slightly larger than the commercial capacitor. The effective frequency is more than two orders of magnitude higher than commercial Ta electrolytic capacitors (Fig. 9(d)). The effective frequency of traditional Ta electrolytic capacitors is usually limited to 10 kHz, because the highly porous structure contains large amount of cascaded resistance-capacitance (RC) networks, which causes capacitance drop as frequency rises over 100 kHz[20]. The etched surface can diminish this phenomenon, since the cascaded RC network is restricted on the Ta surface with electrochemical etching method. However, there are disadvantages for embedded tantalum capacitors based on electrochemically etched Ta anode. One is that they are prone to short circuit, so tantalum capacitors are usually used at reduced voltage. As shown in Fig. 9(d), the leakage current of the capacitor is about 2×10-6A, which is slightly larger than that of the commercial capacitor.

    The size of fabricated Ta electrolytic capacitor is compared with the commercial one in Fig. 10(a). A thickness of ~75 μm of our Ta electrolytic capacitor is highlighted in Fig. 10(b), while the commercial Ta capacitor has thickness of ~1.6 mm. A cross-sectional SEM image of the Ta electrolytic capacitor fabricated with Ta-40V5H anode is shown in Fig. 10(c). The thickness of the anode is about 55 μm, while the cathode material accounts for a thickness of around 20 μm. A total thickness of ~75 μm endows this Ta electrolytic capacitor configuration a promising potential for its application as embedded capacitors in IC industry.

    Fig. 10 (a) Sizes of chip tantalum electrolytic capacitors and thin film tantalum electrolytic capacitors, (b) optical microscope cross section of tantalum thin film electrolytic capacitor, and (c) SEM cross section of tantalum film electrolytic capacitor圖10 鉭薄膜電解電容器的實物圖:(a)片狀鉭電解電容器和薄膜鉭電解電容器的尺寸;(b)鉭薄膜電解電容器的光學顯微鏡截面圖;(c)鉭薄膜電解電容器的 SEM 截面圖

    3.4 Discussion and analysis

    Ta and Nb foil etching has been reported[26-28], but the etching results were mediocre according to their SEM images, and the etched Ta or Nb foils were not made into capacitors. In this study, in order to apply the etching method to tantalum capacitors, a thin Ta electrolytic capacitor has been developed based on electrochemically etched Ta foils, and an enhanced capacitance is demonstrated. On the other hand, tantalum thin film capacitors have been studied at home and abroad with the method of tantalum powder sintering[19,20,32]. Electrochemical etching of Ta foils, instead of tantalum powder sintering, has less cost and simpler fabrication process. However, compared with the method of tantalum powder sintering, the capacitance of thin film tantalum capacitors prepared by electrochemical etching is smaller. In addition, the electrical property of tantalum capacitors produced by electrochemical etching needs to be improved, especially the proneness to short circuit.

    4 Conclusions

    In conclusion, we proposed the use of electro- chemical etching as an efficient method to produce thin Ta anode to facilitate its application as embedded capacitor. Both qualitative and quantitative techniques are used to characterize the influence of electrochemical etching on the surface roughness. The applied voltage and the electrochemical etching duration play important roles in determining the surface roughness, which shows a very close relation with specific capacitance. By optimizing the electrochemical etching parameters, the specific capacitance of etched Ta anode can reach as high as 74 nF/mm2. The Ta electrolytic capacitor device fabricated based on the etched Ta foils shows a stable capacitance of >30 nF/mm2in the frequency range of 100 Hz~1 MHz, and a low leakage current of 2.7×10-6A under 10 V DC. The electrochemical etching of thin Ta foils holds promising potential to produce Ta electrolytic capacitor for embedded application.

    猜你喜歡
    電解電容器薄膜
    復合土工薄膜在防滲中的應用
    電容器的實驗教學
    物理之友(2020年12期)2020-07-16 05:39:20
    輕輕松松學“電解”
    含有電容器放電功能的IC(ICX)的應用及其安規(guī)符合性要求
    電子制作(2019年22期)2020-01-14 03:16:28
    無功補償電容器的應用
    山東冶金(2019年5期)2019-11-16 09:09:38
    β-Ga2O3薄膜的生長與應用
    光源與照明(2019年4期)2019-05-20 09:18:18
    高強化平行流電解提高A級銅表面質(zhì)量實踐
    山東冶金(2018年6期)2019-01-28 08:15:06
    一種不易起皮松散的柔軟型聚四氟乙烯薄膜安裝線
    電線電纜(2017年2期)2017-07-25 09:13:35
    石墨烯在超級電容器中的應用概述
    CIGS薄膜太陽電池柔性化
    電源技術(2015年12期)2015-08-21 08:58:58
    日日摸夜夜添夜夜添小说| 一个人看视频在线观看www免费| 国产黄片美女视频| 亚洲av日韩精品久久久久久密| 狠狠狠狠99中文字幕| 国产伦一二天堂av在线观看| 色综合亚洲欧美另类图片| 亚洲黑人精品在线| av在线老鸭窝| 9191精品国产免费久久| 很黄的视频免费| 亚洲国产欧洲综合997久久,| 日韩av在线大香蕉| 最好的美女福利视频网| or卡值多少钱| 精品日产1卡2卡| 欧美bdsm另类| 亚洲国产精品久久男人天堂| 成人三级黄色视频| 欧美成人一区二区免费高清观看| 一级a爱片免费观看的视频| 久久精品国产亚洲av涩爱 | 精品福利观看| 国产亚洲av嫩草精品影院| 五月伊人婷婷丁香| 亚洲精品456在线播放app | 99国产综合亚洲精品| 国产毛片a区久久久久| 日韩精品青青久久久久久| 色5月婷婷丁香| 长腿黑丝高跟| 中文在线观看免费www的网站| 18禁黄网站禁片午夜丰满| 亚洲,欧美精品.| 嫩草影院入口| av天堂中文字幕网| 国产精品美女特级片免费视频播放器| 亚洲精品久久国产高清桃花| 亚洲,欧美,日韩| 国产黄色小视频在线观看| 中出人妻视频一区二区| 一区二区三区四区激情视频 | 天美传媒精品一区二区| 在线观看66精品国产| 国产黄色小视频在线观看| 亚洲国产精品999在线| av黄色大香蕉| 大型黄色视频在线免费观看| 亚洲一区高清亚洲精品| 观看美女的网站| 一区二区三区高清视频在线| 国产成人aa在线观看| 国语自产精品视频在线第100页| 日本撒尿小便嘘嘘汇集6| 久久久久久国产a免费观看| 欧美日本亚洲视频在线播放| a级一级毛片免费在线观看| 亚洲av免费高清在线观看| 国产一区二区亚洲精品在线观看| 麻豆成人av在线观看| 日韩有码中文字幕| 亚洲片人在线观看| 欧美最新免费一区二区三区 | 男插女下体视频免费在线播放| 每晚都被弄得嗷嗷叫到高潮| 亚洲欧美日韩高清专用| 日本 av在线| 免费无遮挡裸体视频| 波多野结衣巨乳人妻| 日本一二三区视频观看| 免费电影在线观看免费观看| 男人舔奶头视频| 变态另类成人亚洲欧美熟女| 亚洲无线观看免费| 精品人妻一区二区三区麻豆 | 热99在线观看视频| 成人av一区二区三区在线看| 美女被艹到高潮喷水动态| 亚洲av一区综合| 欧美黄色片欧美黄色片| 一进一出抽搐gif免费好疼| 午夜日韩欧美国产| 一级作爱视频免费观看| 88av欧美| ponron亚洲| 成人国产综合亚洲| 国产亚洲精品综合一区在线观看| 成熟少妇高潮喷水视频| 精品人妻熟女av久视频| 偷拍熟女少妇极品色| 黄片小视频在线播放| 真人做人爱边吃奶动态| 1024手机看黄色片| 一个人免费在线观看的高清视频| www.色视频.com| 亚洲专区国产一区二区| 日韩欧美国产在线观看| 简卡轻食公司| 我的女老师完整版在线观看| 中文字幕av成人在线电影| 国产av一区在线观看免费| 一区福利在线观看| 老司机深夜福利视频在线观看| 午夜精品久久久久久毛片777| 老司机午夜福利在线观看视频| 欧美极品一区二区三区四区| 国产精品久久久久久久久免 | 最近中文字幕高清免费大全6 | 色播亚洲综合网| 国产成人影院久久av| 一级毛片久久久久久久久女| 日韩av在线大香蕉| 欧美色欧美亚洲另类二区| 简卡轻食公司| 国产一区二区三区在线臀色熟女| 欧美一区二区国产精品久久精品| 久久久久久久精品吃奶| 91狼人影院| 99久久成人亚洲精品观看| 一本一本综合久久| 色哟哟·www| 尤物成人国产欧美一区二区三区| 人人妻人人看人人澡| 亚洲三级黄色毛片| 丝袜美腿在线中文| 一a级毛片在线观看| 国产精品1区2区在线观看.| 成年女人毛片免费观看观看9| 亚洲五月天丁香| 亚洲18禁久久av| 亚洲中文字幕日韩| 久99久视频精品免费| 少妇人妻一区二区三区视频| 亚洲一区高清亚洲精品| 久久久成人免费电影| 国产高潮美女av| 一级av片app| 嫩草影视91久久| 午夜福利成人在线免费观看| 人妻夜夜爽99麻豆av| 欧美一级a爱片免费观看看| 国产午夜精品久久久久久一区二区三区 | 成人av在线播放网站| av天堂中文字幕网| 国产精品永久免费网站| 黄色视频,在线免费观看| 亚洲av二区三区四区| 又黄又爽又刺激的免费视频.| 日韩亚洲欧美综合| 性色av乱码一区二区三区2| 国产精品自产拍在线观看55亚洲| 少妇人妻一区二区三区视频| 久久午夜亚洲精品久久| 1000部很黄的大片| 757午夜福利合集在线观看| 精品无人区乱码1区二区| 黄色视频,在线免费观看| 免费看光身美女| 久久久久国内视频| 成人欧美大片| 欧美一区二区国产精品久久精品| 久久久久久久久久成人| 十八禁人妻一区二区| 国产一级毛片七仙女欲春2| 又黄又爽又刺激的免费视频.| 最近视频中文字幕2019在线8| 九九久久精品国产亚洲av麻豆| 热99在线观看视频| 亚洲第一电影网av| 一级作爱视频免费观看| 18美女黄网站色大片免费观看| 精品久久久久久,| 久久久久国产精品人妻aⅴ院| 欧美激情久久久久久爽电影| 午夜久久久久精精品| 中文字幕人妻熟人妻熟丝袜美| 三级毛片av免费| 久久99热6这里只有精品| 欧美色视频一区免费| 国产真实乱freesex| 一个人观看的视频www高清免费观看| 国产一区二区亚洲精品在线观看| 欧美日本亚洲视频在线播放| h日本视频在线播放| 国产 一区 欧美 日韩| 特大巨黑吊av在线直播| 精品乱码久久久久久99久播| 97人妻精品一区二区三区麻豆| 一区二区三区高清视频在线| 老熟妇乱子伦视频在线观看| 久久精品国产亚洲av天美| 99国产极品粉嫩在线观看| 欧美一级a爱片免费观看看| 又爽又黄无遮挡网站| 欧美色视频一区免费| 久久久成人免费电影| 成人三级黄色视频| 中文字幕av成人在线电影| 老熟妇乱子伦视频在线观看| 精品福利观看| 欧美最新免费一区二区三区 | 久久6这里有精品| 91麻豆精品激情在线观看国产| 精品一区二区三区人妻视频| 久久久精品大字幕| 尤物成人国产欧美一区二区三区| 给我免费播放毛片高清在线观看| 亚洲五月天丁香| 国产精品久久久久久精品电影| 伦理电影大哥的女人| 国产色爽女视频免费观看| 免费高清视频大片| 国产乱人视频| 国产一区二区三区视频了| 少妇的逼水好多| 国产v大片淫在线免费观看| 国产中年淑女户外野战色| 18禁黄网站禁片午夜丰满| 久久天躁狠狠躁夜夜2o2o| 色播亚洲综合网| 国产亚洲av嫩草精品影院| 少妇裸体淫交视频免费看高清| 国产成年人精品一区二区| 香蕉av资源在线| 搡老妇女老女人老熟妇| 亚洲最大成人av| 国产蜜桃级精品一区二区三区| 亚洲专区中文字幕在线| 日韩人妻高清精品专区| 亚洲专区国产一区二区| 亚洲av中文字字幕乱码综合| 免费人成在线观看视频色| 日韩欧美在线二视频| 亚洲最大成人手机在线| 性色avwww在线观看| 99国产综合亚洲精品| 精品久久久久久久久亚洲 | 国产精品久久电影中文字幕| 国产成人欧美在线观看| 波多野结衣高清无吗| 91在线精品国自产拍蜜月| www.熟女人妻精品国产| 色综合欧美亚洲国产小说| 熟女人妻精品中文字幕| 国产精品久久久久久久电影| 午夜精品久久久久久毛片777| 美女xxoo啪啪120秒动态图 | 欧美绝顶高潮抽搐喷水| 久久精品国产99精品国产亚洲性色| 国产成年人精品一区二区| 亚洲av成人不卡在线观看播放网| 亚洲七黄色美女视频| 丰满人妻一区二区三区视频av| 少妇人妻一区二区三区视频| eeuss影院久久| 搡女人真爽免费视频火全软件 | 亚洲性夜色夜夜综合| 亚洲美女视频黄频| 美女黄网站色视频| 亚洲狠狠婷婷综合久久图片| 狠狠狠狠99中文字幕| 18禁黄网站禁片午夜丰满| av黄色大香蕉| 久久久久国产精品人妻aⅴ院| 神马国产精品三级电影在线观看| 亚洲国产精品sss在线观看| 少妇人妻一区二区三区视频| 少妇熟女aⅴ在线视频| 嫁个100分男人电影在线观看| 久久香蕉精品热| 内射极品少妇av片p| 脱女人内裤的视频| 少妇的逼水好多| 国产精品久久久久久久久免 | 国产免费男女视频| 小蜜桃在线观看免费完整版高清| 久久久色成人| 亚洲成人久久爱视频| 精品一区二区三区av网在线观看| 色5月婷婷丁香| 国产免费一级a男人的天堂| 精华霜和精华液先用哪个| 国产三级黄色录像| 熟女人妻精品中文字幕| 综合色av麻豆| 我要看日韩黄色一级片| 狠狠狠狠99中文字幕| 如何舔出高潮| 欧美高清成人免费视频www| 成年女人看的毛片在线观看| 亚洲国产精品999在线| 亚洲av美国av| 老鸭窝网址在线观看| 天堂√8在线中文| 日本 欧美在线| 国产成人aa在线观看| 非洲黑人性xxxx精品又粗又长| 国产精华一区二区三区| 午夜老司机福利剧场| 99热这里只有是精品在线观看 | 波野结衣二区三区在线| 搡老岳熟女国产| 亚洲18禁久久av| 欧美乱妇无乱码| 久久精品国产99精品国产亚洲性色| 99热这里只有是精品50| 国产免费男女视频| 国产一区二区三区视频了| 免费在线观看影片大全网站| 97人妻精品一区二区三区麻豆| 精品一区二区免费观看| 精品国产三级普通话版| 欧美bdsm另类| 亚洲av一区综合| 男人狂女人下面高潮的视频| 亚洲欧美日韩东京热| 免费av不卡在线播放| 久久人人精品亚洲av| 色综合站精品国产| 女人十人毛片免费观看3o分钟| 国产麻豆成人av免费视频| av黄色大香蕉| 日韩欧美在线乱码| 三级男女做爰猛烈吃奶摸视频| 国产精品久久久久久亚洲av鲁大| 男女之事视频高清在线观看| 国产真实乱freesex| 国产精品永久免费网站| 亚洲一区高清亚洲精品| 中文字幕久久专区| 欧美乱色亚洲激情| 人人妻人人看人人澡| 我的老师免费观看完整版| 午夜福利在线在线| 琪琪午夜伦伦电影理论片6080| 中国美女看黄片| 欧美xxxx性猛交bbbb| 夜夜躁狠狠躁天天躁| av天堂中文字幕网| 中文字幕av成人在线电影| 自拍偷自拍亚洲精品老妇| 婷婷色综合大香蕉| 国产不卡一卡二| 久久精品夜夜夜夜夜久久蜜豆| 91字幕亚洲| 亚洲av成人不卡在线观看播放网| 神马国产精品三级电影在线观看| 久久欧美精品欧美久久欧美| 成年女人看的毛片在线观看| 97碰自拍视频| 亚洲欧美日韩无卡精品| 中文字幕熟女人妻在线| 禁无遮挡网站| 99久久精品一区二区三区| 熟女电影av网| 丰满的人妻完整版| 中国美女看黄片| 中文在线观看免费www的网站| 少妇熟女aⅴ在线视频| 国内揄拍国产精品人妻在线| 久久久久久久精品吃奶| 一级黄片播放器| 亚洲中文日韩欧美视频| 亚洲精品一区av在线观看| 有码 亚洲区| 久99久视频精品免费| 窝窝影院91人妻| 久久久久久九九精品二区国产| 色综合站精品国产| bbb黄色大片| 99精品在免费线老司机午夜| 欧美日韩黄片免| 精品久久国产蜜桃| 热99在线观看视频| 我要看日韩黄色一级片| 99国产精品一区二区蜜桃av| 免费人成视频x8x8入口观看| 亚洲av免费高清在线观看| 国模一区二区三区四区视频| 中亚洲国语对白在线视频| 超碰av人人做人人爽久久| 美女cb高潮喷水在线观看| 亚洲最大成人手机在线| 麻豆av噜噜一区二区三区| 老司机午夜福利在线观看视频| 校园春色视频在线观看| 免费黄网站久久成人精品 | 国产又黄又爽又无遮挡在线| 日本黄色片子视频| aaaaa片日本免费| 性色avwww在线观看| 一夜夜www| 亚洲成人久久爱视频| 少妇人妻精品综合一区二区 | 久久久久久大精品| 欧美色欧美亚洲另类二区| 国产精品99久久久久久久久| 一区福利在线观看| 欧美成人性av电影在线观看| 精品久久久久久久久久久久久| 在线十欧美十亚洲十日本专区| 亚洲,欧美精品.| 免费在线观看亚洲国产| 伦理电影大哥的女人| 黄色女人牲交| a在线观看视频网站| 99热这里只有是精品50| 99久久九九国产精品国产免费| 97人妻精品一区二区三区麻豆| 免费观看人在逋| aaaaa片日本免费| 国产伦在线观看视频一区| 一区福利在线观看| 男人的好看免费观看在线视频| 免费在线观看日本一区| 午夜福利在线在线| 天天躁日日操中文字幕| 日本黄色片子视频| 国语自产精品视频在线第100页| 久久久久久久久久黄片| x7x7x7水蜜桃| 白带黄色成豆腐渣| 亚洲18禁久久av| 午夜福利视频1000在线观看| 麻豆一二三区av精品| 一区二区三区激情视频| 亚洲片人在线观看| 久久性视频一级片| 少妇的逼水好多| 每晚都被弄得嗷嗷叫到高潮| 国语自产精品视频在线第100页| 99精品久久久久人妻精品| 日本撒尿小便嘘嘘汇集6| 非洲黑人性xxxx精品又粗又长| 国产av一区在线观看免费| 国产精品不卡视频一区二区 | 国产蜜桃级精品一区二区三区| 琪琪午夜伦伦电影理论片6080| 欧美成人免费av一区二区三区| 国产一级毛片七仙女欲春2| 久久久久久久久大av| 18禁在线播放成人免费| 老司机午夜福利在线观看视频| 日韩欧美在线乱码| 男女下面进入的视频免费午夜| 俄罗斯特黄特色一大片| 亚洲人成网站在线播| 搞女人的毛片| www.色视频.com| 精品人妻熟女av久视频| 亚洲国产欧洲综合997久久,| 欧美日韩乱码在线| 在线观看舔阴道视频| 亚洲av一区综合| 一个人看视频在线观看www免费| 国产精品精品国产色婷婷| 内射极品少妇av片p| 69人妻影院| 国产精品98久久久久久宅男小说| 亚洲精品影视一区二区三区av| 日本成人三级电影网站| 一级作爱视频免费观看| 国产av在哪里看| 国产精品久久久久久久久免 | 午夜福利视频1000在线观看| 每晚都被弄得嗷嗷叫到高潮| 91九色精品人成在线观看| 免费观看人在逋| 国产毛片a区久久久久| 中国美女看黄片| 亚洲一区二区三区色噜噜| 一进一出抽搐动态| 成人三级黄色视频| 日本三级黄在线观看| 色吧在线观看| 麻豆一二三区av精品| 国产精品女同一区二区软件 | 中文字幕人成人乱码亚洲影| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 嫁个100分男人电影在线观看| 国产精品一区二区性色av| 中文字幕精品亚洲无线码一区| 色在线成人网| 国产精品永久免费网站| 哪里可以看免费的av片| 欧美日韩国产亚洲二区| 嫩草影院入口| 中文亚洲av片在线观看爽| av女优亚洲男人天堂| 人人妻,人人澡人人爽秒播| 国产v大片淫在线免费观看| 五月伊人婷婷丁香| 亚洲国产精品久久男人天堂| 五月玫瑰六月丁香| 亚洲成av人片在线播放无| 日本免费a在线| 9191精品国产免费久久| 欧美性猛交╳xxx乱大交人| 国产探花极品一区二区| 午夜老司机福利剧场| 国产高潮美女av| 日本黄色片子视频| 免费电影在线观看免费观看| 99久久精品一区二区三区| 免费观看人在逋| 99视频精品全部免费 在线| 51国产日韩欧美| 91av网一区二区| 亚洲天堂国产精品一区在线| 免费高清视频大片| 成人永久免费在线观看视频| 免费搜索国产男女视频| 亚洲精品在线美女| 国产精华一区二区三区| 日本五十路高清| 特大巨黑吊av在线直播| 亚州av有码| 国产色婷婷99| 我要搜黄色片| 全区人妻精品视频| 久99久视频精品免费| 日韩免费av在线播放| 亚洲第一欧美日韩一区二区三区| 91麻豆精品激情在线观看国产| 国产伦精品一区二区三区四那| 一夜夜www| 亚洲中文字幕日韩| 国内精品久久久久久久电影| 搡女人真爽免费视频火全软件 | 麻豆成人午夜福利视频| 丁香欧美五月| 精品一区二区三区av网在线观看| 俄罗斯特黄特色一大片| 日本黄色视频三级网站网址| 中文字幕精品亚洲无线码一区| 亚洲美女视频黄频| 免费一级毛片在线播放高清视频| 午夜亚洲福利在线播放| 亚洲电影在线观看av| 欧美黄色淫秽网站| 色吧在线观看| 国产精品99久久久久久久久| 日韩欧美精品免费久久 | 亚洲avbb在线观看| 变态另类丝袜制服| 精品福利观看| 日韩 亚洲 欧美在线| 亚洲精品成人久久久久久| 国产成人a区在线观看| 嫩草影院新地址| 亚洲 欧美 日韩 在线 免费| 欧美3d第一页| 欧美黄色片欧美黄色片| 亚洲一区二区三区不卡视频| 午夜免费激情av| 最好的美女福利视频网| 国产又黄又爽又无遮挡在线| 听说在线观看完整版免费高清| 久久国产精品影院| 老司机午夜十八禁免费视频| 久久精品国产清高在天天线| 欧美高清成人免费视频www| 精品久久久久久久末码| 91字幕亚洲| 久久伊人香网站| 久久久久久久久久黄片| 熟妇人妻久久中文字幕3abv| 国产欧美日韩一区二区精品| 最新中文字幕久久久久| 99久久精品一区二区三区| 中亚洲国语对白在线视频| 97碰自拍视频| av黄色大香蕉| 偷拍熟女少妇极品色| 日本黄色视频三级网站网址| 亚洲第一欧美日韩一区二区三区| 国产成人福利小说| 国产黄片美女视频| 亚洲人与动物交配视频| 久久99热这里只有精品18| 午夜免费男女啪啪视频观看 | 69av精品久久久久久| ponron亚洲| 欧美极品一区二区三区四区| 女生性感内裤真人,穿戴方法视频| 婷婷精品国产亚洲av| 一级黄片播放器| 久久精品国产清高在天天线| 老司机深夜福利视频在线观看| 欧美色视频一区免费| 亚洲成人精品中文字幕电影| 亚洲在线观看片| av视频在线观看入口| 免费在线观看影片大全网站| 欧美日韩亚洲国产一区二区在线观看| 精品久久国产蜜桃| 亚洲经典国产精华液单 | 亚洲精品成人久久久久久| 真人做人爱边吃奶动态| 久久午夜福利片| 精品久久久久久,| 久久久久久久亚洲中文字幕 | 999久久久精品免费观看国产| xxxwww97欧美| 搡女人真爽免费视频火全软件 | 两人在一起打扑克的视频| 男人舔女人下体高潮全视频| 怎么达到女性高潮| 国产精品久久久久久人妻精品电影| 两个人的视频大全免费| 午夜福利成人在线免费观看| 噜噜噜噜噜久久久久久91| 欧美日韩综合久久久久久 | 中文在线观看免费www的网站| 舔av片在线|