張珊珊,俞飛,郭慧媛,沈衛(wèi)東,王俊龍,高榮孚,4,張汝民,侯平
(1.浙江農(nóng)林大學(xué)亞熱帶森林培育國(guó)家重點(diǎn)實(shí)驗(yàn)室培育基地,浙江臨安 311300;2.國(guó)家林業(yè)局竹子研究開(kāi)發(fā)中心,浙江杭州 310012;3.天目山國(guó)家級(jí)自然保護(hù)區(qū)管理局,浙江臨安 311311;4.北京林業(yè)大學(xué)生物科學(xué)與技術(shù)學(xué)院,北京 100083)
酸雨與凋落物復(fù)合作用對(duì)柳杉葉片色素和反射光譜的影響
張珊珊1,俞飛1,郭慧媛2,沈衛(wèi)東3,王俊龍1,高榮孚1,4,張汝民1,侯平1
(1.浙江農(nóng)林大學(xué)亞熱帶森林培育國(guó)家重點(diǎn)實(shí)驗(yàn)室培育基地,浙江臨安 311300;2.國(guó)家林業(yè)局竹子研究開(kāi)發(fā)中心,浙江杭州 310012;3.天目山國(guó)家級(jí)自然保護(hù)區(qū)管理局,浙江臨安 311311;4.北京林業(yè)大學(xué)生物科學(xué)與技術(shù)學(xué)院,北京 100083)
采用盆栽3年生柳杉Cryptomeria fortunei幼苗研究了酸雨(pH 4.0,Tr1),柳杉凋落物(60 g,Tr2)以及酸雨和柳杉凋落物復(fù)合作用(Tr3)對(duì)其葉片色素質(zhì)量分?jǐn)?shù)和反射光譜的影響,并對(duì)柳杉葉片色素質(zhì)量分?jǐn)?shù)與光譜反射率、一階微分光譜和反射光譜參數(shù)的相關(guān)性進(jìn)行了分析。結(jié)果表明:①Tr1,Tr2和Tr3處理下,柳杉葉片葉綠素a質(zhì)量分?jǐn)?shù)比對(duì)照分別降低了11.6%,26.1%和39.1%,說(shuō)明酸雨增強(qiáng)了凋落物化感作用對(duì)柳杉葉綠素a質(zhì)量分?jǐn)?shù)的抑制作用,加快了其降解速度。②Tr1和Tr2處理均顯著減小了光譜參數(shù)反射率倒數(shù)、改良的歸一化差值指數(shù)和反射光譜比值指數(shù)a等(P<0.05)。Tr3處理的柳杉反射光譜參數(shù)均對(duì)照有極顯著差異(P<0.01)。③葉綠素質(zhì)量分?jǐn)?shù)與柳杉反射和一階微分光譜呈極顯著相關(guān)(P<0.01),可見(jiàn)光和近紅外區(qū)域是酸雨與凋落物復(fù)合作用下柳杉幼苗反射光譜和微分光譜的敏感區(qū)域。④反射率倒數(shù)、歸一化差值指數(shù)和藍(lán)邊位置等11個(gè)反射光譜參數(shù)與葉綠素a,葉綠素b質(zhì)量分?jǐn)?shù)和葉綠素a/b之間的相關(guān)性達(dá)到顯著水平(P<0.05),其中反射率倒數(shù)、藍(lán)邊幅值、藍(lán)邊面積、黃邊幅值、黃邊面積、紅邊幅值和紅邊面積與柳杉葉綠素a,葉綠素b質(zhì)量分?jǐn)?shù)和葉綠素a/b之間的相關(guān)性高于或接近0.8,說(shuō)明酸雨與凋落物作用下柳杉幼苗反射光譜特征及其參數(shù)可用來(lái)估算葉綠素質(zhì)量分?jǐn)?shù),并為利用反射光譜監(jiān)測(cè)柳杉脅迫提供了可能。圖4表5參41
樹(shù)木生理學(xué);柳杉;色素;酸雨;凋落物;反射光譜
葉綠素是植物葉片中吸收和傳遞光能的主要色素分子,直接影響植物葉片光合作用的效能;葉綠素含量水平也是反映植物營(yíng)養(yǎng)狀況和生長(zhǎng)發(fā)育進(jìn)程的重要指標(biāo)[1-3]。現(xiàn)有研究表明:植物葉片在可見(jiàn)光區(qū)(400~700 nm),紅邊區(qū)(680~760 nm)和近紅外光區(qū)(780~1 300 nm)光譜反射率與葉片光合色素含量有較高的相關(guān)性[4]。伍南等[5]研究表明:可用NDVI等所建高光譜特征參數(shù)估測(cè)病蟲(chóng)害脅迫下的杉木Cunninghamia lanceolata葉綠素含量。Sims等[6]提出了修正型光譜指數(shù)mSR705和mND705用于估算具有不同表面反射率的樹(shù)木葉片中的葉綠素含量。馮偉等[7]研究表明:紅邊位置(λred)與葉片色素含量之間具有穩(wěn)定而密切的相關(guān)性。時(shí)啟龍等[8]研究發(fā)現(xiàn)酸雨脅迫下的亞熱帶樹(shù)種光譜反射率紅邊位置與其葉綠素含量變化規(guī)律基本一致。目前,有關(guān)酸雨對(duì)植物葉綠素含量的影響研究結(jié)果不同。樊后保等[9]發(fā)現(xiàn)pH值<3.5的酸雨能降低女貞Ligustrum lucidum的葉綠素含量,但是對(duì)葉綠素a/b影響不顯著;Shan等[10]研究赤松Pinus densiflora時(shí)發(fā)現(xiàn)低濃度的酸雨增加了葉綠素總量,但葉綠素a/b沒(méi)有受到顯著影響。大量研究表明,一定濃度的化感物質(zhì)會(huì)降低植物葉片的葉綠素含量,從而影響植物的生長(zhǎng)[11];Bhatt等[12]發(fā)現(xiàn)青岡櫟Quercus glauca和白橡Quercus leucotrichophora根際土浸提液顯著降低了小麥Triticum aestivum,油菜Brassica campestris和扁豆Quercus glauca的葉片色素含量;Padhy等[13]研究得出桉樹(shù)Eucalyptus globulus凋落物對(duì)穇子Eleusine coracana色素的合成產(chǎn)生抑制作用。然而,有關(guān)酸雨與化感物質(zhì)復(fù)合作用的研究鮮有報(bào)道。柳杉Cryptomeria fortunei為常綠針葉喬木,是中國(guó)特有種。目前,對(duì)柳杉的研究主要集中于病蟲(chóng)害防治[14]和群落結(jié)構(gòu)[15]等方面。馬原[16]研究得出柳杉幼苗對(duì)酸雨較敏感,本課題組前期開(kāi)展了凋落物化感物質(zhì)對(duì)柳杉種子萌發(fā)的研究[17]。為了進(jìn)一步探討酸雨和凋落物交叉組合對(duì)柳杉幼苗生長(zhǎng)的影響,本文研究了酸雨、凋落物和酸雨與凋落物復(fù)合處理對(duì)柳杉體內(nèi)色素含量和反射光譜特性的影響,并對(duì)柳杉幼苗體內(nèi)色素含量與其反射光譜特性間的關(guān)系進(jìn)行了相關(guān)性分析。
1.1 實(shí)驗(yàn)材料
供試材料為3年生柳杉實(shí)生苗(由江西林業(yè)種苗公司提供),株高30~40 cm。2012年4月栽置于盛有培養(yǎng)土的花盆中(直徑35 cm,高26 cm),1株·盆-1。盆栽苗置于溫室中,常規(guī)管理,緩苗2個(gè)月后進(jìn)行實(shí)驗(yàn)。柳杉凋落物采自天目山柳杉林下,自然風(fēng)干保存?zhèn)溆?。根?jù)浙江臨安當(dāng)?shù)厮嵊隄舛燃八嵝越邓辛W咏M成,按[V(硫酸)]∶[V(硝酸)]=4∶1的比例配制母液,用水稀釋成pH 4.0酸雨溶液。
1.2 實(shí)驗(yàn)設(shè)計(jì)
選取長(zhǎng)勢(shì)一致的盆栽柳杉進(jìn)行處理,設(shè)對(duì)照組(ck)、pH 4.0酸雨處理組(Tr1),60 g凋落物處理組(Tr2,通過(guò)預(yù)實(shí)驗(yàn)得出60 g凋落物處理柳杉幼苗時(shí),柳杉幼苗生長(zhǎng)與對(duì)照具有顯著差異)和pH 4.0酸雨與60 g凋落物復(fù)合處理(Tr3)等4個(gè)處理組,重復(fù)6盆·處理-1,共24盆。通過(guò)實(shí)地樣方調(diào)查,天目山柳杉林凋落物為400~800 g·m-2,為模擬柳杉自然生長(zhǎng)環(huán)境,本實(shí)驗(yàn)將60 g凋落物均勻鋪在盆中。根據(jù)試驗(yàn)地全年降水量1 628.6mm,柳杉幼苗噴淋酸雨100mL·株-1·次-1,平均噴淋2次·周-1。實(shí)驗(yàn)處理時(shí)間為2012年6-10月。
1.3 研究方法
1.3.1 葉片色素質(zhì)量分?jǐn)?shù)測(cè)定將0.1 g剪碎的新鮮的柳杉幼苗葉剪碎后置于具塞試管中,加體積分?jǐn)?shù)為80%丙酮5 m L,室溫下遮光萃取至樣品完全變白后,分別在470,646和663 nm處測(cè)定其吸光度值D(λ),重復(fù)6次·樣品-1。然后,按Lichtenthaler的計(jì)算公式[18]分別計(jì)算葉綠素a,葉綠素b和類胡蘿卜素質(zhì)量分?jǐn)?shù)。
1.3.2 光譜數(shù)據(jù)采集采用UniSpec-SC型單通道光譜分析儀(PP-System,US)測(cè)定柳杉針葉在310~1 130 nm處的反射光譜數(shù)據(jù),采樣間隔1 nm,分辨率1 nm。Unispec-SC單通道光譜分析儀內(nèi)置1個(gè)鹵素?zé)?,測(cè)定時(shí),將分支光纖的一端連接到鹵素?zé)舻妮敵龆丝?,另一端連接到檢測(cè)器的輸入端口,光纖探頭端固定在UNI500標(biāo)準(zhǔn)夾中。測(cè)定柳杉3株·次-1,重復(fù)6次·株-1,取其平均值作為該樣品的光譜反射率。測(cè)量過(guò)程中及時(shí)進(jìn)行標(biāo)準(zhǔn)白板校正,用Multispec 5.1數(shù)據(jù)處理軟件讀取反射光譜原始數(shù)據(jù)。
1.3.3 光譜分析方法光譜數(shù)據(jù)微分處理:將柳杉葉片反射光譜通過(guò)式(1)進(jìn)行一階微分處理得到微分光譜:其中:λi為波段i處的波長(zhǎng)值;Rλi為波長(zhǎng)λi處的光譜反射率值;Δλ為波長(zhǎng)λ(i-1)到λi的差值,由光譜采樣間隔決定。
“三邊”參數(shù)計(jì)算方法:分別在490~530,560~640和680~750 nm范圍內(nèi)確定藍(lán)邊、黃邊和紅邊位置、幅值和面積。紅邊位置λred為紅光范圍內(nèi)一階微分光譜最大值所對(duì)應(yīng)的波長(zhǎng),紅邊幅值Dλred為一階微分光譜的最大值,紅邊面積Sred為一階微分光譜線所包圍的面積。黃邊(黃邊位置λyellow,黃邊幅值Dλyellow,黃邊面積Syellow)和藍(lán)邊(藍(lán)邊位置λblue,藍(lán)邊幅值Dλblue,藍(lán)邊面積Sblue)參數(shù)與紅邊參數(shù)意義類似??芍苯永孟嚓P(guān)公式計(jì)算得到的反射光譜參數(shù)[6,19-30](表1)。
1.4 數(shù)據(jù)處理
試驗(yàn)數(shù)據(jù)采用SPSS 13.0統(tǒng)計(jì)軟件進(jìn)行統(tǒng)計(jì)分析,用Matlab 7.1軟件對(duì)光譜信息進(jìn)行去噪處理,并提取出與葉綠素有關(guān)的特征波段。利用OriginPro 8.0軟件繪圖。
2.1 不同處理柳杉幼苗葉綠素質(zhì)量分?jǐn)?shù)差異分析
酸雨(Tr1),凋落物(Tr2)和酸雨與凋落物復(fù)合(Tr3)對(duì)柳杉幼苗葉綠素a,葉綠素b和葉綠素a/b比值表現(xiàn)出不同程度的降低(表2)。Tr1,Tr2和Tr3處理使柳杉幼苗葉綠素a質(zhì)量分?jǐn)?shù)呈極顯著的降低(P<0.01),與對(duì)照相比分別降低了11.6%,26.1%和39.1%;Tr1處理的柳杉幼苗葉綠素b質(zhì)量分?jǐn)?shù)與對(duì)照達(dá)到顯著差異(P<0.05),而Tr2和Tr3處理比對(duì)照降低了14.8%和22.2%(P<0.01);Tr1,Tr2和Tr3處理的柳杉幼苗葉綠素總量比對(duì)照分別降低了0.09,0.21和0.32倍;對(duì)照葉綠素a/b比值分別是Tr1,Tr2和Tr3處理的1.07,1.15和1.21倍,呈極顯著性差異(P<0.01);不同處理柳杉幼苗葉片的類胡蘿卜素質(zhì)量分?jǐn)?shù)無(wú)顯著差異。
2.2 不同處理柳杉幼苗反射光譜特征
不同處理柳杉幼苗光譜反射率曲線的整體變化趨勢(shì)一致(圖1),其中反射光譜在波長(zhǎng)496和675 nm處各有1個(gè)吸收低谷,而在近紅外區(qū)達(dá)到最大值且?guī)缀醪蛔?。不同處理柳杉光譜反射率在綠光區(qū)(525~605 nm)和近紅外區(qū)(750~1 000 nm)呈顯著性差異(P<0.05)。其中在550 nm處,Tr1,Tr2和Tr3處理柳杉光譜反射率具有極顯著差異(P<0.01),與對(duì)照相比光譜反射率分別增加了11.4%,20.1%和28.5%;在近紅外區(qū)光譜反射率大小依次為T(mén)r3>Tr1>對(duì)照>Tr2。
表1 反射光譜參數(shù)Table 1 Reflectance spectrum parameters
表2 不同處理柳杉幼苗色素質(zhì)量分?jǐn)?shù)的變化Table 2 Changes of pigment contents of Cryptomeria fortunei under different treatments
2.3 不同處理柳杉幼苗反射光譜的三邊特征
由于背景噪聲對(duì)反射光譜的影響很大,因此在實(shí)際分析光譜數(shù)據(jù)時(shí),為了降低背景噪聲以提高各參數(shù)的準(zhǔn)確性,需要對(duì)原始數(shù)據(jù)進(jìn)行微分變換。對(duì)不同處理柳杉幼苗的反射光譜數(shù)據(jù)進(jìn)行一階導(dǎo)數(shù)處理,結(jié)果見(jiàn)圖2和表3。Tr1和Tr3處理極顯著增加了紅邊面積Sred(P<0.01);Tr1,Tr2和Tr3處理均極顯著的增加了藍(lán)邊幅值Dλblue,藍(lán)邊面積Sblue和紅邊幅值Dλred(P<0.01),最大值出現(xiàn)在Tr3處理中。不同處理極顯著降低了黃邊幅值Dλyellow和黃邊面積Syellow(P<0.01),最小值也出現(xiàn)在Tr3處理中。紅邊位置λred位于綠色植物反射光譜紅光范圍(680~760 nm)內(nèi),主要與葉綠素質(zhì)量分?jǐn)?shù)有關(guān),是綠色植物光譜最明顯的特征之一。本研究表明:不同處理柳杉幼苗在680~760 nm波段內(nèi)都只有1個(gè)峰值,紅邊位置λred出現(xiàn)“藍(lán)移”現(xiàn)象。此外,Tr2和Tr3處理柳杉幼苗與對(duì)照的藍(lán)邊位置λblue無(wú)顯著差異;Tr1和Tr2處理下,柳杉幼苗黃邊位置λyellow也無(wú)顯著差異。
圖1 不同處理柳杉幼苗的反射光譜Figure 1 Reflectance spectra of Cryptomeria fortunei under different treatments
圖2 不同處理柳杉幼苗的一階微分光譜Figure 2 First derivative spectra of C.fortunei under different treatments
表3 不同處理柳杉幼苗的“三邊”參數(shù)Table 3 Three edge parameters of Cryptomeria fortunei under different treatments
2.4 不同處理柳杉幼苗光譜參數(shù)的變化
光譜參數(shù)是綠色植物的光譜反射特征,是反映植物生長(zhǎng)狀況的最常用光譜變量。不同處理下,柳杉幼苗各反射光譜參數(shù)表現(xiàn)出不同的變化(表4)。Tr1,Tr2和Tr3處理的反射光譜參數(shù)包括反射率倒數(shù),改良的歸一化差值指數(shù),反射光譜比值指數(shù)a,紅度歸一化指數(shù)和改良的紅邊比值指數(shù)均比對(duì)照極顯著降低(P<0.01),如反射率倒數(shù)分別比對(duì)照減小了14.3%,19.6%和25.0%;Tr1和Tr3處理極顯著降低反射光譜比值指數(shù)b(P<0.01)。Tr2處理極顯著降低了反射光譜指數(shù)680,歸一化指數(shù),色素歸一化差值指數(shù)a,色素歸一化差值指數(shù)b和反射光譜比值指數(shù)c(P<0.01);而Tr1和Tr3處理極顯著增加了反射光譜指數(shù)680,歸一化指數(shù),色素歸一化差值指數(shù)a,色素歸一化差值指數(shù)b,反射光譜比值指數(shù)c,結(jié)構(gòu)不敏感色素指數(shù),植被衰減指數(shù)和改良類胡蘿卜指數(shù)(P<0.01),但是反射光譜指數(shù)705無(wú)顯著變化。反射率倒數(shù),反射光譜比值指數(shù)a和反射光譜比值指數(shù)b等12個(gè)光譜參數(shù)的最大值或者最小值出現(xiàn)在Tr3處理,如反射光譜比值指數(shù)a比對(duì)照,Tr1和Tr2分別降低了36.0%,20.5%和25.5%。
表4 不同處理柳杉幼苗反射光譜參數(shù)的變化Table 4 Changes of reflectance spectrum parameters of C.fortunei under different treatments
2.5 光譜反射率和一階微分光譜與色素質(zhì)量分?jǐn)?shù)的相關(guān)性
不同處理柳杉幼苗光譜反射率與色素質(zhì)量分?jǐn)?shù)的相關(guān)性分析表明(圖3),無(wú)論可見(jiàn)光區(qū)還是近紅外區(qū),柳杉光譜反射率與色素質(zhì)量分?jǐn)?shù)均呈負(fù)相關(guān),且葉綠素質(zhì)量分?jǐn)?shù)和葉綠素a/b與514~629 nm及690~1 000 nm的光譜反射率達(dá)極顯著相關(guān)(P<0.01),在550和700 nm處相關(guān)系數(shù)最大絕對(duì)值大于0.92;類胡蘿卜素與光譜反射率在540和701 nm處絕對(duì)值為0.81和0.79,達(dá)到極顯著相關(guān)(P<0.01)。
如圖4所示:不同處理柳杉幼苗色素質(zhì)量分?jǐn)?shù)和葉綠素a/b與其光譜反射率的一階微分光譜在500~533 nm,538~674 nm,682~725 nm等處均達(dá)顯著相關(guān)(P<0.05)。在567~633 nm和637~650 nm波段達(dá)極顯著正相關(guān)(P<0.01),其中567~633 nm波段相關(guān)系數(shù)最大,單波段603 nm處與葉綠素a、葉綠素b,類胡蘿卜素和葉綠素a/b的相關(guān)系數(shù)分別為0.98,0.97,0.83和0.90;而在514~536 nm和680~706 nm顯著相關(guān)波段呈極顯著負(fù)相關(guān)(P<0.01),其中514~536 nm相關(guān)系數(shù)的絕對(duì)值最大,單波段532 nm處的相關(guān)系數(shù)絕對(duì)值最大,與葉綠素a,葉綠素b,類胡蘿卜素和葉綠素a/b的相關(guān)系數(shù)分別為0.92,0.92,0.82和0.92。
圖3 不同處理柳杉幼苗色素質(zhì)量分?jǐn)?shù)與光譜反射率相關(guān)性Figure 3 Correlation between pigment contents and reflectance spectra of Cryptomeria fortunei under different treatments
圖4 不同處理柳杉幼苗色素質(zhì)量分?jǐn)?shù)與一階微分光譜相關(guān)性Figure 4 Correlation between pigment contents and first derivative spectra and of C.fortunei under different treatments
2.6 反射光譜參數(shù)與色素質(zhì)量分?jǐn)?shù)的相關(guān)性
由反射光譜參數(shù)與色素質(zhì)量分?jǐn)?shù)相關(guān)性表明(表5),改良的歸一化差值指數(shù)和改良的紅邊比值指與葉綠素a,葉綠素b質(zhì)量分?jǐn)?shù)和葉綠素a/b的相關(guān)性均達(dá)到顯著正水平(P<0.05);反射光譜指數(shù)680,歸一化指數(shù),色素歸一化差值指數(shù)a,反射光譜比值指數(shù)c和改良類胡蘿卜指數(shù)與葉綠素a,葉綠素b質(zhì)量分?jǐn)?shù)和葉綠素a/b的相關(guān)性均達(dá)到顯著負(fù)水平(P<0.05)。反射光譜參數(shù)反射率倒數(shù),反射光譜比值指數(shù)a,反射光譜比值指數(shù)b,黃邊面積,黃邊幅值和紅邊位置與葉綠素a,葉綠素b質(zhì)量分?jǐn)?shù)和葉綠素a/ b之間均達(dá)到極顯著正相關(guān)(P<0.01),而結(jié)構(gòu)不敏感色素指數(shù)、藍(lán)邊幅值、藍(lán)邊面積、紅邊幅值和紅邊面積達(dá)到極顯著負(fù)相關(guān)(P<0.01),其中反射率倒數(shù)、藍(lán)邊幅值、藍(lán)邊面積、黃邊幅值、黃邊面積、紅邊幅值和紅邊面積與葉綠素質(zhì)量分?jǐn)?shù)之間的相關(guān)性高于或接近0.8。反射光譜指數(shù)705,紅度歸一化指數(shù),色素歸一化差值指數(shù)b,光化學(xué)反射指數(shù),藍(lán)邊位置和黃邊位置與葉綠素a,葉綠素b質(zhì)量分?jǐn)?shù)和葉綠素a/b相關(guān)性均不顯著。此外,藍(lán)邊、黃邊和紅邊(除藍(lán)邊與黃邊位置)參數(shù)總體上優(yōu)于波段組合參數(shù)與色素的相關(guān)性。
葉綠素是植物體內(nèi)的主要光合色素,其質(zhì)量分?jǐn)?shù)往往是植物營(yíng)養(yǎng)脅迫、光合能力和衰老進(jìn)程等生理狀態(tài)的良好指示劑[1,31]。大量研究表明:酸雨和化感作用會(huì)導(dǎo)致植物葉綠素質(zhì)量分?jǐn)?shù)下降[11-12]。pH≤3.5的酸雨會(huì)降低龍眼Dimorcarpus longana色素質(zhì)量分?jǐn)?shù)和葉綠素a/b[32],而小麥Triticum aestivuml葉綠素質(zhì)量分?jǐn)?shù)和葉綠素a/b比值會(huì)隨著酸的積累顯著降低[33]。本研究結(jié)果表明:酸雨單一因子處理顯著降低柳杉葉綠素a,葉綠素b質(zhì)量分?jǐn)?shù)和葉綠素a/b,說(shuō)明是酸雨脅迫使柳杉葉片葉綠素生物合成減弱,分解速度加快所致[32-34]。馬原[16]研究得出酸雨會(huì)破壞柳杉葉綠體,導(dǎo)致葉綠素質(zhì)量分?jǐn)?shù)下降,與本研究結(jié)果一致。凋落物單一因子處理極顯著降低了的柳杉幼苗葉綠素a,葉綠素b和葉綠素a/b,說(shuō)明柳杉凋落物化感作用促進(jìn)了葉綠素a的降解[35]。酸雨和凋落物復(fù)合作用下葉綠素a,葉綠素b質(zhì)量分?jǐn)?shù)和葉綠素a/b下降幅度大于兩者單一處理,其原因可能是酸雨脅迫下植物的化感物質(zhì)溶解加速,使柳杉凋落物化感物質(zhì)的種類和數(shù)量增加[36]。
表5 不同處理柳杉幼苗反射光譜參數(shù)與色素質(zhì)量分?jǐn)?shù)的相關(guān)性Table 5 Correlation between reflectance spectrum parameters and pigment contents of Cryptomeria fortunei under different treatments
當(dāng)植被受脅迫時(shí),光譜特性會(huì)發(fā)生相應(yīng)的變化[37]。已有研究報(bào)道酸雨會(huì)使水稻Oryza sativa葉片可見(jiàn)光區(qū)和中紅外區(qū)反射率升高,一階和二階微分光譜發(fā)生藍(lán)移[38],病蟲(chóng)害脅迫的植被紅邊位置會(huì)發(fā)生“藍(lán)移現(xiàn)象”[39]。本研究中,用酸雨和凋落物處理的柳杉葉片可見(jiàn)光波段內(nèi)的光譜反射率發(fā)生“藍(lán)移”現(xiàn)象,且在550 nm附近呈現(xiàn)出葉綠素的強(qiáng)反射峰,與前人的研究結(jié)果[31]相一致。此外,不同處理極顯著降低了柳杉反射光譜參數(shù)反射率倒數(shù),改良的歸一化差值指數(shù)和反射光譜比值指數(shù)a,紅度歸一化指數(shù)和改良的紅邊比值指數(shù)(P<0.01),其中酸雨和凋落物復(fù)合處理的光譜參數(shù)最小,與柳杉幼苗的葉綠素a,葉綠素b質(zhì)量分?jǐn)?shù)和葉綠素a/b降低且酸雨和凋落物復(fù)合處理值最小相吻合,說(shuō)明兩者復(fù)合處理對(duì)柳杉的脅迫作用大于兩者任一因子單獨(dú)處理。
大量研究表明植物光合色素質(zhì)量分?jǐn)?shù)與光譜原始反射率、微分導(dǎo)數(shù)和光譜參數(shù)有較高的相關(guān)性[40]。病害下棉花Gossypiumspp.葉綠素質(zhì)量分?jǐn)?shù)與歸一化指數(shù),結(jié)構(gòu)不敏感色素指數(shù),光化學(xué)反射指數(shù)等光譜參數(shù)顯著相關(guān)[41],玉米Zeamays葉片中色素質(zhì)量分?jǐn)?shù)也與光譜參數(shù)色素比值指數(shù)a,紅邊位置,紅邊幅值和紅邊面積等表現(xiàn)出極顯著的相關(guān)性[4]。本研究發(fā)現(xiàn),不同處理柳杉葉片色素質(zhì)量分?jǐn)?shù)和葉綠素a/b與原始反射率在514~629 nm及近紅外區(qū)達(dá)到極顯著負(fù)相關(guān)(P<0.01),且與一階微分光譜在424~486,552~682,698~755和762~772 nm波段達(dá)到極顯著相關(guān)(P<0.01),說(shuō)明可以通過(guò)光譜反射率和微分光譜對(duì)酸雨和凋落物脅迫下柳杉色素含量進(jìn)行估測(cè)。不同處理柳杉葉片葉綠素a,葉綠素b質(zhì)量分?jǐn)?shù)和葉綠素a/b與改良的歸一化差值指數(shù),改良的紅邊比值指數(shù)和反射光譜指數(shù)680等7個(gè)光譜參數(shù)極顯著相關(guān)(P<0.05),且與反射率倒數(shù),結(jié)構(gòu)不敏感色素指數(shù)和紅邊位置等11個(gè)光譜參數(shù)呈極顯著相關(guān)(P<0.01)。其中,反射率倒數(shù),藍(lán)邊幅值,藍(lán)邊面積,黃邊面積,黃邊幅值,紅邊幅值和紅邊面積與葉綠素a、葉綠素b質(zhì)量分?jǐn)?shù)和葉綠素a/b相關(guān)性均接近或大于0.80(P<0.01),這表明以上7個(gè)反射光譜參數(shù)更適用于監(jiān)測(cè)酸雨和凋落物處理下柳杉的光合色素質(zhì)量分?jǐn)?shù)變化。
綜上所述,在酸雨的作用下使柳杉凋落物的化感作用增強(qiáng),可能是由于酸雨增強(qiáng)柳杉凋落物化感物質(zhì)的釋放。反射率倒數(shù),藍(lán)邊幅值,黃邊面積,黃邊幅值,藍(lán)邊面積,紅邊幅值和紅邊面積等光譜參數(shù)與葉綠素a,葉綠素b和葉綠素a/b相關(guān)性最大,可以作為估測(cè)柳杉色素質(zhì)量分?jǐn)?shù)的光譜參數(shù)。
[1]RICHARDSON A D,DUIGAN SP,BERLYNG P.An evaluation of noninvasivemethods to estimate foliar chlorophyll content[J].New Phytol,2002,153(1):185-194.
[2]GITELSON A A,GRITZ Y,MERZLYAK M N.Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves[J].JPlant Physiol,2003,160(3):271-282.
[3]MOORTHY I,MILLER JR,NOLAND T L.Estimating chlorophyll concentration in conifer needleswith hyperspectral data:An assessment at the needle and canopy level[J].Remote Sens Environ,2008,112(6):2824-2838.
[4]TANG Yanlin,HUANG Jingfeng,WANG Xiuzhen,et al.Study on hyperspectral characteristics of corn leaves and their correlation to chrolophyll and carotenoid[J].JMaize Sci,2008,16(2):71-76.
[5]伍南,劉君昂,閆瑞坤,等.利用光譜特征參數(shù)估算病害脅迫下杉木葉綠素含量[J].植物保護(hù),2012,38(4):72-76.
WU Nan,LIU Jun,ang,YAN Ruikun,et al.Using spectral feature parameters to estimate the chlorophyll content of Chinese fir under disease stress[J].Plant Prot,2012,38(4):72-76.
[6]SIMSD A,GAMON JA.Relationships between leaf pigment content and spectral reflectance across a wide range of species,leaf structures and developmental stages[J].Remote Sens Environ,2002,81(2-3):337-354.
[7]馮偉,朱艷,姚霞,等.小麥葉片色素含量的高光譜監(jiān)測(cè)[J].應(yīng)用生態(tài)學(xué)報(bào),2008,19(5):992-999.
FENG Wei,ZHU Yan,YAO Xia,et al.Monitoring of wheat leaf pigment concentration with hyperspectral remote sensing[J].Chin JAppl Ecol,2008,19(5):992-999.
[8]時(shí)啟龍,江洪,陳健,等.亞熱帶典型樹(shù)種對(duì)模擬酸雨脅迫的高光譜響應(yīng)[J].生態(tài)學(xué)報(bào),2012,32(18):5621 -5629.
SHIQilong,JIANG Hong,CHEN Jian,et al.Hyperspectral characteristics of typical subtopical trees at different levels of simulated acid rain[J].Acta Ecol Sin,32(18):5621-5629.
[9]FAN H B,WANG Y H.Effects of simulated acid rain on germination,foliar damage,chlorophyll contents and seedling growth of five hardwood species growing in China[J].For Ecol Manage,2000,126(3):321-329.
[10]SHAN Y.Effects of simulated acid rain on Pinus densiflora:inhibition of net photosynthesis by the pheophytization of chlorophyll[J].Water,Air&Soil Pollut,1998,103(1):121-127.
[11]HONG Y,HUANG JJ,HU H Y.Effects of a novel allelochemical Ethyl 2-Methyl Acetoacetate(EMA)on the ultrastructure and pigment composition of cyanobacteriumMicrocystis aeruginosa[J].Bull Environ Contam Toxicol,2009,83(4):502-508.
[12]BHATT B P,CHAUHAN D S.Allelopathic effects of Quercus spp.on crops of Garhwal Himalaya[J].Allelopathy J,2000,7(2):265-272.
[13]PADHY B,PATNAIK PK,TRIPATHY A K.Allelopathic potential of eucalyptus leaf litter leachates on germination and seedling growth of fingermillet[J].Allelopathy J,2000,7(1):69-78.
[14]張昕,張立欽,王記祥,等.天目山柳杉癭瘤病病原菌觀察[J].浙江林業(yè)科技,2008,28(2):55-57. ZHANG Xin,ZHANG Liqin,WANG Jixiang,et al.Observation on pathogenetic fungi of gall disease onCryptomeria fortuneiin Tianmu Mountain[J].JZhejiang For Sci Technol,2008,28(2):55-57.
[15]夏愛(ài)梅,達(dá)良俊,朱虹霞,等.天目山柳杉群落結(jié)構(gòu)及其更新類型[J].浙江林學(xué)院學(xué)報(bào),2004,21(1):44-50.
XIA Aimei,DA Liangjun.ZHU Hongxia,et al.Community structure and regeneration pattern of Cryptomeria fortunei in Mount Tianmu of Zhejiang,China[J].JZhejiang For Coll,2004,21(1):44-50.
[16]馬原.模擬酸雨對(duì)天目山柳杉的影響[D].上海:華東師范大學(xué),2007.
MA Yuan.Effectof Simulated Acid Rain on Cryptomeria fortunei[D].Shanghai:East China Normal University,2007.
[17]俞飛,侯平,宋琦,等.柳杉凋落物自毒作用研究[J].浙江林學(xué)院學(xué)報(bào),2010,27(4):494-500.
YU Fei,HOU Ping,SONG Qi,et al.Autotoxicity ofCryptomeria fortuneilitter[J].JZhejiang For Coll,2010,27(4):494-500.
[18]LICHTENTHALER H K.Chlorophylls and carotenoids:Pigments of photosynthetic biomembranes[J].Methods Enzymol,1987,148:350-382.
[19]GITELSON A A,SCHALLES JF,RUNDQUISTD C,et al.Comparative reflectance properties of algal cultures with manipulated densities[J].JAppl Phycol,1999,11(4):345-354.
[20]BROGE N H,LEBLANC E.Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density[J].Remote Sens Environ,2001,76(2):156-172.
[21]BLACKBURN G A.Quantifying chlorophylls and caroteniods at leaf and canopy scales:an evaluation of some hyperspectral approaches[J].Remote Sens Environ,1998,66(3):273-285.
[22]GITELSON A,MERZLYAK M N.Spectral reflectance changes associated with autumn senescence ofAesculus hippocastanumL.andAcer platanoidesL.leaves:Spectral features and relation to chlorophyll estimation[J].JPlant Physiol,1994,143:286.
[23]CHAPPELLE EW,KIM M S,MCMURTREY JE.Ratio analysis of reflectance spectra(RARS):an algorithm for the remote estimation of the concentrations of chlorophyll a,chlorophyll b,and carotenoids in soybean leaves[J].Remote Sens Environ,1992,39(3):239-247.
[24]GAMON JA,SERRANO L,SURFUSJS.The photochemical reflectance index:an optical indicator of photosynthetic radiation use efficiency across species,functional types,and nutrient levels[J].Oecologia,1997,112(4):492-501.
[25]GITELSON A A,MERZLYAK M N.Signature analysis of leaf reflectance spectra:algorithm development for remote sensing of chlorophyll[J].JPlant Physiol,1996,148(3):494-500.
[26]PENUELAS J,BARET F,F(xiàn)ILELLA I.Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance[J].Photosynthetica,1995,31(2):221-230.
[27]MERZLYAK M N,GITELSON A A,CHIVKUNOVA O B,et al.Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening[J].Physiol Plant,2002,106(1):135-141.
[28]GITELSON A A,ZUR Y,CHIVKUNOVA O B,et al.Assessing carotenoid content in plant leaves with reflectance spectroscopy[J].Photochem Photobiol,2002,75(3):272-281.
[29]GITELSON A A,VI?A A,VERMA SB,et al.Relationship between gross primary production and chlorophyll content in crops:Implications for the synoptic monitoring of vegetation productivity[J].JGeophysic Res,2006,111(D8):D8S-D11S.
[30]GAMON JA,PENUELASJ,F(xiàn)IELD C B.A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency[J].Remote Sens Environ,1992,41(1):35-44.
[31]張學(xué)治,鄭國(guó)清,戴廷波,等.基于冠層反射光譜的夏玉米葉片色素含量估算模型研究[J].玉米科學(xué),2010,18(6):55-60.
ZHANG Xuezhi,ZHENG Guoqing,DAITingbo,et al.Estimationmodels of summermaize leaf pigment content based on canopy reflectance spectra[J].JMaize Sci,2010,18(6):55-60.
[32]邱棟梁,劉星輝,郭素枝.模擬酸雨對(duì)龍眼葉綠體活性的影響[J].應(yīng)用生態(tài)學(xué)報(bào),2002,13(12):1559-1562.
QIU Dongliang,LIU Xinghui,GUO Suzhi.Effects of simulated acid rain on chloroplast activity inDimorcarpus lon-ganaLour.‘Wulongling,leaves[J].Chin JAppl Ecol,2002,13(12):1559-1562.
[33]MOHAREKAR ST,LOKHANDE SD,HARA T,et al.Effect of salicylic acid on chlorophyll and carotenoid contents ofwheat andmoong seedlings[J].Photosynthetica,2003,41(2):315-317.
[34]齊澤民,鐘章成.模擬酸雨對(duì)杜仲光合生理及生長(zhǎng)的影響[J].西南師范大學(xué)學(xué)報(bào),2006,31(2):151-156.
QI Zemin,ZHONG Zhangcheng.Effect of simulated acid rain on photosynthesis and growth of Eucommia ulmoides Oliv.[J].JSouthwest China Norm Univ,2006,31(2):151-156.
[35]張彬,郭勁松,方芳,等.植物化感抑藻的作用機(jī)理[J].生態(tài)學(xué)雜志,2010,29(9):1846-1851.
ZHANG Bin,GUO Jinsong,F(xiàn)ANG Fang,et al.Action mechanisms of allelopathy in inhibiting algae:a review[J].Chin JEcol,2010,29(9):1846-1851.
[36]WANG R L,STAEHELIN C,DAYAN F E,et al.Simulated acid rain accelerates litter decomposition and enhances theallelopathic potentialof the invasiveplantWedelia trilobata(creepingdaisy)[J].Weed Sci,2012,60(3):462-467.
[37]SAMPSON P H,ZARCO-TEJADA P J,MOHAMMED G H,et al.Hyperspectral remote sensing of forest condition:estimating chlorophyll content in toleranthardwoods[J].For Sci,2003,49(3):381-391.
[38]李德成,徐彬彬,石曉日,等.模擬酸雨對(duì)水稻葉片反射光譜特性影響的初步研究[J].環(huán)境遙感,1996,11(4):241-247.
LIDecheng,XU Binbin,SHIXiaori,et al.Influence of simulated acid rain on characheristics of reflectance spectra of rice leaves[J].Remote Sens Environ,1996,11(4):241-247.
[39]SHAFRIH ZM.,SALLEH M A M,GHIYAMAT A,et al.Hyperspectral remote sensing of vegetation using red edge position techniques[J].Am JAppl Sci,2006,3(6):1864-1871.
[40]薛忠財(cái),高輝遠(yuǎn),劉鵬,等.利用冠層和葉片水平的反射光譜研究模擬酸雨對(duì)小麥的影響[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2011,30(2):228-235.
XUE Zhongcai,GAO Huiyuan,LIU Peng,et al.Study on the effects of simulated acid rain on wheat using the spectral reflectance at canopy and leaf level[J].JAgro-Environ Sci,2011,30(2):228-235.
[41]陳兵,李少昆,王克如,等.病害脅迫下棉花葉片色素含量高光譜遙感估測(cè)研究[J].光譜學(xué)與光譜分析,2010,30(2):421-425.
CHEN Bing,LIShaokun,WANG Keru,et al.Study on hyperspectral estimation of pigment contents in leaves of cotton under disease stress[J].Spectrosc Spectral Anal,2010,30(2):421-425.
Pigment content and reflectance spectrum of Cryptomeria fortunei with acid rain and litter treatments
ZHANG Shanshan1,YU Fei1,GUOHuiyuan2,SHENWeidong3,WANG Junlong1,
GAO Rongfu1,4,ZHANG Rumin1,HOU Ping1
(1.The Nurturing Station for the State Key Laboratory of Subtropical Silviculture,Zhejiang A&F University,Lin,an 311300,Zhejiang,China;2.China Bamboo Research Center,Hangzhou 310012,Zhejiang,China;3. Management Office,National Nature Reserve of Mount Tianmu,Lin,an 311311,Zhejiang,China;4.College of Biological Sciences and Biotechnology,Beijing Forestry University,Beijing 100083,China)
To understand the combined effects of acid rain and litter onCryptomeria fortuneiseedlings,pigment content and reflectance spectra in 3-year-oldC.fortuneiseedlings were tested with treatments of the control(ck),acid rain stress(pH 4.0,Tr1),litter addition(60 g,Tr2)and their combination(Tr3),which then compared with a correlation analysis.Results showed that compared to the control,chlorophyll contentdecreased 11.6%in Tr1,26.1%in Tr2,and 39.1%in Tr3.Acid rain also decreased the reflectance spectral parameters(SR680,NDVI,PSNDa,PSNDb,RARSc,and SIPI)but increased mSR705and RARSa(P<0.05).For Tr2,some reflectance spectral parameters(RR,SR680,mSR705,NDVI,and PRI)were significantly less than the control(P<0.05),and Tr3 made highly difference compared to the control(P<0.01).Reflectance between 514-629 nm and 690-1 000 nm had a highly significant correlation(0.80<r<0.98),which was near 0.98,with the chlorophyll content and chlorophyll a/b.In addition,r between chlorophyll content and the first derivative of reflectance spectra was highly significant within 424-486 nm,552-682 nm,698-755 nm,and 762-772 nm,thatmaximum r was near 0.96.The reflectance spectrum parameters,such as RR,RARSa and λred,were significantly correlated(P<0.05)with pigment content.The correlation coefficients between reflectance spectral parameters(RR,Dλblue,Sblue,Dλyellow,Syellow,Dλred,and Sred)and chlorophyll a,chlorophyll b,and chlorophyll a/b were near 0.8.Therefore,acid rain enhanced the allelopathic effect in litter on chlorophyll a by increasing chlorophyll a degradation;visible light and the near infrared region were the sensitive areas of reflectance and first derivative in the leaves of C.fortunei;and reflectance spectral parameters RR,Dλblue,Sblue,Dλyellow,Syellow,Dλred,and Sredcould be used to evaluate chlorophyll a,chlorophyll b,and chlorophyll a/b.[Ch,4 fig.5 tab.41 ref.]
tree physiology;Cryptomeria fortunei;pigment;acit rain;litter;reflectance spectrum
S718.43;Q945
A
2095-0756(2014)02-0254-10
2013-01-11;
2013-02-25
浙江省自然科學(xué)基金資助項(xiàng)目(Y3100361,Y305235);浙江農(nóng)林大學(xué)科研發(fā)展基金資助項(xiàng)目(2010FR058)
張珊珊,從事植物生理生態(tài)研究。E-mail:shanshan.12345@hotmail.com。通信作者:侯平,教授,博士,從事森林生態(tài)學(xué)研究。E-mail:houpingg@263.net