• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of CNT Agglomeration on the Electrical Conductivity and Percolation Threshold of Nanocomposites:A Micromechanics-based Approach

    2014-04-18 01:35:16YangKChoGKimandLee

    B.J.YangK.J.ChoG.M.Kimand H.K.Lee

    1 Introduction

    The electrical characteristics of carbon nanotube(CNT)-reinforced nanocomposites have attracted the interest of engineers and researchers due to their potential applications in many fields such as sensing and actuation technologies[Lau,Gu,and Hui(2006);Kim,Nam,and Lee(2014)].The conductivity of CNTs is much higher than that of a given matrix,and therefore the addition of CNTs to a matrix is expected to improve the effective electrical performance of composites[Asgary,Nourbakhsh,and Kohantorabi(2013)].Once the electrical path of CNTs is developed within the matrix,the effective conductivity of the composites dramatically rises,and the specific volume fraction of CNTs is defined as the percolation threshold point[Pan,Weng,Meguid,Bao,Zhu,and Hamouda(2011);Lahiri,Ghosh,and Agarwal(2012)].

    The percolation threshold of the composite containing CNTs is much lower than that of conventional fillers since the aspect ratio(length-to-diameter)of CNTs is relatively high,exceeding 100[Deng,Zheng,Wang,and Nan(2007);Li,Thostenson,and Chou(2008)].Although outstanding enhancement is obtained with lengthy nanotubes,the high aspect ratio of CNTs often causes nanotube entanglement by van-der-Waals(vdW)attraction,inhibiting the formation of conductive networks[Dhand,Arya,Singh,Singh,Datta,and Malhotra(2008);Shokrieh and Rafiee(2010)].In addition,the CNTs are dispersed in random directions when they are incorporated in the matrix,and the random orientation of CNTs may accelerate the entanglement and agglomeration of nanotubes[Shi,Feng,Huang,Hwang,and Gao(2004)].

    To date,the electrical properties of nanocomposites contacting CNTs have been widely studied with experimental and theoretical approaches.The electrical conductivity of single-walled CNT(SWNT)/polymer composites was investigated by Ramasubramaniam,Chen,and Liu(2003),and substantial improvements in the electrical characteristics of nanocomposites with low contents of SWCNTs were documented in their study.In addition,influences of the dispersion state and the aspect ratio of CNTs on the percolation threshold of nanocomposites reinforced with CNTs were investigated by Li,Ma,Chow,To,Tang,and Kim(2007).They reported that the critical factors determining the electrical performance of nanocomposites include:the aspect ratio,the entanglement phenomenon,and the distribution level of CNTs[Li,Ma,Chow,To,Tang,and Kim(2007)].Seidel and Lagoudas(2009)developed a micromechanical model based on the Mori-Tanaka method[Mori and Tanaka(1973);Hiroshi and Minoru(1986)]and the composite cylinders approach[Hashin(1990)]for nanocomposites reinforced by CNTs.They treated the interphase layer between the matrix and CNTs as an external boundary,which is a hopping electron mechanism[Seidel and Lagoudas(2009)].

    More recently,a micromechanical analysis based on the Ponte Casta?eda-Willis(PCW)model[Casta?eda and Willis(1995)]was performed by Weng(2010)to address the effect of CNT orientation on the electrical conductivity and percolation threshold of nanocomposites.Feng and Jiang(2013)also proposed a mixed micromechanical model to predict the overall electrical characteristics of CNT-reinforced nanocomposites.It was found that the conductive network significantly affects the electrical performance of the composites,and the aspect ratio of CNTs is one of the most critical factors on the percolation threshold of the composite materials.A number of numerical analyses of microstructures in heterogeneous materials have also been carried out[Bishay and Atluri(2013);Dong,Alotaibi,Mohiuddine,and Atluri(2014)].

    On the basis of the aforementioned researches, consideration of CNT entanglement,which is significantly related to the distribution of CNTs,is essential to precisely predict the electrical characteristics of nanocomposites[Yang,Souri,Kim,Ryu,and Lee,2014].Nevertheless,only a few studies have rigorously investigated the effects due to their complex nature.In the present study,the micromechanics-based PCW model[Weng(2010)]is utilized to investigate the electrical conductivity and percolation threshold of nanocomposites and to address the agglomeration and entanglement mechanisms of CNTs.CNTs ranging from straight to fully entangled nanotubes are assumed to be ellipsoidal inclusions,which are dependent on the aspect ratio of the nanotubes.In addition,the distribution of CNTs embedded in the matrix materials is assumed to obey a logarithmic normal function.

    A series of parametric studies considering various shapes and curviness distributions of CNTs are carried out to evaluate the effects of entanglement on the electrical performance of nanocomposites.Comparisons between experimental results[Ahmad,Pan,and Shi(2006);Li,Huang,Du,He,Lin,Gao,Ma,Li,Chen,and Eklund(2006)]and the present predictions are made to evaluate the predictive capability of the proposed model.Furthermore,the present model is incorporated into the commercial finite element(FE)software HFSS(High Frequency Structure Simulator)[ANSYS HFSS(2008)]to simulate the electromagnetic shielding effectiveness(EMI)of nanocomposites.

    2 Modeling of entangled CNTs embedded in a matrix

    Due to the high aspect ratio of nanotubes and the resin viscosity,the CNTs embedded in a matrix are often observed to be curved and looped rather than straight[Fiedler,Gojny,Wichmann,Nolte,and Schulte(2006)].Curved CNTs may lead to an inhomogeneous distribution within the matrix material,and it ultimately interferes with the formation of an effective conductive path,as shown in Fig.1[Shi,Feng,Huang,Hwang,and Gao(2004);Cha,Kim,Lee,Mo,and Hong(2005)].Since the overall electrical performance of the nanocomposite is dominated by the conductive network,the influence of the entanglement mechanism on CNT agglomeration is a critical issue and should be carefully investigated[Izadi and Kadir(2010);Pan,Weng,Meguid,Bao,Zhu,and Hamouda(2011)].

    Figure 1:Schematic representations of a composite showing the effects of nanotube curviness and orientation on the filler connectivity:nanocomposites containing(a)unidirectionally aligned straight CNTs,(b)unidirectionally aligned and curved CNTs,and(c)3D randomly oriented and curved CNTs.

    However,it would be difficult to quantify the level of agglomeration in composites since the experimental measurement of each CNT shape is quite challenging[Sinnott,Mao,and Lee(2002);Li,Thostenson,and Chou(2008)].To overcome this challenge,the CNTs within the matrix are considered as an ellipsoidal inclusion and the degree of CNT curviness is assumed to be affected by the spiral(θ)and the polar angle(ψ)in the present study(Fig.2).Hence,the relation between the aspect ratio(α)and the curviness degree of CNTs can be determined as follows[Shi,Feng,Huang,Hwang,and Gao(2004)]:

    whereLEanddEdenote the effective length and diameter of the curved nanotube,respectively;θandψare the spiral and polar angle,respectively;HanddOare the partial height and the diameter of CNTs,respectively(Fig.2)[Shi,Feng,Huang,Hwang,and Gao(2004)].

    Due to the vdW attraction between adjacent tubes[Ajayan,Schadler,Giannaris and Rubio(2001)],CNTs become more entangled by adhering to each other when their curviness becomes more severe than a specific criterion.Hence,when the partial height(H)is equal or less than the nanotube diameter(dO),the CNTs are regarded as entangled nanotubes(agglomeration)in the present study.The agglomeration is then separately treated as sphere-shape inclusions,and the criterion between curved and entangled CNTs can be defined as given below(see,Fig.3).

    Figure 2:Schematic of the effective ellipsoidal inclusions used to model the electrical conductivity of the carbon nanotube embedded in composites:(a)the straight nanotube and(b)the curved nanotube.

    Figure 3:Schematic illustration of the proposed approach.

    The criterion that determines the entangled CNT can then be derived as

    From Eq.(4),it is noted that the spiral(θ)and polar angle(ψ)are the only undetermined variables since the aspect ratio of CNT(α)is a value that can be measured by experiment.

    Figure 4:Dispersed direction of straight CNTs and waved CNTs with spiral angle variable.

    In addition, the spiral angle is an independent constant in the fixed Cartesian coordinate system,and is not affected by the polar angle when the nanotube is randomly and uniformly distributed(Fig.4).Thus,the variable of the spiral angle can be simplified by taking the average method as

    From Eqs.(2)-(5),the criterion between curved and entangled CNTs can be derived by one variable,the polar angle,as follows.

    The polar angle is assumed to have a log-normal distribution in the proposed model[Andreescu,Savin,Steigmann,Iftimie,Mamut,and Grimberg(2008);Ciecierska,Boczkowska,and Kurzydlowski(2010)],and thus the probability density function of the distribution is described as[Spanoudaki and Pelster(2001)]

    whereμis the mean value andsis the standard deviation,which signifies the curviness distribution of CNTs,respectively.A CNT withψ=0 is considered to be a straight tube,while a CNT with a larger polar angle than the criterion(4α≤ψ)is regarded as an entangled nanotube that has an approximately spherical shape.

    3 Recapitulation ofPCWmodel for effective electrical conductivity of nanocomposites with entanglement effects

    The Ponte Casta?eda-Willis(PCW)model[Casta?eda and Willis(1995);Weng(2010)]is adopted here to predict the effective electrical conductivity of nanocomposites containing CNTs.For the completeness of the proposed approach,the PCW model[Weng(2010)]is briefly recapitulated here.The most distinguished feature of the PCW model is to consider multi-phase inclusions with different shapes[Weng(2010)],allowing incorporation of the entanglement mechanism into the framework.In addition,the PCW model features a simple closed form that can be modified and extended to a more realistic schema by means of computational modelling[Pan,Weng,Meguid,Bao,Zhu,and Hamouda(2011)].Let us consider aq-phase composite(q=0,1,...,n)consisting of a matrix(phase 0)with electrical conductivity L0,and initially straight CNTs(phase 1)with electrical conductivity L1.The CNTs could be looped when the nanotubes are incorporated into the matrix,and the curved CNTs with varying degree of curviness are separately regarded as different phases.Hence,the analytical model for the prediction of aligned CNT-reinforced nanocomposites with the entanglement effect can be written as[Weng(2010)]

    where Lqandφqare the electrical conductivity and the volume fraction of theqphase(q=0,1,...,n);S denotes the Eshelby tensor,which is a spheroidal inclusion with a symmetric axis 3 as[Landau,Bell,Kearsley,Pitaevskii,Lifshitz,and Sykes(1984);Pan,Weng,Meguid,Bao,Zhu,and Hamouda(2011)]

    whereαis the aspect ratio of CNTs(length-to-diameter ratio)that is defined asα=LE/dEin Eq.(1).With the spherical-shaped inclusion,Eq.(10)reduces toS11=S22=S33=1/3[Pan,Weng,Meguid,Bao,Zhu,and Hamouda(2011)].Note that the conductivity value of CNTs is assumed to be identical regardless of the curviness level in the present study.

    In addition,the analysis for nanocomposites containing aligned CNTs can then be extended to the condition of randomly oriented nanotubes,and it is explicitly written as[Weng(2010)]

    As shown in Fig.3,the level of CNT curviness becomes more intense as the polar angle increases.The effective aspect ratio of CNTs is thus variable with respect to the polar angle,and different shapes of ellipsoidal inclusions would be embedded in the matrix material.In the model proposed by Pan et al.(2001),CNTs embedded in the composites are assumed to be perfectly straight.However,the incorporated nanotubes are often observed to be curved rather than being straight[Gojny,Wichmann,K?pke,Fiedler,and Schulte(2004);Tsai,Zhang,Jack,Liang,and Wang(2011)],and thus the present proposed model is expected to enable the more realistic simulation of CNTs-reinforced nanocomposites.However,it should be noted that the influence of CNT waviness tends to be insignificant as the volume fraction of CNT increases.Fig.5 shows the algorithm for predicting the electrical behavior of nanocomposites with the curviness effect.

    In the algorithm presented in Fig.5,the materials properties(Lqandα)and the log-normal distribution constants(μ,s)must be identified.Here,μis assumed to be log(α)based on the literatures[Andreescu,Savin,Steigmann,Iftimie,Mamut,and Grimberg(2008);Ciecierska,Boczkowska,and Kurzydlowski(2010)],andsis set to be an intrinsic property that is dependent on the material constituents.Here,increment of the polar angle is 1 rad ranging uniformly from 0 to the criterion.

    Since the CNT with 4α≤ψis considered as a sphere-shaped inclusion,the number of phases in the matrix increases until the polar angle exceeds the criterion.Considering the correlations between the polar angle and the aspect ratio of CNTs,the effective electrical conductivities are calculated and updated simultaneously with an increasing polar angle value.In addition,the symbols adopted in Fig.5 are clearly explained in Table 1.

    Table 1:The symbols adopted in the interactive algorithm for the electrical conductivity simulation.

    4 Parametric study on the distribution effect of CNTs

    Based on the present proposed model,a series of numerical simulations is performed to elucidate the effects of the CNT curviness and entanglement on the electrical conductivity of nanocomposites.Since the aspect ratio and the orientation of CNTs are expected to considerably affect the percolation behavior[Li,Ma,Chow,To,Tang,and Kim(2007)],influences of the parameters are also investigated through the numerical study.The CNT/alumina composite manufactured by Ahmad,Pan,and Shi(2006)is considered for the simulation,and the material properties of the matrix and CNTs are as follows:L0=1·10?12S/m,L1=6·102S/m,andα=100,respectively[Ahmad,Pan,and Shi(2006)],whereLq(q=0,1)denotes the electrical conductivity of theq-phase andαis the aspect ratio of the CNTs.

    First,the simulation results with respect to CNT orientation and length are presented in Fig.6.From the result,the electrical percolation threshold is rapidly initiated when the CNTs are 3D randomly oriented rather than unidirectionally aligned.It is also shown that the electrical path is formed earlier as increases.Hence,the present predictions reveal that the composites reinforced by 3D randomly oriented and lengthy CNTs have a higher probability of forming an electrical path compared to the aligned and short CNT-reinforced composites[Li,Ma,Chow,To,Tang,and Kim(2007);Nam,Lee,and Jang(2011)].

    Figure 5:The recursive and interactive algorithm for the electrical conductivity simulation.

    The influence of the CNT entanglement on the overall electrical performance of the nanocomposite is simulated,as shown in Fig.7.In the numerical study,the log-normal distribution parametersμands,which are the mean and the curviness distribution of CNTs,are assumed to beμ=log(α)ands=1,respectively.Furthermore,the criterion between curved and entangled CNTs is set to be 4α≤ψ,as derived in the previous section.Fig.7(a)shows that an effective conductive path is formed slowly with entanglement,and therefore the overall electrical performance of the given material is predicted to be decreased.It is clear from Fig.7(a)that the CNT entanglement is quite sensitive to the aspect ratio,and the level of agglomera-tion becomes more pronounced as the aspect ratio of the nanotubes decreases.The distribution of CNT curviness corresponding to Fig.7(a)is depicted in Fig.7(b).To investigate the effect of aspect ratio on the electrical performance of the nanocomposites,the electrical conductivity with varying aspect ratios are illustrated in Fig.8(a).It is observed from Fig.8(a)that the incorporation of lengthy CNTs leads to an earlier percolation threshold;however,a higher aspect ratio results in more frequent occurrence of curved CNTs.In addition,the corresponding probability function of the CNTs distribution with various aspect ratios is shown in Fig.8(b).

    Figure 6:Effects of the nanotube orientation and length on the overall electrical conductivity of nanocomposites.

    Figure 7:(a)The predicted electrical conductivity of CNT/aluminum composites with respect to the aspect ratio and the curviness effect and(b)the distribution probability of straight CNTs in the matrix corresponding to(a)

    Figure8:(a)The predicted conductivity of nanocomposites against volume fraction of CNTs for different aspect ratio and(b)the probability function of the CNTs distribution with various aspect ratios.

    A parametric analysis of the curviness distribution,s,is conducted in accordance with the polar angle,as shown in Fig.9.The aspect ratio of CNTs is fixed to beα=100,and four values of the distribution parameter are considered:0.5,1.0,2.0,and 5.0.It can be seen from Fig.9(a)that the CNT agglomeration has a considerable influence on the percolation threshold,and a lower value ofsleads to better electrical performance of the nanocomposites.Fig.9(b)shows the predicted distribution of nanotubes with different parameterscorresponding to Fig.9(a).For the CNT distribution,the probability of existence of moderate CNTs within the matrix is 99.72%fors=0.5,while it is 60.92%fors=5.0(Fig.9(b)).

    Figure 9:(a)The electrical conductive properties of nanocomposites predicted by the proposed model and(b)the corresponding predicted distribution of nanotube as function of polar angle.

    5 Experimental comparisons on electrical conductivity properties

    Comparisons between the experimental results and the present predictions are made to evaluate the predictive capability of the proposed model.Two sets of experimental data that are available in the literature are considered for the comparisons,and the influence of CNT contents on the effective electrical conductivity of nanocomposites is discussed here.Since the model parameter,s,of the proposed model is not reported,the parameter is estimated by fitting the experimentally obtained electrical conductivity curve[Ahmad,Pan,and Shi(2006);Li,Huang,Du,He,Lin,Gao,Ma,Li,Chen,and Eklund(2006)]with the prediction.First,the electrical conductivities of alumina/multiwalled CNT(MWCNT)composites with different MWNT contents measured by Ahmad,Pan,and Shi(2006)is considered.Taking data from the literature,the material properties of the constituent phases are:L0=1·10?12S/m,L1=6·102S/m,andα=100,respectively[Ahmad,Pan,and Shi(2006);Pan,Weng,Meguid,Bao,Zhu,and Hamouda(2011)].Here,L0andL1denote the electrical conductivity of the matrix and CNTs,respectively;αis the aspect ratio(length/diameter)of the nanotubes,and the CNT distribution parameters are set to beμ=log(α)ands=1.0.

    Figure 10:(a)Comparison between the proposed electrical conductivity prediction and experimental data(Ahmad et al.,2006)and(b)the corresponding predicted CNTs distribution embedded in the matrix.

    Figure 11:(a)Comparisons of the electrical conductivity with the experimental data(Li et al.,2006)and the present prediction for CNT/epoxy composites and(b)the predicted nanotube distribution as a function of the polar angle of the CNTs corresponding to(a).

    Figure 10 shows comparisons of electrical conductivity from the experiment[Ahmad,Pan,and Shi(2006)]and the present prediction with different volume fractions of CNTs.The dash and solid lines correspond to the current predictions with and without the agglomeration effect,while the black dots denote the experimental measurements.It is found from Fig.10(a)that the electrical conductivity of the composites increases as the volume fraction of the CNTs increases,which significantly rises from 1·10?11to 1.0 S/m for 1.0~1.5%of CNTs.The predictions considering the agglomeration mechanism are lower than those without considering the agglomeration phenomena,and the predictions are thereby in good agreement with the experimental data.The predicted CNTs distribution corresponding to Fig.10(a)is depicted in Fig.10(b).

    The predicted conductivity and the corresponding experimental data for the CNT/epoxy composite[Li,Huang,Du,He,Lin,Gao,Ma,Li,Chen,and Eklund(2006)]are shown in Fig.11 as a function of the nanotube content.The material properties are adopted herein from Li,Huang,Du,He,Lin,Gao,Ma,Li,Chen,and Eklund(2006)as:L0=1·10?13S/m,L1=1·10 S/m,andα=139.Overall,the present predictions match the experimental data well;however,it is observed that the agglomeration effect is not influential in the case of the CNT/epoxy composite specimens.This result may be caused by an effective distribution method that utilizes an ultrasonic machine and acetone catalyst[Li,Huang,Du,He,Lin,Gao,Ma,Li,Chen,and Eklund(2006)],and more detailed distribution and fabrication methods of the nanocomposite are described in Li,Huang,Du,He,Lin,Gao,Ma,Li,Chen,and Eklund(2006).The CNT distribution as a function of the polar angle of the nanotube corresponding to Fig.11(a)is presented in Fig.11(b).The predictive capability of the proposed model over the CNT content ranging from 0 to 10%is verified by the comparison between experimental results and calculated electrical conductivity characteristics.

    6 FE simulations for prediction of the electromagnetic shielding effectiveness

    Since the conductivity characteristic affects the EMI wave shielding mechanism[Chung(2001)],the shielding effectiveness of CNT-reinforced epoxy nanocomposites[Li,Huang,Du,He,Lin,Gao,Ma,Li,Chen,and Eklund(2006)]is additionally investigated in the present study.Nanocomposites with different CNTs content[Li,Huang,Du,He,Lin,Gao,Ma,Li,Chen,and Eklund(2006)]are considered for the shielding effectiveness simulation,and the commercial FE software HFSS[ANSYS HFSS(2008)]is utilized for the simulation.Fig.12 shows the layout of modeling compositions for prediction of the EMI shielding effectiveness.In order to model the actual waveguide system,the boundary condition is designed as the wave port with a definite integration line[Codecasa and Trevisan(2010);Kwon,Kim,and Lee(2011)].

    Figure 12:Layout of modeling compositions for prediction of the electromagnetic interference(EMI)shielding effectiveness(SE).

    Figure 13:The predicted distributions of electric field for(a)vacuum and(b)CNT/epoxy composites.

    Figure 14:Comparisons of the electromagnetic interference shielding effectiveness of CNTs-reinforced nanocomposites between the present predictions and experimental data[Li et al.(2006)]

    The 3D meshes for the simulation are built by reflecting the features shown in Fig.12,and the representative electric field distributions are plotted in Fig.13.In particular,Fig.13(b)shows the differences in the electric distribution field as the electromagnetic wave passes through the shielding composites.The red color denotes higher intensity of the electric field[Kwon and Lee(2009)],and the applied frequency ranges from 1.5 to 1500 MHz by following the conditions reported in Li,Huang,Du,He,Lin,Gao,Ma,Li,Chen,and Eklund(2006).Fig.14 shows comparisons of the EMI shielding effectiveness of CNT-reinforced nanocomposites between the present predictions and experimental data[Li,Huang,Du,He,Lin,Gao,Ma,Li,Chen,and Eklund(2006)].Divergences from the experiment at initial frequency values(1.5~750 MHz)are observed;however,the predicted shielding effectiveness over the frequency range from 750 to 1500 MHz match well with the measurements.It may be caused by the convergence error of the FE solution[Moussakhani,McCombe,and Nikolova(2014)]and/or the simulation limitations on the environmental and boundary condition modeling[Mramor,Vertnik,and ?arler(2013);Stegeman,Pfeiffenberger,Bailey,and Hamilton(2014)].These results provide a starting point for evaluating EMI shielding effectiveness of CNT-reinforced nanocomposites with agglomeration effects,and further theoretical study is needed in the future for a more accurate prediction on the electrical behavior of nanocomposites.

    7 Concluding remarks

    An analysis of randomly oriented CNTs-reinforced nanocomposites is conducted to predict the electrical performances of the composites.CNT entanglement induced by the high aspect ratio of nanotubes and the vdW force is considered[Ajayan,Schadler,Giannaris?and Rubio(2001)],and an interactive algorithm is developed to combine the entanglement mechanism in the micromechanical framework[Casta?eda and Willis(1995);Weng(2010)].Based on the statistically predicted CNT distribution,the entanglement criterion and the effective electrical conductivity are calculated.The capability of the present computational model is demonstrated via various parametric studies and comparisons with available experimental data[Ahmad,Pan,and Shi(2006);Li,Huang,Du,He,Lin,Gao,Ma,Li,Chen,and Eklund(2006)].In addition,the present model is incorporated into the commercial FE software HFSS[ANSYS HFSS(2008)]to simulate the EMI shielding effectiveness of nanocomposites.From the present study,the following salient features are found.

    ?The electrical conductivities gradually rise until the predicted percolation threshold point;thereafter the rate of change is very steep with an increase of the CNT contents.

    ?The aspect ratio of CNTs is a very important factor influencing the entanglement criterion,and the conductivity reduction caused by the entanglement effect becomes more influential as the aspect ratio decreases.

    ?The incorporation of lengthy CNTs leads to an earlier percolation threshold;however,the higher aspect ratio of CNTs results in more frequent occurrence of curved CNTs.

    ?The effect of the aspect ratio is predicted to be heavily influential when the CNTs are oriented 3D randomly rather than when they are unidirectionally aligned.

    It is worth noting that since the scope of this work is to investigate the entanglement effect on the electrical performance of CNT-reinforced nanocomposites,the curved and entangled CNTs are simply assumed to be ellipsoidal inclusions.It is believed that the limitation of the present approach can be resolved by including a new inclusion model or an additional homogenization method.In order to extensively investigate the electrical performances of nanocomposites and to examine the applicability of the present approaches in practice,additional theoretical and experimental verifications considering more parameters than those taken into account in the present study need to be carried out in the future.

    Acknowledgement:This research was sponsored by the National Research Foundation of Korea(NRF)grants funded by the Korea government(NRF-2012R1A2A4 A01008855).

    Ahmad,K.;Pan,W.;Shi,S.L.(2006):Electrical conductivity and dielectric properties of multiwalled carbon nanotube and alumina composites.Appl.Phys.Lett.,vol.89,no.13,pp.133122.

    Ajayan,P.M.;Schadler,L.S.;Giannaris,C.;Rubio,A.(2000):Single-walled carbon nanotube–polymer composites:strength and weakness.Adv.Mater.,vol.12,no.10,pp.750-753.

    Andreescu,A.;Savin,A.;Steigmann,R.;Iftimie,N.;Mamut,E.;Grimberg,R.(2008):Model for thermal conductivity of composites with carbon nanotubes.J.Therm.Anal.Calorim.,vol.94,no.2,pp.349-353.

    ANSYS HFSS(2008):High Frequency Structure Simulation,ANSYS Inc.

    Asgary,A.R.;Nourbakhsh,A.;Kohantorabi,M.(2013):Oldnewsprint/polypropylene nanocomposites using carbon nanotube:Preparation and characterization.Compos.Part B-Eng.,vol.45 no.1,pp.1414-1419.

    Bishay,P.L.;Atluri,S.N.(2013).2d and 3d multiphysics voronoi cells,based on radial basis functions,for direct mesoscale numerical simulation(dmns)of the switching phenomena in ferroelectric polycrystalline materials.CMC-Comput.Mater.Con.,vol.33,no.1,pp.19-62.

    Casta?eda,P.P.;Willis,J.R.(1995):The effect of spatial distribution on the effective behavior of composite materials and cracked media.J.Mech.Phys.Solids,vol.43,no.12,pp.1919-1951.

    Cha,S.I.;Kim,K.T.;Lee,K.H.;Mo,C.B.;Hong,S.H.(2005):Strengthening and toughening of carbon nanotube reinforced alumina nanocomposite fabricated by molecular level mixing process.Scripta Mater.,vol.53,no.7,pp.793-797.

    Chung,D.D.L.(2001):Electromagnetic interference shielding effectiveness of carbon materials.Carbon,vol.39,no.2,pp.279-285.

    Ciecierska,E.;Boczkowska,A.;Kurzydlowski,K.J.(2010):Quantitative description of the spatial dispersion of carbon nanotubes in polymeric matrix.J.Mater.Sci.,vol.45,no.9,pp.2305-2310.

    Codecasa,L.;Trevisan,F.(2010):Convergence of electromagnetic problems modelled by discrete geometric approach.CMES-Comp.Model.Eng.,vol.58,no.1,pp.15-44.

    Deng,F.;Zheng,Q.S.;Wang,L.F.;Nan,C.W.(2007):Effects of anisotropy,aspect ratio,and non-straightness of carbon nanotubes on thermal conductivity of carbon nanotube composites.Appl.Phys.Lett.,vol.90,no.2,pp.021914.

    Dhand,C.;Arya,S.K.;Singh,S.P.;Singh,B.P.;Datta,M.;Malhotra,B.D.(2008):Preparation of polyaniline/multiwalled carbon nanotube composite by novel electrophoretic route.Carbon,vol.46,no.13,pp.1727-1735.

    Dong,L.;Alotaibi,A.;Mohiuddine,S.A.;Atluri,S.N.(2014):Computational methods in engineering:a variety of primal&mixed methods,with global&local interpolations,for well-posed or ill-Posed BCs.CMES-Comp.Model.Eng.,vol.99,no.1,pp.1-85.

    Feng,C.;Jiang,L.(2013):Micromechanics modeling of the electrical conductivity of carbon nanotube(CNT)–polymer nanocomposites.Compos.Part A-Appl.S.,vol.47,pp.143-149.

    Fiedler,B.;Gojny,F.H.;Wichmann,M.H.;Nolte,M.;Schulte,K.(2006):Fundamental aspects of nano-reinforced composites.Compos.Sci.Technol.,vol.66,no.16,pp.3115-3125.

    Gojny,F.H.;Wichmann,M.H.G.;K?pke,U.;Fiedler,B.;Schulte,K.(2004):Carbon nanotube-reinforced epoxy-composites:enhanced stiffness and fracture toughness at low nanotube content.Compos.Sci.Technol.,vol.64,no.15,pp.2363-2371.

    Hashin,Z.(1990):Thermoelastic properties and conductivity of carbon/carbon fiber composites.Mech.Mater.,vol.8,no.4,pp.293-308.

    Hiroshi,H.;Minoru,T.(1986):Equivalent inclusion method for steady state heat conduction in composites.Int.J.Eng.Sci.,vol.24,no.7,pp.1159-1172.

    Izadi,M.;Kadir,M.Z.A.A.(2010):New algorithm for evaluation of electric fields due to indirect lightning strike.CMES-Comp.Model.Eng.,vol.67,no.1,pp.1-12.

    Kim,H.K.;Nam,I.W.;Lee,H.K.(2014):Enhanced effect of carbon nanotube on mechanical and electrical properties of cement composites by incorporation of silica fume.Compos.Struct.,vol.107,pp.60-69.

    Kwon,S.H.;Lee,H.K.(2009):A computational approach to investigate electromagnetic shielding effectiveness of steel fiber-reinforced mortar.CMC-Comput.Mater.Con.,vol.12,no.3,pp.197-221.

    Kwon,S.H.;Kim,B.R.;Lee,H.K.(2011):Electromagnetic shielding effectiveness of grid-mesh films made of polyaniline:a numerical approach.CMC-Comput.Mater.Con.,vol.21,no.1,pp.65-86.

    Lahiri,D.;Ghosh,S.;Agarwal,A.(2012):Carbon nanotube reinforced hydroxyapatite composite for orthopedic application:A review.Mater.Sci.Eng.C,vol.32,no.7,pp.1727-1758.

    Landau,L.D.;Bell,J.S.;Kearsley,M.J.;Pitaevskii,L.P.;Lifshitz,E.M.;Sykes,J.B.(1984):Electrodynamics of Continuous Media(Vol.8).Elsevier.

    Lau,K.T.;Gu,C.;Hui,D.(2006):A critical review on nanotube and nanotube/nanoclay related polymer composite materials.Compos.Part B-Eng.,vol.37,no.6,pp.425-436.

    Li,C.;Thostenson,E.T.Chou,T.W.(2008):Effect of nanotube waviness on the electrical conductivity of carbon nanotube-based composites.Compos.Sci.Technol.,vol.68,no.6,pp.1445-1452.

    Li,N.;Huang,Y.;Du,F.;He,X.;Lin,X.;Gao,H.;Ma,Y.;Li,F.;Chen,Y.;Eklund,P.C.(2006):Electromagnetic interference(EMI)shielding of singlewalled carbon nanotube epoxy composites.Nano Lett.,vol.6,no.6,pp.1141-1145.

    Li,J.;Ma,P.C.;Chow,W.S.;To,C.K.;Tang,B.Z.;Kim,J.K.(2007):Correlations between percolation threshold,dispersion state,and aspect ratio of carbon nanotubes.Adv.Funct.Mater.,vol.17,no.16,pp.3207-3215.

    Mori,T.;Tanaka,K.(1973):Average stress in matrix and average elastic energy of materials with mis fitting inclusions.Acta Metall.,vol.21,no.5,pp.571-574.

    Moussakhani,K.;McCombe,J.J.;Nikolova,N.K.(2014):Sensitivity of microwave imaging systems employing scattering parameter measurements.IEEE T.Microw.Theory,vol.62,no.10,pp.2447-2455.

    Mramor,K.;Vertnik,R.;?arler,B.(2013):Simulation of natural convection influenced by magnetic field with explicit local radial basis function collocation method.CMES-Comp.Model.Eng.,vol.92,no.4,pp.327-352.

    Nam,I.W.;Lee,H.K.;Jang,J.H.(2011):Electromagnetic interference shielding/absorbing characteristics of CNT-embedded epoxy composites.Compos.Part A-Appl.S.,vol.42,no.9,pp.1110-1118.

    Pan,Y.;Weng,G.J.;Meguid,S.A.;Bao,W.S.;Zhu,Z.H.;Hamouda,A.M.S.(2011):Percolation threshold and electrical conductivity of a two-phase composite containing randomly oriented ellipsoidal inclusions.J.Appl.Phys.,vol.110,no.12,pp.123715.

    Ramasubramaniam,R.;Chen,J.;Liu,H.(2003):Homogeneous carbon nanotube/polymer composites for electrical applications.Appl.Phys.Lett.,vol.83,no.14,pp.2928-2930.

    Seidel,G.D.;Lagoudas,D.C.(2009):A micromechanics model for the electrical conductivity of nanotube-polymer nanocomposites.J.Compos.Mater.,vol.43,no.9,pp.917-941.

    Shi,D.L.;Feng,X.Q.;Huang,Y.Y.;Hwang,K.C.;Gao,H.(2004):The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites.J.Eng.Mater.-T ASME,vol.126,no.3,pp.250-257.

    Shokrieh,M.M.;Rafiee,R.(2010):Stochastic multi-scale modeling of CNT/polymer composites.Comp.Mater.Sci.,vol.50,no.2,pp.437-446.

    Sinnott,S.B.;Mao,Z.;Lee,H.K.(2002):Computational studies of molecular diffusion through carbon nanotube based membranes.CMES-Comp.Model.Eng.,vol.3,no.5,pp.575-587.

    Spanoudaki,A.;Pelster,R.(2001):Effective dielectric properties of composite materials:the dependence on the particle size distribution.Phys.Rev.B,vol.64,no.6,pp.064205.

    Stegeman,T.;Pfeiffenberger,A.H.;Bailey,J.P.;Hamilton M.C.(2014):Broadband characterisation of engineered dielectric fluids using microstrip ring resonator technique.Electron.Lett.,vol.50,pp.576-578.

    Tsai,C.H.;Zhang,C.;Jack,D.A.;Liang,R.;Wang,B.(2011).The effect of inclusion waviness and waviness distribution on elastic properties of fiber-reinforced composites.Compos.Part B-Eng.,vol.42,no.1,pp.62-70.

    Wang,Y.;Weng,G.J.;Meguid,S.A.;Hamouda,A.M.(2014):A continuum model with a percolation threshold and tunneling-assisted interfacial conductivity for carbon nanotube-based nanocomposites.J.Appl.Phys.,vol.115,no.19,pp.193706.

    Weng,G.J.(2010):A dynamical theory for the Mori–Tanaka and Ponte Casta?eda–Willis estimates.Mech.Mater.,vol.42,no.9,pp.886-893.

    Yang,B.J.;Souri,H.;Kim,S.;Ryu,S.;and Lee,H.K.(2014).An analytical model to predict curvature effects of the carbon nanotube on the overall behavior of nanocomposites.J.Appl.Phys.,vol.116,no.3,pp.033511.

    免费日韩欧美在线观看| 看免费av毛片| 久久99一区二区三区| 精品免费久久久久久久清纯| 丰满饥渴人妻一区二区三| 中文字幕av电影在线播放| 精品欧美一区二区三区在线| 日本一区二区免费在线视频| 国产黄色免费在线视频| av网站免费在线观看视频| 国产亚洲欧美在线一区二区| 国产精品免费一区二区三区在线| 久热这里只有精品99| 黑人操中国人逼视频| 中文字幕高清在线视频| 99国产精品99久久久久| www.精华液| 久久久久久亚洲精品国产蜜桃av| 两性夫妻黄色片| tocl精华| 在线观看免费午夜福利视频| 国产成人av教育| 99久久国产精品久久久| 女警被强在线播放| 女警被强在线播放| 极品人妻少妇av视频| 国产精品美女特级片免费视频播放器 | 国内毛片毛片毛片毛片毛片| 亚洲七黄色美女视频| 国产精品久久久久久人妻精品电影| 亚洲精品中文字幕一二三四区| 免费女性裸体啪啪无遮挡网站| 亚洲七黄色美女视频| 免费人成视频x8x8入口观看| 久久人妻熟女aⅴ| 日本a在线网址| 国产伦人伦偷精品视频| 99国产精品一区二区蜜桃av| 18禁美女被吸乳视频| 黑丝袜美女国产一区| 欧美日韩亚洲综合一区二区三区_| 叶爱在线成人免费视频播放| 中文字幕人妻丝袜制服| 最近最新免费中文字幕在线| av超薄肉色丝袜交足视频| 久久精品成人免费网站| 久久亚洲真实| 在线观看午夜福利视频| 久久这里只有精品19| av片东京热男人的天堂| 国产精品秋霞免费鲁丝片| 欧美黄色淫秽网站| 高清av免费在线| 久久热在线av| 99国产精品99久久久久| 又黄又粗又硬又大视频| 亚洲精品一卡2卡三卡4卡5卡| 国产精品99久久99久久久不卡| 精品国产超薄肉色丝袜足j| 成人av一区二区三区在线看| 欧美人与性动交α欧美软件| 韩国av一区二区三区四区| 精品久久久精品久久久| 欧美精品亚洲一区二区| 亚洲一区二区三区色噜噜 | av视频免费观看在线观看| 欧美老熟妇乱子伦牲交| 国产精品一区二区三区四区久久 | 在线播放国产精品三级| 黄片播放在线免费| 91在线观看av| 国产免费男女视频| 国产精品亚洲一级av第二区| 老司机靠b影院| 久久欧美精品欧美久久欧美| 99re在线观看精品视频| 日韩欧美三级三区| 国产成人精品在线电影| 亚洲av第一区精品v没综合| 亚洲一区二区三区欧美精品| 在线观看免费午夜福利视频| aaaaa片日本免费| 久久草成人影院| 级片在线观看| 久久 成人 亚洲| 热99国产精品久久久久久7| 黄色成人免费大全| 欧美日韩亚洲高清精品| 91成人精品电影| 欧美午夜高清在线| av有码第一页| 狠狠狠狠99中文字幕| 久久精品91无色码中文字幕| 一区二区三区精品91| 久久久精品国产亚洲av高清涩受| 首页视频小说图片口味搜索| 国产av一区在线观看免费| 一级毛片高清免费大全| 国产精品一区二区精品视频观看| 成人特级黄色片久久久久久久| 国产精品99久久99久久久不卡| 欧美日韩亚洲高清精品| 99re在线观看精品视频| 欧美黄色片欧美黄色片| 国产三级黄色录像| 最近最新中文字幕大全免费视频| 大香蕉久久成人网| 精品熟女少妇八av免费久了| 国产区一区二久久| 伦理电影免费视频| 日日摸夜夜添夜夜添小说| 老熟妇乱子伦视频在线观看| 女人被躁到高潮嗷嗷叫费观| 国产在线观看jvid| 99精品欧美一区二区三区四区| 午夜亚洲福利在线播放| 嫁个100分男人电影在线观看| 国产区一区二久久| 两个人看的免费小视频| 午夜福利影视在线免费观看| 亚洲成人免费电影在线观看| 成人三级黄色视频| 88av欧美| 性色av乱码一区二区三区2| 欧美乱妇无乱码| 精品欧美一区二区三区在线| 看片在线看免费视频| 又黄又粗又硬又大视频| 又紧又爽又黄一区二区| 91成人精品电影| 亚洲精品美女久久久久99蜜臀| 男女下面插进去视频免费观看| 免费在线观看黄色视频的| 日本三级黄在线观看| 丁香六月欧美| 欧美日韩精品网址| 国产欧美日韩一区二区三区在线| 一区二区日韩欧美中文字幕| 国产成年人精品一区二区 | 精品国内亚洲2022精品成人| 高清欧美精品videossex| 欧美不卡视频在线免费观看 | av视频免费观看在线观看| 亚洲人成77777在线视频| 超色免费av| 性少妇av在线| 日本三级黄在线观看| 成人永久免费在线观看视频| 欧美成人午夜精品| 最好的美女福利视频网| 免费在线观看完整版高清| 久久久久久大精品| 久久精品成人免费网站| 97超级碰碰碰精品色视频在线观看| 成人亚洲精品av一区二区 | 欧美激情 高清一区二区三区| 91成年电影在线观看| 中亚洲国语对白在线视频| 亚洲欧美激情综合另类| 91老司机精品| 99久久99久久久精品蜜桃| 一级a爱视频在线免费观看| 午夜精品国产一区二区电影| 自线自在国产av| 免费久久久久久久精品成人欧美视频| av天堂久久9| www日本在线高清视频| 91字幕亚洲| 欧美黄色片欧美黄色片| 啪啪无遮挡十八禁网站| 日本wwww免费看| 一级毛片女人18水好多| 一边摸一边抽搐一进一出视频| 精品人妻1区二区| 在线免费观看的www视频| 国产精品久久久久久人妻精品电影| 十分钟在线观看高清视频www| 国产99久久九九免费精品| 久久国产精品影院| 午夜福利欧美成人| 99国产综合亚洲精品| 在线观看日韩欧美| 真人一进一出gif抽搐免费| 欧美日本亚洲视频在线播放| 中文欧美无线码| 国产亚洲av高清不卡| 午夜免费观看网址| 国产精品久久久久久人妻精品电影| 天堂中文最新版在线下载| 99久久国产精品久久久| 夜夜躁狠狠躁天天躁| 欧美日韩瑟瑟在线播放| 丁香欧美五月| 黄色视频不卡| 青草久久国产| 色尼玛亚洲综合影院| 国产亚洲精品综合一区在线观看 | 一区二区三区激情视频| 国产又爽黄色视频| 亚洲人成77777在线视频| 真人一进一出gif抽搐免费| 中文字幕最新亚洲高清| 亚洲国产精品合色在线| 丁香欧美五月| 成在线人永久免费视频| 51午夜福利影视在线观看| 午夜老司机福利片| 久久久久久久久免费视频了| 一边摸一边抽搐一进一出视频| 男女午夜视频在线观看| 成人免费观看视频高清| 制服诱惑二区| 久久久久精品国产欧美久久久| 久久精品亚洲精品国产色婷小说| 男人舔女人的私密视频| 在线天堂中文资源库| 久久久久九九精品影院| 久久草成人影院| 精品久久久精品久久久| 国产精品综合久久久久久久免费 | 精品国产超薄肉色丝袜足j| 99re在线观看精品视频| 国产伦人伦偷精品视频| 在线观看免费午夜福利视频| 9色porny在线观看| av免费在线观看网站| 女人高潮潮喷娇喘18禁视频| 他把我摸到了高潮在线观看| 满18在线观看网站| 国产单亲对白刺激| 9191精品国产免费久久| 成人国产一区最新在线观看| 亚洲熟妇中文字幕五十中出 | 国产精品免费视频内射| 国产精品久久久人人做人人爽| 精品久久久久久久毛片微露脸| 后天国语完整版免费观看| 亚洲欧洲精品一区二区精品久久久| 欧美精品啪啪一区二区三区| 波多野结衣av一区二区av| 极品教师在线免费播放| 国产欧美日韩一区二区精品| 91老司机精品| 女人被躁到高潮嗷嗷叫费观| 19禁男女啪啪无遮挡网站| 日本撒尿小便嘘嘘汇集6| 不卡av一区二区三区| 久热这里只有精品99| 色精品久久人妻99蜜桃| 免费在线观看亚洲国产| 欧美精品一区二区免费开放| 精品久久久久久久久久免费视频 | 国产又爽黄色视频| 高清黄色对白视频在线免费看| 亚洲免费av在线视频| 国产精品久久久久成人av| 午夜影院日韩av| 久久亚洲真实| 在线观看免费高清a一片| 日韩欧美一区视频在线观看| 午夜免费激情av| 在线观看免费高清a一片| 国产主播在线观看一区二区| 国产成人影院久久av| 精品国产国语对白av| 999久久久国产精品视频| 99国产综合亚洲精品| 免费久久久久久久精品成人欧美视频| 亚洲三区欧美一区| 亚洲av日韩精品久久久久久密| 色尼玛亚洲综合影院| 亚洲自偷自拍图片 自拍| 亚洲全国av大片| 丰满的人妻完整版| 免费在线观看黄色视频的| 中文字幕高清在线视频| 在线永久观看黄色视频| 亚洲五月婷婷丁香| 久久影院123| 国产99白浆流出| 一区二区三区精品91| e午夜精品久久久久久久| 亚洲欧美日韩高清在线视频| 婷婷丁香在线五月| 亚洲精品久久午夜乱码| 成人特级黄色片久久久久久久| 国产又色又爽无遮挡免费看| 久久久久久久久久久久大奶| 国产精品亚洲av一区麻豆| 亚洲一区二区三区不卡视频| 村上凉子中文字幕在线| 国产成人精品久久二区二区91| 日韩欧美在线二视频| 侵犯人妻中文字幕一二三四区| 久久中文看片网| 高清毛片免费观看视频网站 | 亚洲情色 制服丝袜| 日韩中文字幕欧美一区二区| 亚洲成人国产一区在线观看| 亚洲五月婷婷丁香| 久久精品国产综合久久久| 身体一侧抽搐| 成人免费观看视频高清| 精品无人区乱码1区二区| 欧美乱色亚洲激情| 欧美黑人精品巨大| 免费看十八禁软件| 精品国内亚洲2022精品成人| 91字幕亚洲| а√天堂www在线а√下载| www.精华液| 999久久久精品免费观看国产| 99精品欧美一区二区三区四区| av福利片在线| 亚洲午夜理论影院| 丁香欧美五月| 视频在线观看一区二区三区| 久久久久久久久免费视频了| 男人舔女人的私密视频| 一夜夜www| 丰满人妻熟妇乱又伦精品不卡| 动漫黄色视频在线观看| 国产一区二区激情短视频| www国产在线视频色| 黑人巨大精品欧美一区二区mp4| 另类亚洲欧美激情| 久久午夜亚洲精品久久| 精品高清国产在线一区| 搡老岳熟女国产| 桃红色精品国产亚洲av| 日日夜夜操网爽| 日韩精品免费视频一区二区三区| 国产熟女午夜一区二区三区| 不卡av一区二区三区| 日韩精品免费视频一区二区三区| 久久午夜亚洲精品久久| 在线观看免费高清a一片| 成人av一区二区三区在线看| 国产黄a三级三级三级人| 中出人妻视频一区二区| 亚洲欧美激情在线| 久久久久久久午夜电影 | 精品人妻1区二区| 日韩人妻精品一区2区三区| xxxhd国产人妻xxx| 亚洲成人精品中文字幕电影 | 中出人妻视频一区二区| 丰满饥渴人妻一区二区三| 久久久久久久午夜电影 | 亚洲精品在线观看二区| 交换朋友夫妻互换小说| 黄色丝袜av网址大全| 大型黄色视频在线免费观看| 99精国产麻豆久久婷婷| 午夜久久久在线观看| 妹子高潮喷水视频| 成在线人永久免费视频| 高清av免费在线| 午夜两性在线视频| 国产午夜精品久久久久久| 久久久国产成人精品二区 | 亚洲一区二区三区欧美精品| 可以在线观看毛片的网站| 亚洲欧美日韩无卡精品| 欧美精品一区二区免费开放| 亚洲av成人一区二区三| 男女做爰动态图高潮gif福利片 | videosex国产| 校园春色视频在线观看| 亚洲精品在线美女| 亚洲av第一区精品v没综合| 成人18禁高潮啪啪吃奶动态图| 人人妻,人人澡人人爽秒播| 欧美乱妇无乱码| 亚洲专区字幕在线| 亚洲激情在线av| 热99re8久久精品国产| 欧美日韩av久久| 色综合站精品国产| 成人影院久久| 最好的美女福利视频网| 这个男人来自地球电影免费观看| 中文字幕高清在线视频| 亚洲精品久久成人aⅴ小说| 国产极品粉嫩免费观看在线| 女同久久另类99精品国产91| videosex国产| 丰满人妻熟妇乱又伦精品不卡| 婷婷精品国产亚洲av在线| 免费搜索国产男女视频| 久久人人爽av亚洲精品天堂| 新久久久久国产一级毛片| 久久九九热精品免费| 欧美人与性动交α欧美软件| 国产精品日韩av在线免费观看 | 午夜精品在线福利| 国产片内射在线| 啦啦啦免费观看视频1| 99香蕉大伊视频| 亚洲专区国产一区二区| 国产av精品麻豆| 久久热在线av| 一级a爱片免费观看的视频| 麻豆av在线久日| 成人永久免费在线观看视频| 岛国视频午夜一区免费看| x7x7x7水蜜桃| 老司机在亚洲福利影院| 黑丝袜美女国产一区| 欧美中文综合在线视频| 黄色 视频免费看| 中文字幕人妻丝袜制服| 亚洲精品av麻豆狂野| 国产不卡一卡二| 国产国语露脸激情在线看| 亚洲熟女毛片儿| 欧美日韩乱码在线| 亚洲色图综合在线观看| av欧美777| 亚洲免费av在线视频| 黄色成人免费大全| 亚洲成av片中文字幕在线观看| 成人亚洲精品av一区二区 | 黄片大片在线免费观看| 欧美性长视频在线观看| 91精品三级在线观看| 午夜成年电影在线免费观看| 午夜免费成人在线视频| 欧美色视频一区免费| 一二三四在线观看免费中文在| 亚洲狠狠婷婷综合久久图片| 脱女人内裤的视频| 久久亚洲精品不卡| 大码成人一级视频| 女人高潮潮喷娇喘18禁视频| 久9热在线精品视频| 国产精品一区二区精品视频观看| 日韩视频一区二区在线观看| 日韩大尺度精品在线看网址 | 国产精品久久久久成人av| 亚洲欧美激情在线| 狠狠狠狠99中文字幕| 午夜日韩欧美国产| 天堂动漫精品| 国产精品 欧美亚洲| 成人三级黄色视频| 国产成人av教育| 精品国产超薄肉色丝袜足j| 亚洲精华国产精华精| 不卡av一区二区三区| 精品久久久久久久毛片微露脸| 黄色怎么调成土黄色| 国产欧美日韩一区二区三| 亚洲精品国产一区二区精华液| 国产三级在线视频| 亚洲人成电影免费在线| 精品国产超薄肉色丝袜足j| 1024视频免费在线观看| 亚洲va日本ⅴa欧美va伊人久久| 啦啦啦 在线观看视频| 中文字幕色久视频| 亚洲全国av大片| 如日韩欧美国产精品一区二区三区| 国产乱人伦免费视频| 黄色视频,在线免费观看| 久久 成人 亚洲| 日本精品一区二区三区蜜桃| 丰满人妻熟妇乱又伦精品不卡| 一级a爱片免费观看的视频| 免费不卡黄色视频| 97碰自拍视频| 制服诱惑二区| 亚洲欧美日韩另类电影网站| 国产精品av久久久久免费| 美女福利国产在线| 亚洲熟妇中文字幕五十中出 | 在线永久观看黄色视频| 老司机福利观看| 婷婷精品国产亚洲av在线| 操出白浆在线播放| 老汉色∧v一级毛片| 黄片大片在线免费观看| 一级a爱视频在线免费观看| 免费搜索国产男女视频| 色婷婷久久久亚洲欧美| 亚洲狠狠婷婷综合久久图片| 免费一级毛片在线播放高清视频 | 亚洲中文av在线| 精品国产乱子伦一区二区三区| 在线免费观看的www视频| 在线播放国产精品三级| 午夜a级毛片| 精品午夜福利视频在线观看一区| 男人舔女人的私密视频| 午夜精品久久久久久毛片777| 日韩中文字幕欧美一区二区| 国产精品久久视频播放| 手机成人av网站| 久久精品国产亚洲av高清一级| 久久精品国产综合久久久| 美女高潮到喷水免费观看| 人人澡人人妻人| 欧美激情 高清一区二区三区| 日本三级黄在线观看| 80岁老熟妇乱子伦牲交| 一级片'在线观看视频| 99re在线观看精品视频| 最新在线观看一区二区三区| av天堂在线播放| 欧美人与性动交α欧美精品济南到| 999久久久精品免费观看国产| 黄片大片在线免费观看| 久久香蕉精品热| 中国美女看黄片| 一级黄色大片毛片| 夜夜爽天天搞| 激情在线观看视频在线高清| 天堂中文最新版在线下载| 久久久久久久久中文| 国产黄a三级三级三级人| 黑人欧美特级aaaaaa片| 午夜免费观看网址| 黄色丝袜av网址大全| 亚洲国产看品久久| 成年女人毛片免费观看观看9| 新久久久久国产一级毛片| 两人在一起打扑克的视频| 色在线成人网| 成人国语在线视频| 午夜影院日韩av| 首页视频小说图片口味搜索| 涩涩av久久男人的天堂| 免费在线观看亚洲国产| 涩涩av久久男人的天堂| 桃色一区二区三区在线观看| 91成人精品电影| 成年女人毛片免费观看观看9| 搡老岳熟女国产| 成熟少妇高潮喷水视频| 美女午夜性视频免费| 欧美日韩亚洲国产一区二区在线观看| 亚洲国产看品久久| √禁漫天堂资源中文www| 一区二区日韩欧美中文字幕| 国内久久婷婷六月综合欲色啪| 日韩精品免费视频一区二区三区| 校园春色视频在线观看| 国产主播在线观看一区二区| 多毛熟女@视频| 91麻豆精品激情在线观看国产 | 国产精品国产av在线观看| 午夜久久久在线观看| 久热这里只有精品99| 久久久久精品国产欧美久久久| 免费在线观看完整版高清| 国产精品一区二区在线不卡| 91麻豆精品激情在线观看国产 | 精品乱码久久久久久99久播| 精品一区二区三区av网在线观看| 日本黄色日本黄色录像| 麻豆一二三区av精品| 亚洲九九香蕉| 老司机亚洲免费影院| 电影成人av| 丰满饥渴人妻一区二区三| 国产av又大| 欧美+亚洲+日韩+国产| 极品人妻少妇av视频| 欧美av亚洲av综合av国产av| 老司机福利观看| 午夜免费观看网址| av国产精品久久久久影院| 啦啦啦 在线观看视频| 成年女人毛片免费观看观看9| 欧美av亚洲av综合av国产av| 老司机福利观看| 在线永久观看黄色视频| 午夜免费鲁丝| 色综合站精品国产| 久久精品亚洲精品国产色婷小说| 亚洲av第一区精品v没综合| 成年版毛片免费区| 视频在线观看一区二区三区| 国产一区二区三区视频了| 久久香蕉激情| 一级黄色大片毛片| 如日韩欧美国产精品一区二区三区| 三上悠亚av全集在线观看| 亚洲成a人片在线一区二区| 日韩精品免费视频一区二区三区| 久久热在线av| 91成年电影在线观看| 又黄又爽又免费观看的视频| 超色免费av| www.自偷自拍.com| 国产精品久久电影中文字幕| 在线十欧美十亚洲十日本专区| 国产有黄有色有爽视频| e午夜精品久久久久久久| 91麻豆精品激情在线观看国产 | 国产高清激情床上av| 成人18禁高潮啪啪吃奶动态图| 国产精品日韩av在线免费观看 | 在线观看www视频免费| 日本wwww免费看| 妹子高潮喷水视频| 午夜福利免费观看在线| 丰满人妻熟妇乱又伦精品不卡| 男女床上黄色一级片免费看| 99久久99久久久精品蜜桃| 久久久久久久精品吃奶| 老汉色∧v一级毛片| 欧美丝袜亚洲另类 | 黄片大片在线免费观看| 嫩草影视91久久|