• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Approach with Haar Wavelet Collocation Method for Numerical Simulations of Modified KdV and Modified Burgers Equations

    2014-04-18 01:35:13SahaRayandGupta

    S.Saha Rayand A.K.Gupta

    1 Introduction

    Generalized modified KdV equation[Wazwaz(2009)]is a nonlinear partial differential equation of the form

    whereqandrare parameters.

    Generalized modified Burgers’equation[Irk(2009)]is a nonlinear partial differential equation of the form

    wherepandνare parameters.

    The modified Korteweg-de Vries(mKdV)equations are most popular soliton equations and have been extensively investigated.The modified KdV equation is of important significance in many branches of nonlinear science field.The mKdV equa-tion appears in many fields such as Alfvén waves in a collisionless plasma,acoustic waves in certain anharmonic lattices,models of traffic congestion,transmission lines in Schottky barrier,ion acoustic soliton,elastic media etc.[Yan(2008)]

    Similarly,the modified Burgers’equation[Bratsos(2011)]has the strong nonlinear aspects of the governing equation in many practical transport problems such as nonlinear waves in medium with low frequency absorption,wave processes in thermoelastic medium,turbulence transport,ion reflection at quasi perpendicular shocks,transport and dispersion of pollutants in rivers and sediment transport etc.Various mathematical methods such as Petrov-Galerkin method[Roshan and Bhamra(2011)],Quintic spline method[Ramadan and El-Danaf(2005)],Sextic B-spline collocation method[Irk(2009)],local discontinuous Galerkin method[Zhang,Yu and Zhao(2013)],and Lattice Boltzmann model[Duan,Liu and Jiang(2008)]have been used in attempting to solve modified Burgers’equations.Dehghan et al.have applied mixed finite difference and Galerkin methods for solving the Burgers [Dehghan, Saray and Lakestani(2014)]and Burgers-Huxley[Dehghan,Saray and Lakestani(2012)]equations.Generalized Benjamin–Bona–Mahony–Burgers equation[Dehghan,Abbaszadeh and Mohebbi(2014)]and KdV equations[Dehghan and Shokri(2007)]have also been investigated by Dehghan et al.via the method of radial basis functions.In 2008,Alipanah and Dehghan have solved the population balance equations by applying rationalized Haar functions.

    Zhi-Zhong et al.(2008)improve a numerical method based on two types of wavelets viz.the Haar wavelet and biorthogonal wavelet to compute the band structures of 2D phononic crystals consisting of general anisotropic materials.In 2011,Zhou et al.proposed an efficient wavelet-based algorithm for solving a class of fractional vibration,diffusion and wave equations with strong nonlinearities.Yi and Chen(2012)and Wang et al.(2013)applied Haar wavelet operational matrix method to solve a class of fractional partial differential equations.Using the Haar wavelet operational matrix of fractional order differentiation,the fractional partial differential equations have been reduced to Sylvester equation.Wei et al.(2012)present a computational method for solving space-time fractional convection-diffusion equations with variable coefficients which is based on the Haar wavelets operational matrix of fractional order differentiation.They also exhibit error analysis in order to show the efficiency of the method.Saha Ray and Gupta(2013)proposed Haar wavelet collocation method for solving generalized Burger-Huxley and Huxley equations.

    The Haar wavelet method consists of reducing the problem to a set of algebraic equation by expanding the term,which has maximum derivative.Our aim in the present work is to implement the Haar wavelet method to stress its power in handling nonlinear equations,so that one can execute it to various types of strong nonlinear equations.

    This paper is systematized as follows:in Section 1,introduction to modified KdV and modified Burgers’equation is discussed.In Section 2,the mathematical preliminaries of Haar wavelet are presented.Sections 3 and 5 define the mathematical models of modified KdV and modified Burgers’equation respectively.The Haar wavelet method has been applied to solve modified KdV and modified Burgers’equation in Sections 4 and 6 respectively.The convergence of Haar wavelet method is discussed in Section 7.The numerical results and discussions are discussed in Section 8 and Section 9 concludes the paper.

    2 Haar wavelets and the operational matrices

    The Haar wavelet family forx∈[0,1)is defined as follows[Debnath(2002);Lepik(2007);Saha Ray(2012)]

    In these formulae integerm=2j,j=0,1,2,...,Jindicates the level of the wavelet;k=0,1,2,...,m?1 is the translation parameter.Maximum level of resolution isJ.The indexiis calculated from the formulai=m+k+1;in the case of minimal valuesm=1,k=0 we havei=2.The maximum possible value ofi=2M=2J+1.It is assumed that the valuei=1 corresponds to the scaling function for which

    It is expedient to introduce the 2M×2MmatricesH,P,QandRwith the elementsH(i,l)=hi(xl),P(i,l)=pi(xl),Q(i,l)=qi(xl)andR(i,l)=ri(xl).

    3 Generalized modified KdV equation

    Consider the generalized modified KdV equation[Kaya(2005);Wazwaz(2004)]

    4 Application of Haar wavelet method for solving modified KdV equation

    Haar wavelet solution ofu(x,t)is sought by assuming thatcan be expanded in terms of Haar wavelets as

    Integrating eq.(12)with respect totfromtstotand thrice with respect toxfrom 0 tox,the following equations are obtained

    By using the boundary condition atx=1,eq.(15)becomes

    It is obtained from eq.(6)that,

    Substituting the above equations in eq.(8),we have

    From the above equation,the wavelet coefficientsas(i)can be successively calculated.This process starts with

    5 Modified Burgers’equation

    Consider the generalized modified Burgers’equation[Roshan and Bhamra(2011)]

    wherepis a positive constant andν(>0)can be interpreted as viscosity.

    To show the effectiveness and accuracy of proposed scheme,we consider two test examples takingp=2.The numerical solutions thus obtained are compared with the analytical solutions as well as available numerical results.

    The initial condition associated with eq.(21)will be

    with boundary conditions

    6 Haar wavelet based scheme for modified Burgers’equation

    Now,integrating eq.(22)with respect totfromtstotand twice with respect toxfrom 0 toxthe following equations are obtained

    Substituting equation(27)and(28)in eqs.(24),(25)and(26),we have

    Discretising the above results by assumingwe obtain

    Substituting equations(31),(32),(33)and(34)in eq.(21),we have

    From eq.(35),the wavelet coefficientsas(i)can be successively calculated.This process starts with

    Example 1.Consider modified Burgers’equation with the following initial and boundary conditions[Roshan and Bhamra(2011);Ramadan and El-Danaf(2005)]

    The exact solution of eq.(21)is given by[Roshan and Bhamra(2011);Ramadan and El-Danaf(2005)]

    Example 2.In this example,we consider modified Burgers’equation with initial and boundary conditions in the following form

    In case of example 1,the Haar wavelet numerical solutions have been compared with the results obtained by Ramadan et al.(2005),using the collocation method with quintic splines and in case of example 2,the solutions have been compared with the results obtained by Duan et al.(2008),using 2-bit lattice Boltzmann method(LBM).Tables 1 and 2 cite the comparison of Haar wavelet solution with LBM and quintic splines numerical solutions att=0.4 andt=2,and the numerical solutions at different time stages are exhibited in Fig.6.

    Table 1:Comparison of Haar wavelet solutions with the LBM solutions and 5-Splines solution of modified Burgers’equation(example 2)att=0.4 and ν =0.01.

    Table 2:Comparison of Haar wavelet solutions with the LBM solutions and 5-Splines solution of modified Burgers’equation(example 2)att=2.0 and ν =0.01.

    7 Error of collocation method

    From eq.(3),the Haar wavelet family foris defined as follows

    Hence,usingE(x)as least square of the error on ?,we have

    8 Numerical Results and discussions

    The error function is given by

    The errors for modified Burgers’equation are measured using two different norms,namelyL2andL∞,defined by

    The following table exhibits theL2andL∞error norm for modified Burgers’equation takingp=2 andν=0.001 and different values oft.In tables 3,Jis taken as 5 i.e.M=32 and?tis taken as 0.001.

    Table 3:L2and L∞ error norm for modified Burgers’equation(example 1)at different values of t with ν =0.001 and ?t=ts+1?ts=0.001.

    The following tables show the comparisons of the exact solutions with the approximate solutions of modified KdV equation takingq=6,r=?0.001 and different values oft.In tables 4-7,Jis taken as 3 i.e.M=8 and?tis taken as 0.0001.

    In case ofr=?0.001,theR.M.S.errorbetween the numerical solutions and the exact solutions of modified KdV equations fort=0.2,0.5,0.8 and 1 are 0.000017137,0.0000433416,0.0000695581 and 0.0000870423 respectively and forr=?0.1andt=0.2,0.5,0.8and1theR.M.S.erroris found to be0.00209359,0.00624177,0.011631 and 0.0159099 respectively.In the following tables[8-11]alsoJhas been taken as 3 i.e.M=8 and?tis taken as 0.0001.

    Figures 1-4 represent the comparison graphically between the numerical and exact solutions of modified Burgers’equation for different values oftandν=0.001.The behaviour of numerical solutions of modified Burgers’equation is cited in figure 5 and 6.Similarly,in case of modified KdV equation,the Figures 7-11 demonstrate

    the comparison graphically between the numerical and exact solutions for different values oftandr.

    Table 4:The absolute errors for modified KdV equation at various collocation points of x with t=0.2 and r=?0.001.

    Table 5:The absolute errors for modified KdV equation at various collocation points of x with t=0.5 and r=?0.001.

    Table 6:The absolute errors for modified KdV equation at various collocation points of x with t=0.8 and r=?0.001.

    Table 7:The absolute errors for modified KdV equation at various collocation points of x with t=1 and r=?0.001.

    Table 8:The absolute errors for modified KdV equation at various collocation points of x with t=0.2 and r=?0.1.

    Table 9:The absolute errors for modified KdV equation at various collocation points of x with t=0.5 and r=?0.1.

    Table 11:The absolute errors for modified KdV equation at various collocation points of x with t=1 and r=?0.1.

    Figure 1:Comparison of Numerical solution and exact solution of modified Burger’s equation(example 1)when t=2 and ν =0.001.

    Figure 2:Comparison of Numerical solution and exact solution of modified Burger’s equation(example 1)when t=4 and ν =0.001.

    Figure 3:Comparison of Numerical solution and exact solution of modified Burger’s equation(example 1)when t=6 and ν =0.001.

    Figure 5:Behaviour of numerical solutions for modified Burgers’equation(example 1)when ν =0.001 and ?t=0.001 at times t=2,4,6 and 8.

    Figure 6:Behaviour of numerical solutions for modified Burgers’equation(example 2)when ν =0.01 and ?t=0.001 at times t=0.4,0.8,2 and 3.

    Figure 7:Comparison of Numerical solution and exact solution of modified KdV equation when t=0.2 and r=?0.001.

    Figure 8:Comparison of Numerical solution and exact solution of modified KdV equation when t=0.5 and r=?0.001.

    Figure 9:Comparison of Numerical solution and exact solution of modified KdV equation when t=0.8 and r=?0.001.

    Figure 10:Comparison of Numerical solution and exact solution of modified KdV equation when t=1.0 and r=?0.001.

    Figure 11:Comparison of Numerical solution and exact solution of modified KdV equation when t=0.2 and r=?0.1.

    9 Conclusions

    In this paper,the modified KdV equation and modified Burgers’equation have been solved by Haar wavelet method.The results thus found are then compared with the exact solutions as well as solutions available in open literature.These have been reported in tables and also have been shown in the graphs.These results demonstrated in Tables justify the accuracy and efficiency of the proposed schemes based on Haar wavelet.The numerical schemes are reliable and convenient for solving modified KdV and modified Burgers’equations.The main advantages of the scheme are its simplicity and applicability.Also it has less computational errors.Moreover,the errors may be reduced significantly if we increase level of resolution which prompts more number of collocation points.

    Acknowledgement:This research work was financially supported by DST,Government of India under Grant No.SR/S4/MS.:722/11.

    Alipanah,A.;Dehghan,M.(2008):Solution of population balance equations via rationalized Haar functions.Kybernetes,vol.37,pp.1189-1196.

    Bekir,A.(2009):On travelling wave solutions to combined KdV-mKdV equation and modified Burgers-KdV equation.Commun Nonlinear Sci Numer Simulat.,vol.14,pp.1038-1042.

    Bratsos,A.G.(2011):An implicit numerical scheme for the modified Burgers’equation.International Journal for Numerical Methods in Biomedical Engineering,vol.27,no.2,pp.232-237.

    Debnath,L.(2002):Wavelet transforms and their applications.Birkh?user,Boston.

    Dehghan,M.;Abbaszadeh,M.;Mohebbi,A.(2014):The numerical solution of nonlinear high dimensional generalized Benjamin-Bona-Mahony-Burgers equation via the meshless method of radial basis functions.Computers and Mathematics with Applications,vol.68,pp.212-237.

    Dehghan,M.;Saray,B.N.;Lakestani,M.(2014):Mixed finite difference and Galerkin methods for solving Burgers equations using interpolating scaling functions.Mathematical Methods in the Applied Sciences,vol.37,pp.894-912.

    Dehghan,M.;Saray,B.N.;Lakestani,M.(2012):Three methods based on the interpolation scaling functions and the mixed collocation finite difference schemes for the numerical solution of the nonlinear generalized Burgers-Huxley equation.Mathematical and Computer Modelling,vol.55,pp.1129-1142.

    Dehghan,M.;Shokri,A.(2007):A numerical method for KdV equation using collocation and radial basis functions.Nonlinear Dynamics,vol.50,pp.111-120.

    Duan,Y.;Liu,R.;Jiang,Y.(2008):Lattice Boltzmann model for the modified Burgers’equation.Applied Mathematics and Computation,vol.202,pp.489-497.

    Irk,D.(2009):Sextic B-spline collocation method for the Modified Burgers’equation.Kybernetes,vol.38,no.9,pp.1599-1620.

    Kaya,D.(2005):An application for the higher order modified KdV equation by decomposition method.Communications in Nonlinear Science and Numerical Simulation,vol.10,pp.693-702.

    Lepik,ü.(2007):Numerical solution of evolution equations by the Haar Wavelet method.Applied Mathematics and Computation,vol.185,pp.695-704.

    Ramadan,M.A.;El-Danaf,T.S.(2005):Numerical treatment for the modified Burgers’equation.Math.Comput.Simul.,vol.70,pp.90-98.

    Roshan,T.;Bhamra,K.S.(2011):Numerical solution of the modified Burgers’equation by Petrov-Galerkin method.Applied Mathematics and Computation,vol.218,pp.3673-3679.

    Saha Ray,S.(2012):On Haar wavelet operational matrix of general order and its application for the numerical solution of fractional Bagley Torvik equation..Applied Mathematics and Computation,vol.218,pp.5239-5248.

    Saha Ray,S.;Gupta,A.K.(2013):On the solution of Burgers-Huxley and Huxley equation using Wavelet collocation method.CMES:Computer Modelling in Engineering&Sciences,vol.91,no.6,pp.409-424.

    Wang,L.;Meng,Z.;Ma,Y.;Wu,Z.(2013):Numerical solution of fractional partial differential equations using Haar wavelets.CMES:Computer Modelling in Engineering&Sciences,vol.91,no.4,pp.269–287.

    Wazwaz,A.M.(2004):A Study on compacton-like solutions for the modified KdV and fifth order KdV-like equations.Applied Mathematics and Computation,vol.147,pp.439-447.

    Wazwaz,A.M.(2009):Partial Differential equations and Solitary Waves Theory.Springer/HEP,Berlin.

    Wei,J.;Chen,Y.;Li,B.;Yi,M.(2012):Numerical solution of space-time fractional convection-diffusion equations with variable coefficients using Haar wavelets.CMES:Computer Modelling in Engineering&Sciences,vol.89,no.6,pp.481–495.

    Yi,M.;Chen,Y.(2012):Haar wavelet operational matrix method for solving fractional differential equations.CMES:Computer Modelling in Engineering&Sciences,vol.88,no.3,pp.229–244.

    Yan,Z.(2008):The modified KdV equation with variable coefficients:Exact uni/bi-variable travelling wave-like solutions.Applied Mathematics and Computation,vol.203,pp.106-112.

    Zhang,R.P.;Yu,X.J.;Zhao,G.Z.(2013):Modified Burgers’equation by the local discontinuous Galerkin method.Chin.Phys.B.,vol.22,no.3,pp.030210(1-5).

    Zhi-Zhong,Y.;Yue-Sheng,W.;Zhang,C.(2008):A method based on wavelets for band structure analysis of phononic crystals.CMES:Computer Modelling in Engineering&Sciences,vol.38,no.1,pp.59–87.

    Zhou,Y.H.;Wang,X.M.;Wang,J.Z.;Liu,X.J.(2011):A wavelet numerical method for solving nonlinear fractional vibration,diffusion and wave equations.CMES:Computer Modelling in Engineering&Sciences,vol.77,no.2,pp.137–160.

    日韩有码中文字幕| 丁香欧美五月| 十八禁网站网址无遮挡| 丝袜人妻中文字幕| 亚洲欧洲日产国产| 又黄又粗又硬又大视频| www.自偷自拍.com| 亚洲熟妇熟女久久| 一区二区三区精品91| 亚洲精品乱久久久久久| netflix在线观看网站| 久久久久久久大尺度免费视频| 人妻一区二区av| cao死你这个sao货| 精品午夜福利视频在线观看一区 | 老司机靠b影院| 国产精品国产av在线观看| 大型av网站在线播放| 操美女的视频在线观看| 一区二区三区国产精品乱码| 妹子高潮喷水视频| 国产精品久久久人人做人人爽| 一夜夜www| 菩萨蛮人人尽说江南好唐韦庄| 国产一区二区 视频在线| 99久久99久久久精品蜜桃| 亚洲av片天天在线观看| 制服诱惑二区| 18禁观看日本| 欧美日本中文国产一区发布| 热99国产精品久久久久久7| 我的亚洲天堂| 亚洲va日本ⅴa欧美va伊人久久| 脱女人内裤的视频| 亚洲一区中文字幕在线| 亚洲伊人色综图| 中文字幕人妻丝袜一区二区| 又大又爽又粗| 国产成人啪精品午夜网站| 一区二区三区乱码不卡18| 中文字幕制服av| 中文字幕人妻丝袜一区二区| 国产色视频综合| 国产精品免费大片| 欧美 亚洲 国产 日韩一| 18禁观看日本| 欧美日本中文国产一区发布| 麻豆国产av国片精品| 精品第一国产精品| 国产亚洲av高清不卡| 国产不卡一卡二| 叶爱在线成人免费视频播放| 菩萨蛮人人尽说江南好唐韦庄| 日日夜夜操网爽| 成人特级黄色片久久久久久久 | 亚洲va日本ⅴa欧美va伊人久久| 日本五十路高清| 美女高潮到喷水免费观看| 超色免费av| 丰满人妻熟妇乱又伦精品不卡| 老司机在亚洲福利影院| 日韩 欧美 亚洲 中文字幕| 中文字幕另类日韩欧美亚洲嫩草| 十分钟在线观看高清视频www| 午夜福利视频精品| 飞空精品影院首页| 国产午夜精品久久久久久| 国产欧美日韩一区二区精品| 一级毛片女人18水好多| 欧美日韩亚洲高清精品| 日本黄色日本黄色录像| 69精品国产乱码久久久| 99精品在免费线老司机午夜| 亚洲国产成人一精品久久久| 亚洲精品粉嫩美女一区| 国产国语露脸激情在线看| 在线播放国产精品三级| 国产av国产精品国产| 亚洲精品中文字幕在线视频| www.999成人在线观看| 嫁个100分男人电影在线观看| 丰满人妻熟妇乱又伦精品不卡| 国产精品免费视频内射| 91麻豆精品激情在线观看国产 | 狠狠婷婷综合久久久久久88av| 极品人妻少妇av视频| 午夜福利视频精品| 涩涩av久久男人的天堂| 51午夜福利影视在线观看| 精品欧美一区二区三区在线| 午夜成年电影在线免费观看| 国产精品 欧美亚洲| 91老司机精品| 黄片播放在线免费| 男人操女人黄网站| 99精品久久久久人妻精品| 99精品久久久久人妻精品| 亚洲伊人久久精品综合| 在线av久久热| 法律面前人人平等表现在哪些方面| 久久久久国产一级毛片高清牌| 精品欧美一区二区三区在线| 国产高清国产精品国产三级| 黄片大片在线免费观看| 麻豆av在线久日| 最近最新免费中文字幕在线| 国产av又大| 国产人伦9x9x在线观看| 妹子高潮喷水视频| 国产三级黄色录像| 欧美乱妇无乱码| 青青草视频在线视频观看| 黄网站色视频无遮挡免费观看| 欧美黑人欧美精品刺激| 中文字幕人妻熟女乱码| 99久久99久久久精品蜜桃| videos熟女内射| 精品国产乱码久久久久久男人| 狂野欧美激情性xxxx| 热99国产精品久久久久久7| avwww免费| 国产精品 国内视频| 欧美大码av| 精品一区二区三区视频在线观看免费 | 黄色片一级片一级黄色片| 亚洲欧美一区二区三区久久| 亚洲欧美色中文字幕在线| 99国产精品一区二区蜜桃av | 欧美精品亚洲一区二区| a级片在线免费高清观看视频| 桃红色精品国产亚洲av| 国产精品电影一区二区三区 | 国产成人精品在线电影| 国产成人欧美在线观看 | 久久亚洲精品不卡| 91国产中文字幕| 窝窝影院91人妻| 自线自在国产av| 叶爱在线成人免费视频播放| svipshipincom国产片| 激情视频va一区二区三区| 啦啦啦 在线观看视频| 日本wwww免费看| 香蕉久久夜色| 一区二区日韩欧美中文字幕| 中文欧美无线码| 国精品久久久久久国模美| av线在线观看网站| 亚洲黑人精品在线| 国产精品一区二区免费欧美| 欧美+亚洲+日韩+国产| 国产精品av久久久久免费| 色综合欧美亚洲国产小说| 一级黄色大片毛片| 19禁男女啪啪无遮挡网站| 亚洲国产av影院在线观看| 欧美人与性动交α欧美软件| 宅男免费午夜| 国产成人av教育| 热99国产精品久久久久久7| 国产欧美日韩一区二区三| 成人黄色视频免费在线看| 精品高清国产在线一区| 国产又爽黄色视频| 日本av免费视频播放| 亚洲午夜理论影院| h视频一区二区三区| 久久九九热精品免费| 99久久99久久久精品蜜桃| avwww免费| 亚洲熟女精品中文字幕| 亚洲av成人一区二区三| 国产主播在线观看一区二区| 99精品久久久久人妻精品| 中文字幕精品免费在线观看视频| 在线观看免费视频网站a站| 青草久久国产| 丰满少妇做爰视频| 国产不卡av网站在线观看| 欧美日韩福利视频一区二区| 国产在视频线精品| 久热这里只有精品99| 日本av免费视频播放| 色播在线永久视频| 天天躁夜夜躁狠狠躁躁| 日本黄色日本黄色录像| av超薄肉色丝袜交足视频| 99精品久久久久人妻精品| 国产aⅴ精品一区二区三区波| 女性被躁到高潮视频| 成人国产一区最新在线观看| 一级片免费观看大全| 亚洲情色 制服丝袜| 丝瓜视频免费看黄片| 亚洲国产精品一区二区三区在线| 久久人人爽av亚洲精品天堂| 丁香六月天网| 91国产中文字幕| 搡老熟女国产l中国老女人| 久热这里只有精品99| 欧美日韩福利视频一区二区| 精品福利观看| 性高湖久久久久久久久免费观看| 成人三级做爰电影| 国产无遮挡羞羞视频在线观看| 大陆偷拍与自拍| 久久ye,这里只有精品| 好男人电影高清在线观看| 免费观看av网站的网址| 久久久久久久久免费视频了| 免费黄频网站在线观看国产| 成人黄色视频免费在线看| 老司机亚洲免费影院| 蜜桃在线观看..| 免费不卡黄色视频| 妹子高潮喷水视频| 久久久久久久精品吃奶| 午夜福利视频精品| 亚洲视频免费观看视频| 久久久久久亚洲精品国产蜜桃av| 欧美成人午夜精品| 性色av乱码一区二区三区2| 欧美大码av| 丁香六月天网| 久9热在线精品视频| 欧美国产精品va在线观看不卡| 美女高潮喷水抽搐中文字幕| 成年女人毛片免费观看观看9 | 纯流量卡能插随身wifi吗| 亚洲国产精品一区二区三区在线| 精品国内亚洲2022精品成人 | 人人妻人人爽人人添夜夜欢视频| 国产成人欧美在线观看 | 久久久水蜜桃国产精品网| 欧美黄色淫秽网站| 免费在线观看影片大全网站| 久久免费观看电影| 午夜91福利影院| kizo精华| 少妇的丰满在线观看| 亚洲欧美激情在线| 国产成人精品在线电影| 国产aⅴ精品一区二区三区波| 精品亚洲成国产av| 日本av免费视频播放| 在线 av 中文字幕| 免费高清在线观看日韩| 丰满迷人的少妇在线观看| 欧美精品高潮呻吟av久久| 一区在线观看完整版| 女性被躁到高潮视频| 成人免费观看视频高清| 国产日韩一区二区三区精品不卡| 丁香欧美五月| 热99re8久久精品国产| 一二三四在线观看免费中文在| 91成年电影在线观看| 正在播放国产对白刺激| 日韩成人在线观看一区二区三区| 69精品国产乱码久久久| 国产精品亚洲一级av第二区| 久久人妻熟女aⅴ| 日本av手机在线免费观看| 国产淫语在线视频| 国产精品秋霞免费鲁丝片| 亚洲五月色婷婷综合| 肉色欧美久久久久久久蜜桃| 久久国产亚洲av麻豆专区| 国产av一区二区精品久久| 亚洲国产av影院在线观看| 天堂俺去俺来也www色官网| 男女之事视频高清在线观看| 亚洲成人手机| 天堂动漫精品| 高清在线国产一区| 国产不卡一卡二| 国产一区二区在线观看av| 在线观看www视频免费| 亚洲欧美一区二区三区黑人| 久久99热这里只频精品6学生| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品 国内视频| 中文字幕av电影在线播放| 丁香六月天网| 久久天躁狠狠躁夜夜2o2o| 日日摸夜夜添夜夜添小说| 国产欧美日韩一区二区三| 亚洲第一欧美日韩一区二区三区 | 1024视频免费在线观看| 亚洲自偷自拍图片 自拍| 久久久水蜜桃国产精品网| 国产高清国产精品国产三级| 午夜福利乱码中文字幕| 中文字幕色久视频| 久久精品国产a三级三级三级| 超色免费av| 亚洲色图av天堂| 精品国产一区二区三区久久久樱花| 99精品在免费线老司机午夜| 99re6热这里在线精品视频| √禁漫天堂资源中文www| 精品亚洲成a人片在线观看| 国产欧美日韩一区二区精品| 激情视频va一区二区三区| 母亲3免费完整高清在线观看| 王馨瑶露胸无遮挡在线观看| 国产精品.久久久| 成人18禁高潮啪啪吃奶动态图| avwww免费| 久久久久视频综合| 十八禁高潮呻吟视频| 久久久国产成人免费| 一区二区三区激情视频| 男女边摸边吃奶| 国产老妇伦熟女老妇高清| 日韩欧美免费精品| 亚洲av成人一区二区三| 久久精品人人爽人人爽视色| 国产99久久九九免费精品| 他把我摸到了高潮在线观看 | 人人妻人人爽人人添夜夜欢视频| av天堂久久9| 久热这里只有精品99| 人妻久久中文字幕网| 国产男靠女视频免费网站| 99久久国产精品久久久| 91字幕亚洲| 欧美日韩视频精品一区| 久久久精品区二区三区| 久久精品亚洲av国产电影网| 侵犯人妻中文字幕一二三四区| 高清黄色对白视频在线免费看| 日韩免费高清中文字幕av| 视频区欧美日本亚洲| av国产精品久久久久影院| 国产精品免费一区二区三区在线 | 日日夜夜操网爽| 美女高潮喷水抽搐中文字幕| 久久人人爽av亚洲精品天堂| 欧美黑人欧美精品刺激| 人人妻人人添人人爽欧美一区卜| 精品乱码久久久久久99久播| 欧美久久黑人一区二区| 欧美黑人欧美精品刺激| 高潮久久久久久久久久久不卡| 日韩欧美一区二区三区在线观看 | xxxhd国产人妻xxx| 99国产精品免费福利视频| 国产日韩一区二区三区精品不卡| 午夜福利,免费看| 丰满人妻熟妇乱又伦精品不卡| 在线观看免费视频网站a站| 人妻久久中文字幕网| 免费少妇av软件| 日韩中文字幕视频在线看片| 亚洲国产毛片av蜜桃av| 777米奇影视久久| 亚洲成人免费av在线播放| 精品国产一区二区久久| 午夜免费成人在线视频| 极品人妻少妇av视频| 亚洲av成人不卡在线观看播放网| 日本撒尿小便嘘嘘汇集6| 人人妻,人人澡人人爽秒播| 日本一区二区免费在线视频| 大型黄色视频在线免费观看| 菩萨蛮人人尽说江南好唐韦庄| 黑人巨大精品欧美一区二区蜜桃| 国产精品秋霞免费鲁丝片| 韩国精品一区二区三区| 久久久精品国产亚洲av高清涩受| 精品人妻1区二区| 视频区图区小说| 亚洲全国av大片| 99香蕉大伊视频| 婷婷成人精品国产| 18禁黄网站禁片午夜丰满| 欧美日韩亚洲高清精品| 日本wwww免费看| 亚洲伊人色综图| 日韩一卡2卡3卡4卡2021年| 久久人人97超碰香蕉20202| 女警被强在线播放| 国产日韩欧美亚洲二区| e午夜精品久久久久久久| 91成人精品电影| av片东京热男人的天堂| 免费黄频网站在线观看国产| 国产亚洲欧美精品永久| 午夜福利乱码中文字幕| av天堂久久9| 精品乱码久久久久久99久播| 窝窝影院91人妻| 日韩熟女老妇一区二区性免费视频| 啦啦啦视频在线资源免费观看| 黄色视频不卡| 在线观看舔阴道视频| 欧美日韩亚洲综合一区二区三区_| 日韩免费高清中文字幕av| 性色av乱码一区二区三区2| 757午夜福利合集在线观看| 69av精品久久久久久 | 别揉我奶头~嗯~啊~动态视频| 老司机靠b影院| 国产熟女午夜一区二区三区| 国产深夜福利视频在线观看| 国产区一区二久久| 波多野结衣av一区二区av| 欧美成人免费av一区二区三区 | 成年人免费黄色播放视频| 99精品在免费线老司机午夜| 亚洲性夜色夜夜综合| 女人爽到高潮嗷嗷叫在线视频| 国内毛片毛片毛片毛片毛片| 欧美精品啪啪一区二区三区| 久久久久国内视频| 不卡一级毛片| 18禁黄网站禁片午夜丰满| 99国产极品粉嫩在线观看| 首页视频小说图片口味搜索| 精品视频人人做人人爽| 国产一区二区 视频在线| 成年人免费黄色播放视频| 在线亚洲精品国产二区图片欧美| 欧美日韩一级在线毛片| 91成人精品电影| av网站在线播放免费| 国产精品久久久人人做人人爽| 成人影院久久| 国产在线免费精品| 中文字幕精品免费在线观看视频| 久久亚洲真实| 久久久精品区二区三区| 一区二区av电影网| 日韩视频在线欧美| 久久国产精品人妻蜜桃| 亚洲精品粉嫩美女一区| 一本大道久久a久久精品| 亚洲av日韩在线播放| 又紧又爽又黄一区二区| 别揉我奶头~嗯~啊~动态视频| 久久精品国产a三级三级三级| 国产成人欧美在线观看 | 亚洲av欧美aⅴ国产| 国产精品美女特级片免费视频播放器 | 一夜夜www| 国产精品国产高清国产av | 久久人妻av系列| 91精品三级在线观看| 丝袜美足系列| 日本a在线网址| 黄色视频在线播放观看不卡| 久久精品亚洲av国产电影网| av线在线观看网站| 欧美成人免费av一区二区三区 | 女性生殖器流出的白浆| 免费在线观看视频国产中文字幕亚洲| 欧美精品人与动牲交sv欧美| 999精品在线视频| 菩萨蛮人人尽说江南好唐韦庄| 啦啦啦免费观看视频1| 免费av中文字幕在线| 亚洲精品美女久久久久99蜜臀| 亚洲av成人一区二区三| 久久亚洲真实| 少妇粗大呻吟视频| 女人精品久久久久毛片| 少妇被粗大的猛进出69影院| 脱女人内裤的视频| 黄频高清免费视频| 麻豆成人av在线观看| 99精品久久久久人妻精品| 91成人精品电影| 多毛熟女@视频| 十八禁网站免费在线| 在线观看舔阴道视频| 欧美精品人与动牲交sv欧美| 12—13女人毛片做爰片一| 国产97色在线日韩免费| 国产av一区二区精品久久| 久久99热这里只频精品6学生| 亚洲性夜色夜夜综合| 欧美日韩精品网址| 中文字幕人妻熟女乱码| 巨乳人妻的诱惑在线观看| 国产片内射在线| 国产在线视频一区二区| av电影中文网址| 亚洲精品自拍成人| 三上悠亚av全集在线观看| 十分钟在线观看高清视频www| 考比视频在线观看| 成人精品一区二区免费| 国产福利在线免费观看视频| 精品国产亚洲在线| 老司机午夜十八禁免费视频| 80岁老熟妇乱子伦牲交| 国产av国产精品国产| 亚洲av第一区精品v没综合| 日韩中文字幕欧美一区二区| 午夜老司机福利片| 久热这里只有精品99| 亚洲精品av麻豆狂野| 91av网站免费观看| 久久久精品区二区三区| 日韩大片免费观看网站| 国产91精品成人一区二区三区 | av网站免费在线观看视频| 悠悠久久av| 老司机午夜福利在线观看视频 | 国产精品免费大片| 欧美激情极品国产一区二区三区| 超碰成人久久| 久久午夜亚洲精品久久| 欧美精品高潮呻吟av久久| 久久热在线av| 91av网站免费观看| 久久久久久免费高清国产稀缺| 精品久久久久久电影网| 久久久精品免费免费高清| 国产成人免费无遮挡视频| 男女免费视频国产| 亚洲国产欧美日韩在线播放| 狂野欧美激情性xxxx| 深夜精品福利| 老司机深夜福利视频在线观看| 亚洲五月婷婷丁香| 免费看a级黄色片| svipshipincom国产片| 亚洲av日韩精品久久久久久密| 女性被躁到高潮视频| 麻豆国产av国片精品| 啦啦啦免费观看视频1| xxxhd国产人妻xxx| 69av精品久久久久久 | 777米奇影视久久| 一二三四社区在线视频社区8| 久久精品亚洲精品国产色婷小说| 国产精品成人在线| 丁香欧美五月| 久久青草综合色| 欧美日韩亚洲综合一区二区三区_| 麻豆乱淫一区二区| 国产精品美女特级片免费视频播放器 | 精品熟女少妇八av免费久了| 久久精品熟女亚洲av麻豆精品| 精品国产乱子伦一区二区三区| 亚洲欧美一区二区三区黑人| 欧美 日韩 精品 国产| 久久久国产一区二区| 大香蕉久久网| 国产精品1区2区在线观看. | 欧美国产精品一级二级三级| 国产精品.久久久| 一级a爱视频在线免费观看| 99久久国产精品久久久| 国产欧美日韩一区二区三| 丰满少妇做爰视频| 中文欧美无线码| 国产又爽黄色视频| 日日摸夜夜添夜夜添小说| 国产精品 国内视频| 国产精品影院久久| 亚洲欧洲精品一区二区精品久久久| 90打野战视频偷拍视频| 久热爱精品视频在线9| 免费不卡黄色视频| 人人妻人人爽人人添夜夜欢视频| 老司机亚洲免费影院| 99热国产这里只有精品6| 一区福利在线观看| 在线观看免费高清a一片| 久久久久国内视频| tube8黄色片| 国产成人av激情在线播放| 男女下面插进去视频免费观看| 91字幕亚洲| 久久午夜综合久久蜜桃| 一夜夜www| 在线亚洲精品国产二区图片欧美| 丰满人妻熟妇乱又伦精品不卡| 99国产综合亚洲精品| 亚洲精品中文字幕在线视频| 国产男女内射视频| 老司机影院毛片| 精品国产亚洲在线| 欧美日韩亚洲国产一区二区在线观看 | 久久精品aⅴ一区二区三区四区| 亚洲国产欧美网| 大香蕉久久成人网| 久久国产精品男人的天堂亚洲| av国产精品久久久久影院| 一级,二级,三级黄色视频| 亚洲成人免费av在线播放| 脱女人内裤的视频| 亚洲精品自拍成人| 国产一区有黄有色的免费视频| 久久99热这里只频精品6学生| a级毛片在线看网站| 亚洲美女黄片视频| 亚洲色图综合在线观看| 久久久久久久久久久久大奶| 新久久久久国产一级毛片| 免费在线观看日本一区| 啪啪无遮挡十八禁网站| 乱人伦中国视频| 色视频在线一区二区三区| 国产精品 国内视频| 丝袜喷水一区| 黄色毛片三级朝国网站| 欧美日韩成人在线一区二区| 日韩视频在线欧美| 亚洲午夜理论影院| 一区在线观看完整版| 国产精品久久久人人做人人爽|