• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Approach to estimation of vehicle-road longitudinal friction coefficient

    2013-01-08 12:56:14SongXiangLiXuZhangWeigongChenWeiXuQimin

    Song Xiang Li Xu Zhang Weigong Chen Wei Xu Qimin

    (School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China)

    With the implementation of active safety control systems, vehicles have become safer to drive with less involvement in fatal accidents. These active safety control systems can greatly profit from being made road-adaptive; i.e., the control algorithms can be modified to account for the external road conditions if the actual tire-road friction coefficient information is available in real time. The longitudinal tire-road friction coefficient is an essential parameter for the vehicle longitudinal active safety control systems. For example, in an adaptive cruise control (ACC) system, road condition information from the friction coefficient estimation can be used to adjust the longitudinal spacing headway from the preceding vehicle that the ACC vehicle should maintain.

    The tire-road friction coefficient must be estimated in real-time to meet the requirements of the vehicle longitudinal active safety control systems under normal driving conditions. So the method of tire-road friction coefficient estimation based on vehicle longitudinal dynamics is most feasible.

    The relationship between the normalized longitudinal tire force and the slip ratio is different under different road conditions, which is the basis of utilizing the vehicle longitudinal dynamics to estimate the tire-road friction coefficient[1]. The most well known research in this area is on the use of slip-slope for friction coefficient identification[2-5]. In this method, the normalized longitudinal force is considered proportional to the slip ratio at low slip ratios. The slope of the relationship between the normalized longitudinal force and the slip ratio at low slip ratios is called slip-slope. The basic idea behind the use of slip-slope for friction coefficient estimation is that at low slip ratios, the tire-road friction coefficient is proportional to slip-slope. Thus, by estimating slip-slope, the tire-road friction coefficient can be estimated. But this method is only suitable for the condition of low slip ratios. The parameter estimation method is another commonly used method[6-7].But only at the large slip ratios, the estimation results will be close to the true value. Domestic researches[8-9]are based on the above two methods,the drawbacks as mentioned above also exist. Shim et al.[10]assumed a tire-road friction coefficient, and then the response of the vehicle is estimated based on the vehicle dynamics model. According to the differences between the estimated response and the actual vehicle response, the tire-road friction coefficient can be calculated. But the method is difficult to apply to complex road conditions since it requires a lot of experience.

    As mentioned above, the main problem of the tire-road friction coefficient estimation algorithms is that the algorithms cannot be applied to both high and low slip ratios simultaneously. To solve this problem, the recursive least squares (RLS)method with the forgetting factor and the extended Kalman filter (EKF) algorithm are employed to estimate the longitudinal tire-road friction coefficient in this paper. The method utilizes the relationship between the normalized longitudinal tire force and the slip ratio to identify the longitudinal tire-road friction coefficientμ, which can be applicable to for both the high and the low slip ratios, and the effectiveness and feasibility are verified by simulation.

    1 Proposed Method

    If only the longitudinal motion is considered and the lateral force is ignored, the normalized longitudinal tire forceφand the slip ratiosat each wheel can be represented as

    (1)

    (2)

    whereωis the angular wheel speed;ris the effective tire radius;vis the vehicle’s absolute velocity;Fxis the longitudinal force from ground to wheel; andFzis the normal force.

    Fig.1 shows a typical relationship betweensandφf(shuō)or various values of the tire-road friction coefficient.μis the tire-road friction coefficient.

    Fig.1 s-φ curves with different friction coefficients

    In this paper, the friction coefficient is assumed to be the same at each wheel of the vehicle. By calculatingsandφ, the longitudinal tire-road friction coefficientμcan be estimated by the RLS method with the forgetting factor, which is based on the simplified magic formula tire model. Then the estimatedμand the tire model parameters are used as extended states. The EKF algorithm is employed to filter out the noise and adaptively adjust the tire model parameters. Then the final road longitudinal friction coefficient is accurately and robustly estimated. The flowchart of the estimation method is shown in Fig.2.

    Fig.2 Flowchart of estimation method

    2 Vehicle and Tire Models

    The longitudinal vehicle dynamics model can be written as

    max=Fx-Dav2-Crollmg

    (3)

    wheremis the mass of the vehicle;axis the vehicle longitudinal acceleration;Dais the air resistance coefficient;Crollis the rolling resistance coefficient; andgis the acceleration of gravity.

    A simplified magic formula tire model[11]is adopted in this paper.

    φ=μsin[Carctan(Bs)]

    (4)

    whereBandCare the model parameters.

    3 Road Friction Coefficient Preliminarily Estimated based on RLS

    3.1 Longitudinal slip ratio calculation

    The effective tire radiusris calculated as

    (5)

    whereruis the undeformed radius of the tire;rsis the static tire radius and it can be described asrs=ru-Fz/kt,ktis the vertical tire stiffness. The longitudinal slip ratio can be calculated by Eq.(1).

    3.2 Normalized longitudinal tire force calculation

    Eq.(3) can be rewritten as

    Fx=Fxf+Fxr=max+Dav2+Crollmg

    (6)

    whereFxfandFxrare the traction forces of the front and the rear wheels. The total vehicle longitudinal forceFxcan be obtained by Eq.(6).

    The normal forces at the front and rear tires can be calculated as follows:

    (7)

    whereFzfandFzrare the normal forces at the front and the rear tires;aandbare the distances from the center of gravity to the front and the rear axles.

    The relationship betweensandφf(shuō)or the front and rear tires can be written as

    (8)

    (9)

    3.3 Preliminary estimates of μ

    Assuming that the front and rear tires are under the same road surface condition, which is true for many driving situations, the total longitudinal force is

    Fx=Fxf+Fxr=φf(shuō)Fzf+φrFzr=

    μ{Fzfsin[Carctan(Bsf)]+Fzrsin[Carctan(Bsr)]}

    (10)

    Eq.(10) can be rewritten into a standard parameter identification format as

    y(k)=φT(k)θ(k)+e(k)

    (11)

    wherekdenotes the discrete time;y(k)=Fxis the system output;θ(k)=μis the unknown parameter of interest;φ(k)={Fzfsin[Carctan(Bsf)]+Fzrsin[Carctan(Bsr)]} is the measured regression vector;e(k) is the identification error. Then the only unknown parameterθ(k)=μcan be identified in real-time using the RLS method with the forgetting factor as follows:

    1) Measure the system outputy(k) and calculate the regression vectorφ(k).

    2) Calculate the identification errore(k),

    e(k)=y(k)-φT(k)θ(k-1)

    3) Calculate the updated gain vectorK(k) as

    And calculate the covariance matrixN(k)by

    The parameterλis called the forgetting factor, which is used to effectively reduce the influence of old data which may no longer be relevant to the model, and, therefore, prevents a covariance wind-up problem.

    4) Update the parameter estimate vectorθ(k),

    θ(k)=θ(k-1)+K(k)e(k)

    The road friction coefficientμcan be preliminary estimated in real-time.

    4 Longitudinal Tire-Road Friction Coefficient Identification based on EKF

    In the tire-road friction coefficient estimation process described above, the model parametersBandCare assumed to be known and constant. However, during vehicle operation,BandCcannot be directly measured and they are time-varying, which may affect the accuracy of the estimation of the tire-road friction coefficient. In order to real-time updateBandC, and filterμ, the EKF model is established based on the longitudinal dynamic model using Eq.(3).

    The discretized state equation and measurement equation can be written as

    (12)

    wherekrefers to the discrete-time step; the state vectorX={v,μ,B,C}T; the measurement vectorZ={ax,v,μ}T;WandVare the system and measurement noise vectors, respectively;f(·) andh(·) are the nonlinear system and measurement functions which can be deduced from Eq.(3).

    Assuming that the system and measurement noises to be Gaussian with a zero mean and their covariance matrices areQandR, respectively, the EKF process consists of the following two phases.

    1) Time update:

    P(k,k-1)=A(k,k-1)P(k-1)A′(k,k-1)+Q(k-1)

    2) Measurement update:

    K(k)=

    P(k,k-1)H′(k)[H(k)P(k,k-1)H′(k)+R(k)]-1

    P(k)=[I-K(k)H(k)]P(k,k-1)

    whereIis the identity matrix;AandHare the Jacobian matrices of the system functionf(·) and the measurement functionh(·) with respect toX; i.e.,

    The model parametersBandC, estimated by the EKF, are feedbacks to the tire model, so the estimated values by the RLS can be updated in real-time. Therefore, the estimation accuracy of the tire-road friction coefficient can be improved, and the estimated values can respond to the road state changes. Theμoutput by the EKF is the final estimation result.

    5 Simulation Results and Discussion

    To evaluate the performance of the proposed estimation method of the longitudinal friction coefficient, numerical simulations are performed using Carsim in Matlab/Simulink. According to Ref.[12], the initial values of model parametersBandCare 14 and 1.3, respectively. The forgetting factorλis set to be 0.995. The proposed algorithm is validated under the high and the low slip ratio conditions with the tire-road friction coefficient changing, and the estimation results are compared with the conventional slip-slope algorithm. Simulation results show that the proposed algorithm can be applied to both the high and the low slip ratios; the estimation results are accurate and robust, and they can quickly respond to the changes in road conditions.

    5.1 Simulation under low slip ratio condition

    The main vehicle parameters used in the simulations are:kt=230 N/mm,m=1220 kg,rs=310.8 mm,rw=304 mm,a=1.04 mm,b=1.56 mm. Fig.3 and Fig.4 are the simulation results. The figures show that the values of the slip ratio are small, and the proposed method can quickly identify the road friction coefficient with high accuracy; the error is less than 0.1. From Fig.4, we can see that the proposed method can converge to the true value within 2 s when the tire-road friction coefficient jumps, which meets the real-time requirements.

    Fig.3 Simulation results of low slip ratios. (a) Slip ratio; (b) Tire-road friction coefficient

    Fig.4 Simulation results of low slip ratios with friction coefficient changing. (a) Slip ratio; (b) Tire-road friction coefficient

    5.2 Simulation under high slip ratio condition

    The conventional slip-slope algorithm is no longer suitable for the high slip ratio condition because the relationship betweensandφis not linear. Fig.5 and Fig.6 are the simulation results. The figures show that estimation results by the slip-slope algorithm produce a great error. The proposed method can quickly identify the road friction coefficient with high accuracy at high slip ratios and quickly respond to the changes in road conditions.

    6 Conclusion

    Simulation results show that the proposed algorithm can quickly and accurately estimate the tire-road friction coefficient under both the high and the low slip ratio conditions, which can meet the requirements of the vehicle longitudinal active safety system. And the proposed method only needs the existing sensors in commercial vehicles, so the proposed method is suitable for on-board applications with low computational complexity.

    The key of the proposed algorithm is to obtain an accurates-φcurve. Thes-φcurve can be obtained by the bench test, but the friction conditions on an actual road is different from the bench test, and the accuracy of the real-time tire-road friction coefficient is also reduced due to the high dynamic characteristics and noises. So the further work must focus on buildings-φrelationships in different roads by a lot of vehicle tests on the common road, and then the proposed method can be applied to practice and achieves mass-market applications.

    Fig.5 Simulation results of high slip ratios. (a) Slip ratio; (b) Friction coefficient estimated by the proposed method; (c) Friction coefficient estimated by the slip-slope method

    Fig.6 Simulation results of high slip ratios with friction coefficient changing. (a) Slip ratio; (b) Friction coefficient estimated by the proposed method; (c) Friction coefficient estimated by the slip-slope method

    [1]Rajamani R, Piyabongkarn D, Lew J Y, et al. Tire-road friction-coefficient estimation [J].IEEEControlSystemMagazine, 2010,30(4):54-69.

    [2]Wang J, Alexander L, Rajamani R. Friction estimation on highway vehicles using longitudinal measurements [J].JournalofDynamicSystems,Measurement,andControl, 2004,126(2):265-275.

    [3]Lee C, Hedrick K, Yi K. Real-time slip-based estimation of maximum tire-road friction coefficient [J].IEEE/ASMETransactionsonMechatronics, 2004,9(2):454-458.

    [4]Ahn C, Peng H, Tseng H E. Robust estimation of road friction coefficient using lateral and longitudinal vehicle dynamics[J].VehicleSystemDynamics, 2012,50(6):961-985.

    [5]Li K, Misener J A, Hedrick K. On-board road condition monitoring system using slip-based tire-road friction estimation and wheel speed signal analysis [J].JournalofMulti-BodyDynamics, 2007,221(1):129-146.

    [6]Tanelli M, Piroddi L, Savaresi S M. Real-time identification of tire-road friction conditions [J].IETControlTheoryApplications, 2009,3(7): 891-906.

    [7]Villagra J, d’Andréa-Novel B, Fliess M, et al. A diagnosis-based approach for tire-road forces and maximum friction estimation [J].ControlEngineeringPractice, 2009,19(2): 174-184.

    [8]Wu Lijun, Wang Yuejian, Li Keqiang. Estimation method of road adhesion coefficient for vehicle longitudinal safety assistant system [J].AutomotiveEngineering, 2009,31(3):239-243. (in Chinese)

    [9]Yu Zhuoping, Zuo Jianling, Zhang Lijun. A summary on the development status quo of tire-road friction coefficient estimation techniques [J].AutomotiveEngineering, 2006,28(6):546-549. (in Chinese)

    [10]Shim T, Margolis D. Model-based road friction estimation [J].VehicleSystemDynamics, 2004,41(4): 249-276.

    [11]Bian Mingyuan. Simplified tire model for longitudinal road friction estimation[J].JournalofChongqingUniversityofTechnology:NaturalScience, 2012,26(1):1-5. (in Chinese)

    [12]Gustafsson F. Automotive safety systems, replacing costly sensors with software algorithms [J].IEEESignalProcessingMagazine, 2009,26(4):32-47.

    九草在线视频观看| 久久久久久人人人人人| av在线播放精品| 久久久久视频综合| 日韩av在线免费看完整版不卡| 久久久国产精品麻豆| 午夜精品国产一区二区电影| 国产 精品1| 国产老妇伦熟女老妇高清| 国产精品嫩草影院av在线观看| 一区二区三区乱码不卡18| 国产成人免费无遮挡视频| 美女内射精品一级片tv| 狂野欧美激情性xxxx在线观看| 精品久久蜜臀av无| 亚洲熟女精品中文字幕| 欧美亚洲 丝袜 人妻 在线| 亚洲色图 男人天堂 中文字幕 | 欧美精品一区二区免费开放| 狠狠婷婷综合久久久久久88av| 国产有黄有色有爽视频| 欧美最新免费一区二区三区| 精品酒店卫生间| 亚洲久久久国产精品| 久久毛片免费看一区二区三区| 成人综合一区亚洲| 久久久a久久爽久久v久久| 巨乳人妻的诱惑在线观看| 午夜影院在线不卡| 丝袜喷水一区| 一个人免费看片子| 99久久人妻综合| 亚洲少妇的诱惑av| 精品一区二区三卡| 青春草视频在线免费观看| 亚洲美女搞黄在线观看| av线在线观看网站| 啦啦啦啦在线视频资源| 好男人视频免费观看在线| 精品午夜福利在线看| 少妇的逼好多水| 欧美另类一区| av一本久久久久| 中国国产av一级| 搡老乐熟女国产| 欧美另类一区| 国产日韩一区二区三区精品不卡| 又粗又硬又长又爽又黄的视频| 99久久中文字幕三级久久日本| 色吧在线观看| 亚洲内射少妇av| 色婷婷av一区二区三区视频| 亚洲精品,欧美精品| 18在线观看网站| 亚洲熟女精品中文字幕| 日韩中字成人| 欧美亚洲 丝袜 人妻 在线| 久久99蜜桃精品久久| 91国产中文字幕| 婷婷色综合大香蕉| 最黄视频免费看| 美女脱内裤让男人舔精品视频| 欧美亚洲 丝袜 人妻 在线| av福利片在线| 成人国语在线视频| 成人亚洲欧美一区二区av| 久久女婷五月综合色啪小说| 大陆偷拍与自拍| 一级毛片黄色毛片免费观看视频| 99国产综合亚洲精品| 纵有疾风起免费观看全集完整版| 欧美精品一区二区大全| 国产无遮挡羞羞视频在线观看| 水蜜桃什么品种好| 人妻少妇偷人精品九色| 日韩一区二区三区影片| 国产乱来视频区| 国产精品久久久久久久久免| 三上悠亚av全集在线观看| av在线app专区| 日韩电影二区| 日韩精品免费视频一区二区三区 | 日韩av不卡免费在线播放| 亚洲av中文av极速乱| 亚洲激情五月婷婷啪啪| 欧美日韩视频精品一区| 日韩不卡一区二区三区视频在线| 美女国产视频在线观看| 亚洲国产精品专区欧美| 国产成人精品婷婷| 欧美性感艳星| 91精品伊人久久大香线蕉| 久久久久网色| 久久久久精品性色| 久热久热在线精品观看| 伊人久久国产一区二区| 亚洲美女搞黄在线观看| 免费少妇av软件| 亚洲,欧美精品.| 久久久久久久久久久免费av| 亚洲一码二码三码区别大吗| 2022亚洲国产成人精品| 久久精品国产自在天天线| 亚洲综合色惰| 多毛熟女@视频| 97在线视频观看| av在线播放精品| 咕卡用的链子| 水蜜桃什么品种好| 纯流量卡能插随身wifi吗| 国产一区有黄有色的免费视频| 尾随美女入室| 人人妻人人爽人人添夜夜欢视频| 国产午夜精品一二区理论片| 岛国毛片在线播放| 国产av码专区亚洲av| 日本-黄色视频高清免费观看| 男女边摸边吃奶| 91午夜精品亚洲一区二区三区| 丝袜人妻中文字幕| 波多野结衣一区麻豆| av免费在线看不卡| 精品久久国产蜜桃| 两个人看的免费小视频| 一级毛片我不卡| 亚洲欧美中文字幕日韩二区| 亚洲成人一二三区av| 国产日韩欧美亚洲二区| 国产精品国产av在线观看| 亚洲中文av在线| 日韩熟女老妇一区二区性免费视频| 永久网站在线| 亚洲一区二区三区欧美精品| 母亲3免费完整高清在线观看 | 18禁在线无遮挡免费观看视频| 亚洲av免费高清在线观看| 国产精品国产三级国产专区5o| 中文字幕亚洲精品专区| 丝袜喷水一区| 欧美+日韩+精品| 插逼视频在线观看| 亚洲欧美一区二区三区黑人 | 国产av精品麻豆| 永久免费av网站大全| 成人手机av| 免费不卡的大黄色大毛片视频在线观看| 黑人猛操日本美女一级片| 久久97久久精品| 午夜福利影视在线免费观看| 一级黄片播放器| 女的被弄到高潮叫床怎么办| 欧美97在线视频| 国产在线免费精品| 男女啪啪激烈高潮av片| 精品国产一区二区久久| 成人国语在线视频| 国产精品女同一区二区软件| 在现免费观看毛片| 欧美亚洲日本最大视频资源| 午夜福利视频在线观看免费| 日韩成人伦理影院| 成人亚洲精品一区在线观看| 1024视频免费在线观看| 看非洲黑人一级黄片| 最近最新中文字幕免费大全7| 在线观看美女被高潮喷水网站| 制服人妻中文乱码| 欧美人与性动交α欧美软件 | 91午夜精品亚洲一区二区三区| 日本vs欧美在线观看视频| 黑人欧美特级aaaaaa片| 亚洲精品日本国产第一区| 亚洲美女搞黄在线观看| 熟女av电影| 中文字幕人妻丝袜制服| 国产片特级美女逼逼视频| 午夜福利视频精品| 秋霞在线观看毛片| 久久久a久久爽久久v久久| 国产成人精品福利久久| 国产精品偷伦视频观看了| 男女边吃奶边做爰视频| av不卡在线播放| 国产精品久久久久久久久免| 国产午夜精品一二区理论片| av.在线天堂| 午夜av观看不卡| 激情五月婷婷亚洲| av不卡在线播放| 黑人巨大精品欧美一区二区蜜桃 | 在线观看国产h片| 人妻少妇偷人精品九色| 丝袜喷水一区| 亚洲成色77777| 中文欧美无线码| 少妇的逼好多水| 最近手机中文字幕大全| 国产精品久久久久久久久免| h视频一区二区三区| 亚洲成人av在线免费| 成人手机av| 午夜久久久在线观看| 好男人视频免费观看在线| 久久久精品区二区三区| h视频一区二区三区| 日本黄大片高清| 国产精品秋霞免费鲁丝片| 看免费av毛片| 99热这里只有是精品在线观看| 少妇精品久久久久久久| 国产欧美亚洲国产| 久久久亚洲精品成人影院| 十分钟在线观看高清视频www| 啦啦啦中文免费视频观看日本| 97精品久久久久久久久久精品| 国产一区有黄有色的免费视频| av有码第一页| 午夜日本视频在线| 午夜激情久久久久久久| 国产在视频线精品| 另类精品久久| 亚洲精品一二三| 天天操日日干夜夜撸| 日韩中文字幕视频在线看片| 久久韩国三级中文字幕| 欧美 日韩 精品 国产| 中国美白少妇内射xxxbb| a级毛片在线看网站| av免费在线看不卡| 毛片一级片免费看久久久久| 激情视频va一区二区三区| 亚洲欧美色中文字幕在线| 精品人妻熟女毛片av久久网站| 街头女战士在线观看网站| 自拍欧美九色日韩亚洲蝌蚪91| 2021少妇久久久久久久久久久| 十八禁高潮呻吟视频| 国产一区二区三区综合在线观看 | 夜夜骑夜夜射夜夜干| 九九爱精品视频在线观看| 欧美日本中文国产一区发布| 午夜日本视频在线| 国产精品一区二区在线不卡| 亚洲欧美一区二区三区国产| 在线亚洲精品国产二区图片欧美| 五月开心婷婷网| 一区在线观看完整版| 97在线视频观看| 国产成人免费无遮挡视频| 美女视频免费永久观看网站| 久热这里只有精品99| 男女下面插进去视频免费观看 | 另类精品久久| h视频一区二区三区| 亚洲一区二区三区欧美精品| 黑人猛操日本美女一级片| 人妻少妇偷人精品九色| 日本91视频免费播放| 欧美最新免费一区二区三区| 亚洲欧美成人综合另类久久久| 美女xxoo啪啪120秒动态图| 一边摸一边做爽爽视频免费| 国产又色又爽无遮挡免| 黑丝袜美女国产一区| av播播在线观看一区| 亚洲国产精品一区三区| 久久久久网色| 精品国产一区二区三区四区第35| 九九在线视频观看精品| 亚洲欧美成人综合另类久久久| 卡戴珊不雅视频在线播放| 久久精品国产a三级三级三级| 久久女婷五月综合色啪小说| 国产成人91sexporn| 99九九在线精品视频| 免费看av在线观看网站| 亚洲久久久国产精品| 亚洲一区二区三区欧美精品| 国产精品三级大全| 少妇人妻精品综合一区二区| 成年女人在线观看亚洲视频| 国产免费一级a男人的天堂| 国产亚洲午夜精品一区二区久久| 久久精品夜色国产| 久热这里只有精品99| 亚洲av国产av综合av卡| 欧美精品av麻豆av| 欧美日韩亚洲高清精品| 免费看不卡的av| 亚洲精品久久久久久婷婷小说| 成人国语在线视频| 国产精品久久久久久av不卡| a级毛色黄片| 国产伦理片在线播放av一区| 九九在线视频观看精品| 最近最新中文字幕免费大全7| 咕卡用的链子| 国产乱人偷精品视频| 老司机影院成人| 国产欧美日韩一区二区三区在线| 色5月婷婷丁香| 永久免费av网站大全| 欧美少妇被猛烈插入视频| 九色亚洲精品在线播放| 18+在线观看网站| 免费高清在线观看视频在线观看| 男女国产视频网站| 国产精品99久久99久久久不卡 | 亚洲精品色激情综合| 亚洲精品日本国产第一区| 日韩一区二区视频免费看| 婷婷色麻豆天堂久久| 久久精品久久精品一区二区三区| 18禁观看日本| 国产av码专区亚洲av| 一本—道久久a久久精品蜜桃钙片| 我要看黄色一级片免费的| 精品亚洲成国产av| 永久网站在线| 亚洲精品乱久久久久久| 国产成人aa在线观看| 国产成人午夜福利电影在线观看| 成年美女黄网站色视频大全免费| 免费久久久久久久精品成人欧美视频 | 91午夜精品亚洲一区二区三区| 国产男人的电影天堂91| 久久 成人 亚洲| 国产一区亚洲一区在线观看| av电影中文网址| 少妇的逼水好多| 国产国语露脸激情在线看| 9热在线视频观看99| 热99久久久久精品小说推荐| 国产欧美另类精品又又久久亚洲欧美| 五月天丁香电影| 免费在线观看完整版高清| 久久精品国产自在天天线| 曰老女人黄片| 亚洲精品美女久久av网站| 日韩中文字幕视频在线看片| 免费看av在线观看网站| 狠狠婷婷综合久久久久久88av| 国产视频首页在线观看| 日日啪夜夜爽| 这个男人来自地球电影免费观看 | 国产探花极品一区二区| 免费不卡的大黄色大毛片视频在线观看| 国产精品国产三级国产专区5o| 亚洲成人av在线免费| 中文字幕最新亚洲高清| 亚洲国产精品国产精品| 亚洲一区二区三区欧美精品| 9191精品国产免费久久| 国产精品国产av在线观看| 亚洲国产精品专区欧美| 99热这里只有是精品在线观看| 在线天堂最新版资源| 黑人猛操日本美女一级片| 国产亚洲精品第一综合不卡 | 午夜精品国产一区二区电影| 人成视频在线观看免费观看| 黄色毛片三级朝国网站| 国产深夜福利视频在线观看| 亚洲欧美一区二区三区黑人 | 中文字幕精品免费在线观看视频 | av在线播放精品| 日韩一区二区视频免费看| 搡女人真爽免费视频火全软件| 亚洲人与动物交配视频| 久久久久久久久久久免费av| 伦理电影免费视频| 精品亚洲成国产av| 亚洲熟女精品中文字幕| 精品一区二区三区视频在线| 国产精品.久久久| 欧美精品av麻豆av| 国产亚洲精品第一综合不卡 | 久热久热在线精品观看| 欧美精品人与动牲交sv欧美| 美女福利国产在线| 少妇的逼水好多| 色吧在线观看| 亚洲国产欧美日韩在线播放| 国产女主播在线喷水免费视频网站| 久久国产亚洲av麻豆专区| 国产又色又爽无遮挡免| 亚洲成国产人片在线观看| 成人二区视频| 日韩一本色道免费dvd| 成人无遮挡网站| 国产午夜精品一二区理论片| 搡女人真爽免费视频火全软件| 9热在线视频观看99| 极品少妇高潮喷水抽搐| 亚洲国产成人一精品久久久| 久久精品aⅴ一区二区三区四区 | 国产精品欧美亚洲77777| 在线观看免费高清a一片| 国产又爽黄色视频| 久久99蜜桃精品久久| 日本av手机在线免费观看| 精品亚洲成国产av| 视频在线观看一区二区三区| 久久国产亚洲av麻豆专区| 成年女人在线观看亚洲视频| 国产国语露脸激情在线看| 亚洲欧美中文字幕日韩二区| 亚洲中文av在线| 欧美另类一区| 国产精品蜜桃在线观看| 天天操日日干夜夜撸| 久久97久久精品| 成年女人在线观看亚洲视频| 看非洲黑人一级黄片| 水蜜桃什么品种好| 亚洲成人av在线免费| 精品第一国产精品| 亚洲av在线观看美女高潮| 久久人妻熟女aⅴ| 久久精品久久精品一区二区三区| 国产一区有黄有色的免费视频| 成人黄色视频免费在线看| 免费日韩欧美在线观看| 成年人免费黄色播放视频| 多毛熟女@视频| 新久久久久国产一级毛片| 国产精品偷伦视频观看了| 日本欧美国产在线视频| 女性生殖器流出的白浆| 国产精品国产三级国产av玫瑰| 国产69精品久久久久777片| 精品熟女少妇av免费看| 久久精品久久精品一区二区三区| 精品视频人人做人人爽| 看非洲黑人一级黄片| 欧美xxxx性猛交bbbb| 成人亚洲欧美一区二区av| 亚洲情色 制服丝袜| 亚洲欧美清纯卡通| 久久国产精品男人的天堂亚洲 | 99热全是精品| 国产熟女欧美一区二区| 欧美日韩视频高清一区二区三区二| 乱码一卡2卡4卡精品| 久久精品国产自在天天线| 免费黄色在线免费观看| 免费看光身美女| 免费女性裸体啪啪无遮挡网站| 天美传媒精品一区二区| 午夜视频国产福利| 亚洲伊人久久精品综合| 一级黄片播放器| 在线天堂最新版资源| 黄色毛片三级朝国网站| 少妇被粗大的猛进出69影院 | 成人无遮挡网站| 国产一区二区三区综合在线观看 | 久久婷婷青草| 亚洲美女视频黄频| 国产一级毛片在线| 亚洲精品aⅴ在线观看| 午夜老司机福利剧场| 欧美激情国产日韩精品一区| 国产亚洲午夜精品一区二区久久| 涩涩av久久男人的天堂| 成人黄色视频免费在线看| 水蜜桃什么品种好| 人人妻人人澡人人爽人人夜夜| 美女xxoo啪啪120秒动态图| 成年动漫av网址| 亚洲欧洲国产日韩| 建设人人有责人人尽责人人享有的| av.在线天堂| 18禁在线无遮挡免费观看视频| 国产伦理片在线播放av一区| 中文精品一卡2卡3卡4更新| 日日啪夜夜爽| 国产欧美日韩综合在线一区二区| 亚洲精品第二区| 天堂中文最新版在线下载| 国产精品久久久久久av不卡| 捣出白浆h1v1| 在线观看国产h片| av视频免费观看在线观看| 黑人高潮一二区| 国产一级毛片在线| 这个男人来自地球电影免费观看 | 免费观看av网站的网址| 国产精品久久久久久av不卡| 日韩,欧美,国产一区二区三区| 青春草亚洲视频在线观看| 一级爰片在线观看| 亚洲国产av影院在线观看| 欧美日韩亚洲高清精品| 国产精品偷伦视频观看了| 亚洲精品第二区| 22中文网久久字幕| 免费日韩欧美在线观看| 欧美日韩一区二区视频在线观看视频在线| 黄色毛片三级朝国网站| 十八禁网站网址无遮挡| 亚洲国产精品一区三区| kizo精华| 国产亚洲欧美精品永久| 青春草视频在线免费观看| 国产一区二区在线观看av| 国产精品久久久久久精品古装| 免费人妻精品一区二区三区视频| 国产成人aa在线观看| 男的添女的下面高潮视频| 亚洲精品日本国产第一区| 精品酒店卫生间| 色哟哟·www| 国产免费又黄又爽又色| 国产精品国产三级国产av玫瑰| 亚洲国产精品国产精品| 少妇人妻久久综合中文| 韩国精品一区二区三区 | 国产日韩欧美视频二区| 精品人妻偷拍中文字幕| 老司机亚洲免费影院| 在线天堂最新版资源| 性色avwww在线观看| 国产成人精品在线电影| 少妇猛男粗大的猛烈进出视频| 精品酒店卫生间| 啦啦啦视频在线资源免费观看| 久久av网站| 综合色丁香网| 人人妻人人爽人人添夜夜欢视频| 青春草亚洲视频在线观看| 国产不卡av网站在线观看| 夫妻午夜视频| 少妇的逼水好多| 黑人猛操日本美女一级片| 一个人免费看片子| av在线观看视频网站免费| 日韩免费高清中文字幕av| 国产av精品麻豆| 亚洲av电影在线观看一区二区三区| 97在线人人人人妻| 亚洲精品乱久久久久久| 国产亚洲av片在线观看秒播厂| 桃花免费在线播放| 亚洲国产精品国产精品| 国产成人91sexporn| 亚洲美女搞黄在线观看| 亚洲av成人精品一二三区| 欧美成人午夜免费资源| 黄片无遮挡物在线观看| 日韩一区二区三区影片| 国产精品偷伦视频观看了| 啦啦啦啦在线视频资源| 香蕉国产在线看| 国产精品久久久久久久久免| 最新中文字幕久久久久| 亚洲图色成人| 我的女老师完整版在线观看| 国产高清三级在线| 大片电影免费在线观看免费| 在线观看一区二区三区激情| 又粗又硬又长又爽又黄的视频| 精品国产一区二区三区四区第35| 国产亚洲欧美精品永久| av视频免费观看在线观看| 成人18禁高潮啪啪吃奶动态图| 国产伦理片在线播放av一区| 视频中文字幕在线观看| 国产成人精品福利久久| 精品少妇内射三级| 肉色欧美久久久久久久蜜桃| 亚洲av免费高清在线观看| 最近最新中文字幕大全免费视频 | 精品亚洲乱码少妇综合久久| 亚洲美女视频黄频| 午夜福利视频在线观看免费| 一本—道久久a久久精品蜜桃钙片| 亚洲第一av免费看| 2018国产大陆天天弄谢| 少妇被粗大的猛进出69影院 | 99热这里只有是精品在线观看| 最新的欧美精品一区二区| 三级国产精品片| 波多野结衣一区麻豆| 男人舔女人的私密视频| 日日撸夜夜添| tube8黄色片| 亚洲欧洲精品一区二区精品久久久 | 18禁国产床啪视频网站| 校园人妻丝袜中文字幕| 亚洲人成77777在线视频| 9191精品国产免费久久| 免费观看av网站的网址| 咕卡用的链子| av网站免费在线观看视频| 黄色视频在线播放观看不卡| 国产极品天堂在线| 欧美 日韩 精品 国产| 国产一区二区在线观看av| 国产精品久久久av美女十八| 啦啦啦在线观看免费高清www| 国产又色又爽无遮挡免| 久久99热这里只频精品6学生| 人体艺术视频欧美日本| 成年人午夜在线观看视频| 久久久久久久久久久久大奶| 成人二区视频| 精品久久久久久电影网| 久久久久久久亚洲中文字幕| 伦理电影免费视频| 国产欧美亚洲国产| 亚洲四区av| 超色免费av| 日韩制服丝袜自拍偷拍| 精品午夜福利在线看|