• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Approach to estimationof vehicle-road longitudinal friction coefficient

    2013-09-17 06:00:36SongXiangLiXuZhangWeigongChenWeiXuQimin

    Song Xiang Li Xu Zhang Weigong Chen Wei Xu Qimin

    (School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China)

    W ith the implementation of active safety control systems,vehicles have become safer to drive with less involvement in fatal accidents.These active safety control systems can greatly profit from being made road-adaptive;i.e., the control algorithms can be modified to account for the external road conditions if the actual tire-road friction coefficient information is available in real time.The longitudinal tire-road friction coefficient is an essential parameter for the vehicle longitudinal active safety control systems.For example, in an adaptive cruise control(ACC)system,road condition information from the friction coefficient estimation can be used to adjust the longitudinal spacing headway from the preceding vehicle that the ACC vehicle should maintain.

    The tire-road friction coefficient must be estimated in real-time to meet the requirements of the vehicle longitudinal active safety control systems under normal driving conditions.So the method of tire-road friction coefficient estimation based on vehicle longitudinal dynamics is most feasible.

    The relationship between the normalized longitudinal tire force and the slip ratio is different under different road conditions,which is the basis of utilizing the vehicle longitudinal dynamics to estimate the tire-road friction coefficient[1].The most well known research in this area is on the use of slip-slope for friction coefficient identification[2-5].In this method, the normalized longitudinal force is considered proportional to the slip ratio at low slip ratios.The slope of the relationship between the normalized longitudinal force and the slip ratio at low slip ratios is called slip-slope.The basic idea behind the use of slipslope for friction coefficient estimation is that at low slip ratios,the tire-road friction coefficient is proportional to slip-slope.Thus, by estimating slip-slope, the tire-road friction coefficient can be estimated.But this method is only suitable for the condition of low slip ratios.The parameter estimation method is another commonly used method[6-7].But only at the large slip ratios, the estimation results will be close to the true value.Domestic researches[8-9]are based on the above two methods,the drawbacks as mentioned above also exist.Shim et al.[10]assumed a tire-road friction coefficient,and then the response of the vehicle is estimated based on the vehicle dynamics model.According to the differences between the estimated response and the actual vehicle response,the tire-road friction coefficient can be calculated.But the method is difficult to apply to complex road conditions since it requires a lot of experience.

    As mentioned above,the main problem of the tire-road friction coefficient estimation algorithms is that the algorithms cannot be applied to both high and low slip ratios simultaneously.To solve this problem,the recursive least squares(RLS)method with the forgetting factor and the extended Kalman filter(EKF)algorithm are employed to estimate the longitudinal tire-road friction coefficient in this paper.The method utilizes the relationship between the normalized longitudinal tire force and the slip ratio to identify the longitudinal tire-road friction coefficient μ,which can be applicable to for both the high and the low slip ratios,and the effectiveness and feasibility are verified by simulation.

    1 Proposed Method

    If only the longitudinal motion is considered and the lateral force is ignored,the normalized longitudinal tire force φ and the slip ratiosat each wheel can be represented as

    where ω is the angular wheel speed;ris the effective tire radius;vis the vehicle's absolute velocity;Fxis the longitudinal force from ground to wheel;andFzis the normal force.

    Fig.1 shows a typical relationship betweensand φ for various values of the tire-road friction coefficient.μ is the tire-road friction coefficient.

    Fig.1 s-φ curves with different friction coefficients

    In this paper,the friction coefficient is assumed to be the same at each wheel of the vehicle.By calculatingsand φ, the longitudinal tire-road friction coefficient μ can be estimated by the RLS method with the forgetting factor,which is based on the simplified magic formula tire model.Then the estimated μ and the tire model parameters are used as extended states.The EKF algorithm is employed to filter out the noise and adaptively adjust the tire model parameters.Then the final road longitudinal friction coefficient is accurately and robustly estimated.The flowchart of the estimation method is shown in Fig.2.

    Fig.2 Flowchart of estimation method

    2 Vehicle and Tire Models

    The longitudinal vehicle dynamics model can be written as

    wheremis the mass of the vehicle;axis the vehicle longitudinal acceleration;Dais the air resistance coefficient;Crollis the rolling resistance coefficient;andgis the acceleration of gravity.

    A simplified magic formula tire model[11]is adopted in this paper.whereBandCare the model parameters.

    3 Road Friction Coefficient Preliminarily Estimated based on RLS

    3.1 Longitudinal slip ratio calculation

    The effective tire radiusris calculated as

    whereruis the undeformed radius of the tire;rsis the static tire radius and it can be described asrs=ru-Fz/kt,ktis the vertical tire stiffness.The longitudinal slip ratio can be calculated by Eq.(1).

    3.2 Normalized longitudinal tire force calculation

    Eq.(3)can be rewritten as

    whereFxfandFxrare the traction forces of the front and the rear wheels.The total vehicle longitudinal forceFxcan be obtained by Eq.(6).

    The normal forces at the front and rear tires can be calculated as follows:

    whereFzfandFzrare the normal forces at the front and the rear tires;aandbare the distances from the center of gravity to the front and the rear axles.

    The relationship betweensand φ for the front and rear tires can be written as

    3.3 Preliminary estimates of μ

    Assuming that the front and rear tires are under the same road surface condition,which is true for many driving situations,the total longitudinal force is

    Eq.(10)can be rewritten into a standard parameter identification format as

    wherekdenotes the discrete time;y(k)=Fxis the system output;θ(k)=μ is the unknown parameter of interest;φ(k)={Fzfsin[Carctan(Bsf)]+Fzrsin[Carctan(Bsr)]}is the measured regression vector;e(k)is the identification error.Then the only unknown parameter θ(k)=μ can be identified in real-time using the RLS method with the forgetting factor as follows:

    1)Measure the system outputy(k)and calculate the regression vector φ(k).

    2)Calculate the identification errore(k),

    3)Calculate the updated gain vector K(k)as

    And calculate the covariance matrix N(k)by

    The parameter λ is called the forgetting factor, which is used to effectively reduce the influence of old data which may no longer be relevant to the model, and,therefore, prevents a covariance wind-up problem.

    4)Update the parameter estimate vector θ(k),

    The road friction coefficient μ can be preliminary estimated in real-time.

    4 Longitudinal Tire-Road Friction Coefficient

    Identification based on EKF

    In the tire-road friction coefficient estimation process described above,the model parametersBandCare assumed to be known and constant.However, during vehicle operation,BandCcannot be directly measured and they are time-varying,which may affect the accuracy of the estimation of the tire-road friction coefficient.In order to real-time updateBandC, and filter μ, the EKF model is established based on the longitudinal dynamic model using Eq.(3).

    The discretized state equation and measurement equation can be written as

    wherekrefers to the discrete-time step;the state vector X={v,μ,B,C}T;the measurement vector Z={ax,v,μ}T;W and V are the system and measurement noise vectors,respectively;f(·)andh(·)are the nonlinear system and measurement functions which can be deduced from Eq.(3).

    Assuming that the system and measurement noises to be Gaussian with a zero mean and their covariance matrices are Q and R,respectively,the EKF process consists of the following two phases.

    1)Time update:

    2)Measurement update:

    where I is the identity matrix;A and H are the Jacobian matrices of the system functionf(·)and the measurement functionh(·)with respect to X;i.e.,

    The model parametersBandC,estimated by the EKF,are feedbacks to the tire model,so the estimated values by the RLS can be updated in real-time.Therefore,the estimation accuracy of the tire-road friction coefficient can be improved,and the estimated values can respond to the road state changes.The μ output by the EKF is the final estimation result.

    5 Simulation Results and Discussion

    To evaluate the performance of the proposed estimation method of the longitudinal friction coefficient,numerical simulations are performed using Carsim in Matlab/Simulink.According to Ref.[12],the initial values of model parametersBandCare 14 and 1.3,respectively.The forgetting factor λ is set to be 0.995.The proposed algorithm is validated under the high and the low slip ratio conditions with the tire-road friction coefficient changing,and the estimation results are compared with the conventional slip-slope algorithm.Simulation results show that the proposed algorithm can be applied to both the high and the low slip ratios;the estimation results are accurate and robust,and they can quickly respond to the changes in road conditions.

    5.1 Simulation under low slip ratio condition

    The main vehicle parameters used in the simulations are:kt=230 N/mm,m=1 220 kg,rs=310.8 mm,rw=304 mm,a=1.04 mm,b=1.56 mm.Fig.3 and Fig.4 are the simulation results.The figures show that the values of the slip ratio are small,and the proposed method can quickly identify the road friction coefficient with high accuracy;the error is less than 0.1.From Fig.4,we can see that the proposed method can converge to the true value within 2 s when the tire-road friction coefficient jumps,which meets the real-time requirements.

    Fig.3 Simulation results of low slip ratios.(a)Slip ratio;(b)Tire-road friction coefficient

    Fig.4 Simulation results of low slip ratios with friction coefficient changing.(a)Slip ratio;(b)Tire-road friction coefficient

    5.2 Simulation under high slip ratio condition

    The conventional slip-slope algorithm is no longer suitable for the high slip ratio condition because the relationship betweensand φ is not linear.Fig.5 and Fig.6 are the simulation results.The figures show that estimation results by the slip-slope algorithm produce a great error.The proposed method can quickly identify the road friction coefficient with high accuracy at high slip ratios and quickly respond to the changes in road conditions.

    6 Conclusion

    Simulation results show that the proposed algorithm can quickly and accurately estimate the tire-road friction coefficient under both the high and the low slip ratio conditions,which can meet the requirements of the vehicle longitudinal active safety system.And the proposed method only needs the existing sensors in commercial vehicles,so the proposed method is suitable for on-board applications with low computational complexity.

    The key of the proposed algorithm is to obtain an accurates-φ curve.Thes-φ curve can be obtained by the bench test,but the friction conditions on an actual road is different from the bench test,and the accuracy of the realtime tire-road friction coefficient is also reduced due to the high dynamic characteristics and noises.So the further work must focus on buildings-φ relationships in different roads by a lot of vehicle tests on the common road,and then the proposed method can be applied to practice and achieves mass-market applications.

    Fig.5 Simulation results of high slip ratios.(a)Slip ratio;(b)Friction coefficient estimated by the proposed method;(c)Friction coefficient estimated by the slip-slope method

    Fig.6 Simulation results of high slip ratios with friction coefficient changing.(a)Slip ratio;(b)Friction coefficient estimated by the proposed method;(c)Friction coefficient estimated by the slip-slope method

    [1]Rajamani R,Piyabongkarn D,Lew J Y,et al.Tire-road friction-coefficient estimation[J].IEEE Control System Magazine,2010,30(4):54-69.

    [2]Wang J,Alexander L,Rajamani R.Friction estimation on highway vehicles using longitudinal measurements[J].Journal of Dynamic Systems,Measurement,and Control,2004,126(2):265-275.

    [3]Lee C,Hedrick K,Yi K.Real-time slip-based estimation of maximum tire-road friction coefficient[J].IEEE/ASME Transactions on Mechatronics,2004,9(2):454-458.

    [4]Ahn C,Peng H,Tseng H E.Robust estimation of road friction coefficient using lateral and longitudinal vehicle dynamics[J].Vehicle System Dynamics,2012,50(6):961-985.

    [5]Li K,Misener J A,Hedrick K.On-board road condition monitoring system using slip-based tire-road friction estimation and wheel speed signal analysis[J].Journal of Multi-Body Dynamics,2007,221(1):129-146.

    [6]Tanelli M,Piroddi L,Savaresi S M.Real-time identification of tire-road friction conditions[J].IET ControlTheory Applications,2009,3(7):891-906.

    [7]Villagra J,d'Andréa-Novel B,F(xiàn)liess M,et al.A diagnosis-based approach for tire-road forces and maximum friction estimation [J].Control Engineering Practice,2009,19(2):174-184.

    [8]Wu Lijun,Wang Yuejian,Li Keqiang.Estimation method of road adhesion coefficient for vehicle longitudinal safety assistant system [J].Automotive Engineering,2009,31(3):239-243.(in Chinese)

    [9]Yu Zhuoping,Zuo Jianling,Zhang Lijun.A summary on the development status quo of tire-road friction coefficient estimation techniques[J].Automotive Engineering,2006,28(6):546-549.(in Chinese)

    [10]Shim T,Margolis D.Model-based road friction estimation[J].Vehicle System Dynamics,2004,41(4):249-276.

    [11]Bian Mingyuan.Simplified tire model for longitudinal road friction estimation[J].Journal of Chongqing University of Technology:Natural Science,2012,26(1):1-5.(in Chinese)

    [12]Gustafsson F.Automotive safety systems,replacing costly sensors with software algorithms[J].IEEE Signal Processing Magazine,2009,26(4):32-47.

    中文字幕精品免费在线观看视频| 日本撒尿小便嘘嘘汇集6| 99国产综合亚洲精品| 久热这里只有精品99| 在线观看www视频免费| 麻豆一二三区av精品| 可以免费在线观看a视频的电影网站| 亚洲精华国产精华精| 国产三级黄色录像| 少妇被粗大的猛进出69影院| 亚洲国产高清在线一区二区三 | 欧美国产精品va在线观看不卡| 亚洲国产中文字幕在线视频| 麻豆av在线久日| 精品免费久久久久久久清纯| av在线播放免费不卡| 黑人巨大精品欧美一区二区mp4| 一级毛片高清免费大全| 亚洲国产中文字幕在线视频| 非洲黑人性xxxx精品又粗又长| 人成视频在线观看免费观看| 免费高清视频大片| 国产高清激情床上av| 欧美日本亚洲视频在线播放| 少妇粗大呻吟视频| 久热爱精品视频在线9| 亚洲中文日韩欧美视频| 亚洲天堂国产精品一区在线| 色综合欧美亚洲国产小说| 黄片大片在线免费观看| 国产精品日韩av在线免费观看| 国产精品久久久人人做人人爽| 男人舔奶头视频| 在线观看免费视频日本深夜| av电影中文网址| 亚洲欧美日韩高清在线视频| 精品欧美一区二区三区在线| 99在线视频只有这里精品首页| 一个人观看的视频www高清免费观看 | 国语自产精品视频在线第100页| 中文字幕av电影在线播放| 丰满人妻熟妇乱又伦精品不卡| 国产97色在线日韩免费| 99精品久久久久人妻精品| 在线观看免费午夜福利视频| 大型av网站在线播放| 男女床上黄色一级片免费看| 欧美又色又爽又黄视频| 老熟妇乱子伦视频在线观看| 99精品在免费线老司机午夜| 熟女少妇亚洲综合色aaa.| 国产真实乱freesex| 国产成人av教育| 99久久国产精品久久久| 国产精品 国内视频| 国产精品二区激情视频| 欧美黑人精品巨大| 丁香欧美五月| 亚洲精品中文字幕在线视频| 欧美精品啪啪一区二区三区| 亚洲 欧美一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 两人在一起打扑克的视频| a在线观看视频网站| 91成年电影在线观看| 岛国视频午夜一区免费看| 午夜福利在线在线| 成人特级黄色片久久久久久久| 国产伦在线观看视频一区| www.精华液| 99热6这里只有精品| 给我免费播放毛片高清在线观看| 欧美激情高清一区二区三区| 午夜福利欧美成人| 神马国产精品三级电影在线观看 | 成人18禁高潮啪啪吃奶动态图| 在线播放国产精品三级| 老司机福利观看| 国产单亲对白刺激| 欧美丝袜亚洲另类 | 国产av不卡久久| 久久精品国产清高在天天线| 国产真人三级小视频在线观看| 午夜福利高清视频| 黄色 视频免费看| 亚洲五月色婷婷综合| 成人国产综合亚洲| 欧美精品啪啪一区二区三区| 国产亚洲精品一区二区www| 亚洲欧美日韩无卡精品| 此物有八面人人有两片| 久久精品91蜜桃| 午夜两性在线视频| 在线观看66精品国产| 曰老女人黄片| 国产精品国产高清国产av| 一级毛片精品| 成人18禁高潮啪啪吃奶动态图| 成年女人毛片免费观看观看9| 男人的好看免费观看在线视频 | av在线天堂中文字幕| 国产精品爽爽va在线观看网站 | 18禁美女被吸乳视频| 天堂√8在线中文| 18禁国产床啪视频网站| 99精品欧美一区二区三区四区| 国产精品二区激情视频| 国产黄a三级三级三级人| 国产午夜精品久久久久久| 18禁国产床啪视频网站| 国产一卡二卡三卡精品| 日韩欧美一区二区三区在线观看| 欧美黑人精品巨大| 国产精品久久久人人做人人爽| 国产私拍福利视频在线观看| 精品乱码久久久久久99久播| 两个人免费观看高清视频| 久久精品aⅴ一区二区三区四区| 脱女人内裤的视频| 中文亚洲av片在线观看爽| 男人舔奶头视频| 两个人免费观看高清视频| 亚洲精品在线观看二区| 999久久久国产精品视频| 天天躁夜夜躁狠狠躁躁| 国产爱豆传媒在线观看 | 非洲黑人性xxxx精品又粗又长| 在线观看日韩欧美| 久久午夜亚洲精品久久| 久久九九热精品免费| 色精品久久人妻99蜜桃| 18禁美女被吸乳视频| 丝袜美腿诱惑在线| 99国产综合亚洲精品| 99国产综合亚洲精品| 亚洲av美国av| 亚洲第一青青草原| 天天躁狠狠躁夜夜躁狠狠躁| 免费看a级黄色片| 国产三级在线视频| 好男人电影高清在线观看| 不卡一级毛片| 久久久久久免费高清国产稀缺| 妹子高潮喷水视频| 国产爱豆传媒在线观看 | 亚洲午夜理论影院| 成人精品一区二区免费| 亚洲在线自拍视频| 国产精品一区二区免费欧美| 午夜免费鲁丝| 成人18禁高潮啪啪吃奶动态图| 日韩一卡2卡3卡4卡2021年| 亚洲午夜精品一区,二区,三区| 国产精品久久久人人做人人爽| svipshipincom国产片| 99热只有精品国产| 久久欧美精品欧美久久欧美| 欧美又色又爽又黄视频| 成人永久免费在线观看视频| 国产精品野战在线观看| 麻豆一二三区av精品| 国产精品亚洲美女久久久| 色综合婷婷激情| 国产熟女xx| 老熟妇乱子伦视频在线观看| 免费无遮挡裸体视频| 国产一级毛片七仙女欲春2 | 亚洲精品中文字幕一二三四区| 成人午夜高清在线视频 | 亚洲 欧美一区二区三区| 在线观看舔阴道视频| 亚洲午夜精品一区,二区,三区| 在线观看66精品国产| 久久久久久人人人人人| 自线自在国产av| 久久精品夜夜夜夜夜久久蜜豆 | 99久久99久久久精品蜜桃| 在线观看舔阴道视频| 亚洲国产精品合色在线| 侵犯人妻中文字幕一二三四区| 身体一侧抽搐| www.自偷自拍.com| 亚洲美女黄片视频| 国产蜜桃级精品一区二区三区| 在线免费观看的www视频| 日本精品一区二区三区蜜桃| 老汉色av国产亚洲站长工具| 久久久精品欧美日韩精品| 国产精品久久视频播放| 人人妻人人澡人人看| 国内久久婷婷六月综合欲色啪| 丁香六月欧美| 一本大道久久a久久精品| 一级a爱视频在线免费观看| 国产爱豆传媒在线观看 | 久久国产乱子伦精品免费另类| 午夜免费观看网址| a级毛片a级免费在线| 亚洲精品久久国产高清桃花| 美女 人体艺术 gogo| 婷婷丁香在线五月| 国产成人av激情在线播放| 老司机深夜福利视频在线观看| 中文亚洲av片在线观看爽| 国产亚洲精品第一综合不卡| 日本 av在线| 午夜福利免费观看在线| 欧美成人性av电影在线观看| 久久九九热精品免费| 黄色片一级片一级黄色片| 成人亚洲精品av一区二区| 脱女人内裤的视频| 久久久久国产精品人妻aⅴ院| 亚洲三区欧美一区| 99国产极品粉嫩在线观看| 国产精品久久久人人做人人爽| 久久天躁狠狠躁夜夜2o2o| 精品久久蜜臀av无| 欧美一级a爱片免费观看看 | 久久国产精品人妻蜜桃| 在线观看舔阴道视频| 久久精品91蜜桃| 国产成人系列免费观看| 18禁国产床啪视频网站| 国产精品av久久久久免费| 给我免费播放毛片高清在线观看| 精品久久蜜臀av无| 免费一级毛片在线播放高清视频| 久久久久国产精品人妻aⅴ院| 久久婷婷成人综合色麻豆| 国产在线观看jvid| 久久久水蜜桃国产精品网| 久久亚洲真实| 国产麻豆成人av免费视频| 级片在线观看| 国产伦在线观看视频一区| 身体一侧抽搐| 99re在线观看精品视频| 久久久水蜜桃国产精品网| 欧美在线一区亚洲| 三级毛片av免费| 观看免费一级毛片| 美国免费a级毛片| 麻豆久久精品国产亚洲av| 美女免费视频网站| 露出奶头的视频| 免费看十八禁软件| www国产在线视频色| 最新美女视频免费是黄的| 久久久久免费精品人妻一区二区 | 国产主播在线观看一区二区| 90打野战视频偷拍视频| 麻豆av在线久日| 亚洲欧美激情综合另类| 50天的宝宝边吃奶边哭怎么回事| 亚洲va日本ⅴa欧美va伊人久久| 每晚都被弄得嗷嗷叫到高潮| 少妇被粗大的猛进出69影院| 香蕉丝袜av| 国产欧美日韩一区二区精品| 欧洲精品卡2卡3卡4卡5卡区| 亚洲av片天天在线观看| 久久国产精品影院| 亚洲精品在线观看二区| 日本精品一区二区三区蜜桃| 亚洲国产欧美一区二区综合| 午夜影院日韩av| 十八禁网站免费在线| 亚洲五月天丁香| 国产成人欧美在线观看| 成人精品一区二区免费| 日本黄色视频三级网站网址| 亚洲,欧美精品.| 性色av乱码一区二区三区2| 久99久视频精品免费| 久久热在线av| 色老头精品视频在线观看| 久久欧美精品欧美久久欧美| 亚洲成av片中文字幕在线观看| 亚洲黑人精品在线| 首页视频小说图片口味搜索| 久久 成人 亚洲| 亚洲五月色婷婷综合| 午夜a级毛片| 日韩欧美免费精品| 国产麻豆成人av免费视频| 黑人欧美特级aaaaaa片| 美女国产高潮福利片在线看| 国产男靠女视频免费网站| 天堂动漫精品| 成人手机av| 亚洲男人的天堂狠狠| 无限看片的www在线观看| 男人舔奶头视频| 国产亚洲欧美在线一区二区| 禁无遮挡网站| 天堂影院成人在线观看| 成年版毛片免费区| 亚洲第一av免费看| 俄罗斯特黄特色一大片| 国产成人一区二区三区免费视频网站| 啦啦啦观看免费观看视频高清| 亚洲 欧美 日韩 在线 免费| 日韩欧美一区二区三区在线观看| 久久久久久久精品吃奶| 久久精品国产99精品国产亚洲性色| 日日爽夜夜爽网站| 老司机靠b影院| 久久中文看片网| 麻豆av在线久日| 国产成人啪精品午夜网站| 日韩精品中文字幕看吧| 久久精品人妻少妇| 亚洲av日韩精品久久久久久密| 真人一进一出gif抽搐免费| 国产99久久九九免费精品| 亚洲三区欧美一区| 黄色女人牲交| 一级片免费观看大全| 国产亚洲欧美精品永久| 亚洲自偷自拍图片 自拍| 欧美+亚洲+日韩+国产| 美女高潮到喷水免费观看| 国产av又大| 午夜久久久久精精品| 久热爱精品视频在线9| www日本黄色视频网| 香蕉丝袜av| 在线av久久热| 中文字幕精品免费在线观看视频| 亚洲真实伦在线观看| 午夜福利免费观看在线| 国产精品美女特级片免费视频播放器 | 亚洲午夜理论影院| 国产男靠女视频免费网站| 久久久久久久午夜电影| 可以在线观看的亚洲视频| 久久国产亚洲av麻豆专区| 一区二区三区高清视频在线| 99精品欧美一区二区三区四区| a在线观看视频网站| 正在播放国产对白刺激| 国产精品99久久99久久久不卡| 久久精品夜夜夜夜夜久久蜜豆 | 久久人人精品亚洲av| 成在线人永久免费视频| 很黄的视频免费| 久久久久久久久中文| 国产av在哪里看| 天天添夜夜摸| 很黄的视频免费| 欧美乱码精品一区二区三区| 国产三级在线视频| 黑丝袜美女国产一区| 99热6这里只有精品| 好看av亚洲va欧美ⅴa在| 嫩草影视91久久| 成人免费观看视频高清| 国产成人av教育| 亚洲最大成人中文| 99re在线观看精品视频| 日韩av在线大香蕉| 亚洲精品国产一区二区精华液| 超碰成人久久| 一a级毛片在线观看| 久久精品91无色码中文字幕| 两个人看的免费小视频| 欧美日韩黄片免| 琪琪午夜伦伦电影理论片6080| 中文字幕精品亚洲无线码一区 | 97碰自拍视频| 免费高清在线观看日韩| 老司机午夜福利在线观看视频| 亚洲国产精品合色在线| 久久精品国产亚洲av香蕉五月| 免费看十八禁软件| 欧美最黄视频在线播放免费| 国产爱豆传媒在线观看 | 国产精品日韩av在线免费观看| 日本一区二区免费在线视频| 9191精品国产免费久久| 国产亚洲精品第一综合不卡| 欧美性猛交黑人性爽| 国产极品粉嫩免费观看在线| 免费在线观看日本一区| 久久婷婷成人综合色麻豆| 久久香蕉国产精品| 狂野欧美激情性xxxx| 国产精品99久久99久久久不卡| 久久精品国产清高在天天线| 黑丝袜美女国产一区| 精品欧美一区二区三区在线| 日本成人三级电影网站| 天堂√8在线中文| 女警被强在线播放| 亚洲中文日韩欧美视频| 国产成人系列免费观看| 1024视频免费在线观看| 91老司机精品| 好男人电影高清在线观看| 欧美成人性av电影在线观看| 久久午夜综合久久蜜桃| 成人国产一区最新在线观看| 满18在线观看网站| 伦理电影免费视频| 日韩欧美 国产精品| 日韩视频一区二区在线观看| 国产激情久久老熟女| 国产一区二区三区视频了| 一个人免费在线观看的高清视频| 国产久久久一区二区三区| 国产精品一区二区精品视频观看| 亚洲,欧美精品.| 制服诱惑二区| 9191精品国产免费久久| 久久狼人影院| 亚洲五月婷婷丁香| 麻豆一二三区av精品| 欧美av亚洲av综合av国产av| 免费看十八禁软件| 久久国产亚洲av麻豆专区| 18禁黄网站禁片免费观看直播| 18美女黄网站色大片免费观看| 免费在线观看日本一区| 午夜影院日韩av| 午夜免费激情av| 精品卡一卡二卡四卡免费| 久久精品夜夜夜夜夜久久蜜豆 | 色综合亚洲欧美另类图片| 国产熟女午夜一区二区三区| 国产亚洲精品一区二区www| 国产av一区二区精品久久| 最近最新免费中文字幕在线| 日日夜夜操网爽| 精品人妻1区二区| 亚洲精华国产精华精| 欧美最黄视频在线播放免费| 久久人人精品亚洲av| 男人的好看免费观看在线视频 | 国产激情偷乱视频一区二区| 亚洲国产精品sss在线观看| 夜夜爽天天搞| 亚洲精品在线美女| 亚洲精品美女久久久久99蜜臀| 欧美黄色淫秽网站| 夜夜看夜夜爽夜夜摸| 日韩视频一区二区在线观看| 色尼玛亚洲综合影院| 亚洲全国av大片| 夜夜爽天天搞| 亚洲av中文字字幕乱码综合 | 女警被强在线播放| 国产精品乱码一区二三区的特点| 久久精品国产亚洲av香蕉五月| 欧美色视频一区免费| 欧美国产精品va在线观看不卡| 亚洲性夜色夜夜综合| 首页视频小说图片口味搜索| 一区二区三区高清视频在线| 日韩欧美免费精品| 午夜免费鲁丝| 无遮挡黄片免费观看| 夜夜爽天天搞| 久久国产亚洲av麻豆专区| 午夜福利欧美成人| 黄色片一级片一级黄色片| 国产精品99久久99久久久不卡| 女生性感内裤真人,穿戴方法视频| 欧美一级毛片孕妇| 亚洲精品国产区一区二| 国产黄色小视频在线观看| 久久热在线av| 男人舔女人下体高潮全视频| 亚洲人成电影免费在线| 国产精品98久久久久久宅男小说| 黄色视频不卡| 欧美大码av| 国产男靠女视频免费网站| 午夜免费激情av| 韩国av一区二区三区四区| 欧美黑人欧美精品刺激| 久久草成人影院| 伊人久久大香线蕉亚洲五| 日本 欧美在线| 午夜日韩欧美国产| 香蕉av资源在线| 国产97色在线日韩免费| 亚洲精品在线美女| 国产黄a三级三级三级人| 亚洲一区高清亚洲精品| 国产99白浆流出| 免费人成视频x8x8入口观看| 亚洲午夜理论影院| 两个人免费观看高清视频| 可以在线观看的亚洲视频| 欧美日韩精品网址| 欧美日韩亚洲综合一区二区三区_| 午夜免费鲁丝| 午夜福利一区二区在线看| 一进一出抽搐动态| 搞女人的毛片| 久久狼人影院| 一个人观看的视频www高清免费观看 | 黄网站色视频无遮挡免费观看| 国产亚洲精品久久久久久毛片| 精品久久久久久,| 亚洲精品久久国产高清桃花| 久久久久免费精品人妻一区二区 | 午夜福利在线观看吧| 一本综合久久免费| 视频区欧美日本亚洲| 黄色a级毛片大全视频| 精品国产美女av久久久久小说| 久久草成人影院| 日本五十路高清| 两性夫妻黄色片| 国产精品一区二区精品视频观看| 日韩视频一区二区在线观看| 可以在线观看毛片的网站| 欧美黄色片欧美黄色片| 国产久久久一区二区三区| 亚洲欧美日韩无卡精品| 亚洲男人的天堂狠狠| 日韩免费av在线播放| 午夜精品在线福利| 国产精品99久久99久久久不卡| 免费女性裸体啪啪无遮挡网站| 人人妻人人看人人澡| 亚洲久久久国产精品| 日本在线视频免费播放| 午夜a级毛片| 成年免费大片在线观看| 国产成人欧美| 在线观看免费日韩欧美大片| 欧美精品亚洲一区二区| 日本a在线网址| 国产伦一二天堂av在线观看| 美女高潮到喷水免费观看| 啦啦啦韩国在线观看视频| 黄片小视频在线播放| 熟女少妇亚洲综合色aaa.| 一级a爱片免费观看的视频| x7x7x7水蜜桃| 欧美一区二区精品小视频在线| 欧美成狂野欧美在线观看| 国产亚洲av高清不卡| 18美女黄网站色大片免费观看| 国产精品乱码一区二三区的特点| 欧美日韩乱码在线| 一本综合久久免费| 女性生殖器流出的白浆| 国产精品电影一区二区三区| 久久精品国产清高在天天线| 欧美日韩亚洲国产一区二区在线观看| 国产野战对白在线观看| 国产区一区二久久| 国内少妇人妻偷人精品xxx网站 | 一区二区三区高清视频在线| 欧美人与性动交α欧美精品济南到| 精品一区二区三区视频在线观看免费| 日本 欧美在线| 一级黄色大片毛片| 18美女黄网站色大片免费观看| 国语自产精品视频在线第100页| 日本 欧美在线| 少妇 在线观看| 亚洲aⅴ乱码一区二区在线播放 | 国产成人精品久久二区二区免费| 久久久久久久久久黄片| 美女扒开内裤让男人捅视频| 99re在线观看精品视频| 亚洲免费av在线视频| 99国产极品粉嫩在线观看| 别揉我奶头~嗯~啊~动态视频| 国产亚洲精品久久久久久毛片| 国产精品久久久久久人妻精品电影| 日韩国内少妇激情av| 国产精品av久久久久免费| 搡老熟女国产l中国老女人| 亚洲av日韩精品久久久久久密| 国内精品久久久久精免费| 亚洲熟妇中文字幕五十中出| 丰满人妻熟妇乱又伦精品不卡| 他把我摸到了高潮在线观看| 欧美中文综合在线视频| 欧美黑人精品巨大| 伦理电影免费视频| 久久天堂一区二区三区四区| 国产av一区在线观看免费| 精品国产美女av久久久久小说| 在线播放国产精品三级| 一进一出好大好爽视频| 高清在线国产一区| 久久中文看片网| 亚洲在线自拍视频| 99热只有精品国产| 黄色a级毛片大全视频| 宅男免费午夜| 国产在线精品亚洲第一网站| 丰满的人妻完整版| 法律面前人人平等表现在哪些方面| 国内揄拍国产精品人妻在线 | av电影中文网址| 琪琪午夜伦伦电影理论片6080| 久久国产亚洲av麻豆专区| 亚洲人成77777在线视频| 91在线观看av| 国产一区二区三区在线臀色熟女| 一级毛片高清免费大全| 露出奶头的视频| 人人妻人人看人人澡| 俄罗斯特黄特色一大片| 国产免费男女视频| 日日干狠狠操夜夜爽| av免费在线观看网站|