• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Predicting Effective Elastic Moduli and Strength of Ternary Blends with Core–Shell Structure by Second–Order Two–Scale Method

    2014-04-17 01:39:40WuCuiNieandZhang
    Computers Materials&Continua 2014年12期

    Y.T.Wu,J.Z.Cui,Y.F.Nieand Y.Zhang

    1 Introduction

    Polymer blending has been widely applied to the design of high–performance and functional materials in science and engineering because of its lower cost than synthesizing new polymers[Malik,HallandGenzer(2013);Liebscher,Blais,Potschke and Heinrich(2013);Cohen,Zonder,Ophir,Kenig,McCarthy,Barry and Mead(2013);Yu,Zhou and Zhou(2010);Yin,Zhao,Yang,Pan and Yang(2006)].Apart from the dependence on the properties of component materials,effective properties of polymer blends depend greatly on the microscopic morphology.Common morphology of binary blends are the sea–island morphology,the co–continuous morphology and the salami morphology.For ternary blends,two phases may disperse separately in a continuous matrix phase,or form core–shell particles that disperse in the matrix phase.Due to their high performance,a lot of work has focused on the preparation of ternary blends filled with core–shell structures;examples are HDPE/PS/PMMA[Reignier and Favis(2000)],PA6/PB–g–MA/LDPE[Ke,Shi,Yin,Li and Mai(2008)]and PMMA/PP/PS[Valera,Morita and Demarquette(2006)].In their works,Yin et al.[Yin,Li,Zhou,Gong,Yang and Xie(2013);Zhou,Wang,Dou,Li,Yin and Yang(2013);Dou,Wang,Zhou,Li,Gong,Yin and Yang(2013);Li,Yin,Zhou,Gong,Yang,Xie and Chen(2012)]have prepared PA6/EPDM–g–MA/HDPE ternary blend with core–shell structures(core:HDPE,shell:EPDM–g–MA in PA6 matrix)by controlling some thermodynamic factors and kinetic factors(see Fig.1).The effect of core–shell structure–filled morphology on the rheological behavior,crystallization behavior and mechanical behavior were discussed.The notched impact strength is considerably improved in the ternary blend with core–shell structures.That is,the notched Izod impact strength of the ternary blend is 4–5 times higher than that of PA6/EPDM–g–MA binary blend and 9–10 times higher than that of pure PA6.

    Figure 1:SEM photo(a)and TEM photo(b)of PA6/EPDM–g–MA/HDPE(70/15/15 wt%)ternary blend with core–shell structures[Li,Yin,Zhou,Gong,Yang,Xie and Chen(2012)].

    Studying the relationship between the mechanical properties and the microscopic morphology of heterogeneous materials is the key to design and optimize high–performance and functional materials.Compared to experiment,numerical simu-lation and theoretical prediction are always economic ways to study the effect of morphology on the effective properties of heterogeneous materials.Homogenization has been widely used to predict the effective properties of heterogeneous materials[Bishay and Atluri(2012);Dong and Atluri(2012);Dong,Gamal and Atluri(2013);Ma,Temizer and Wriggers(2011);Zohdi and Wriggers(2005);Kanit,Forest,Galliet,Mounoury and Jeulin(2003)].Three categories of homogenization methods are commonly used,namely effective medium methods(e.g.,self–consistent method and Mori–Tanaka method),upper and lower bounding methods(e.g.,Voigt–Reuss bounds and Hashin–Shtrikman bounds)and numerical methods(e.g.,finite element method and boundary element method).Macroscopic behavior of heterogeneous materials can be captured effectively by homogenization.On the other hand,multiscale methods have attracted the attention of many researchers.Among them,the two–scale asymptotic homogenization method possesses rigorous mathematical theory,and has been applied to the prediction of effective properties such as thermal properties,elastic properties,elastic–plastic properties and viscoelastic properties for heterogeneous materials[Yu,Cui and Han(2009);Han,Cui and Yu(2010);Yang and Cui(2013);Yi,Park and Youn(1998);Ghosh,Lee and Moorthy(1996)].

    The effective thermal conductivity of polymer nanocomposites was predicted by homogenization in[Shin,Yang,Chang,Yu and Cho(2013)].To account for the thermal resistance at the interface and the immobilized interphase,a four–phase equivalent continuum model was introduced.Kaiser et al.[Kaiser and Stommel(2012)]predicted the strength of short fiber reinforced polymers by embedding strength criteria in a homogenization method.The effective elastic–plastic properties of a polymer blend comprising elastic rubber spheres in an elastic–plastic glassy polymer matrix was estimated by a finite element–based homogenization method in[Khdir,Kanit,Zairi and Nait-Abdelaziz(2013)].It was found that the effective properties of the binary blend can be accurately determined by a sufficient number of small microstructures.Song et al.[Song and Youn(2006)]investigated the effective elastic properties of carbon nanotube–filled nanocomposites by thefirst–order two–scale asymptotic homogenization method.The method was validated by comparing the predicted effective elasticity tensor with analytical and experimental results.Considering that the first–order asymptotic homogenization method provides microscopic fields inε–cell area with very low accuracy,Han et al.[Han,Cui and Yu(2008)]developed higher–order asymptotic homogenization method.The second–order two–scale expressions for the microscopic stress and strain fields were developed.The stiffness and strength of several core–shell particle–filled polymer composites were predicted by the method.So far,there are a limited number of studies available in the literature that adopt numerical meth-ods to investigate the effective properties of ternary polymer blends with core–shell structures.

    The main task of this paper is to predict effective elastic properties and strength of PA6/EPDM–g–MA/HDPE ternary blend by the second–order two–scale method.To study the relationship between mechanical properties and morphology of the ternary blend,the effect of shell thickness on the effective elastic moduli and tensile yield strength is investigated.In actual microscopic morphology of PA6/EPDM–g–MA/HDPE ternary blend,there are some isolated EPDM–g–MA particles and HDPE particles in PA6 matrix besides EPDM–g–MA/HDPE core–shell structures.Random microstructures in three–dimensional space that closely resemble the actual ternary blend’s morphology are generated by computer.Since the yield strength prediction of heterogeneous materials depends greatly on the yield criterion used,selecting an appropriate yield criterion is very important in the second–order two–scale method.For this purpose,the unified strength theory is introduced.To validate the method,the effective elastic moduli and tensile yield strength predicted are compared with experimental and analytical results.

    The remainder of this paper is outlined as follows.A brief introduction of the second–order two–scale method and the limit analysis problem for tensile yield strength is presented in section 2.The geometry modeling and mesh generation of PA6/EPDM–g–MA/HDPE ternary blend are explained in section 3.Numerical results of the effective elastic moduli and strength for the ternary blend are shown in section 4.It includes validation of the method,selection of yield criterion and investigation of the effect of shell thickness on the effective properties of the ternary blend.Some conclusions are drawn in the last section.

    2 Description of the numerical method

    2.1 Second–order two–scale method

    The second–order two–scale method has been developed by Cui et al.in[Han,Cui and Yu(2008);Li(2004)].As shown in Fig.1,PA6/EPDM–g–MA/HDPE ternary blends are random heterogeneous materials at the microscale.Compared to the characteristic length of the macroscopic structure,the characteristic length of the microscopic heterogeneities is sufficiently small,i.e.,Lmicro?Lmacro;see Fig.2.It is assumed that there are two scales in the heterogeneous materials.The microscopic morphology of the heterogeneous materials is assumed to be consistently random.That is,the probability model of the particles in the matrix is the same everywhere in the structure.

    Let us consider the elastic problem in the structureoccupied by random heterogeneous materials

    Figure 2:Schematic diagram of random heterogeneous materials at the macroscale and microscale.

    The displacementˉuand tractionare described on the boundaryandrespectively.nis the outward unit normal vector andfis the body force.The fourth–order stiffness tensoraεchanges rapidly asxvaries at the macroscale.A parameterε?1,which means the ratio of the characteristic length of the oscillation and the characteristic length of the region ?,is then introduced to describe the multiscale feature.Parameterωdenotes a realization of the random heterogeneous materials.σεis the Cauchy stress tensor,eεis the strain tensor,anduεis the displacement.In the second–order two–scale method,the displacement of the elastic problem(Eq.1)has a formal asymptotic expansion of the form

    whereωsis a realization of the random heterogeneous materials in the unit cellQs,andξis the local coordinate.α1,α2=1,...,d.Einstein summation convention on repeated indices is used here.Due to

    when substituting Eq.2 into Eq.1 and equating coefficients of the same powers ofε,it is found that,u0is the solution of the homogenized problem

    Note thatu0is a macroscopic function which does not obviously depend onξandω.In contrast,Nα1(ξ,ωs)andNα1α2(ξ,ωs)ared–order matrix–valued functions defined inQs,which depend onξandω.These functions satisfy the following boundary value problems respectively

    Eq.5 is solved numerically first by finite element method.Afteris obtained,effective stiffness tensorin Eq.6 is computed by the formula

    Then we can solve Eq.6 by finite element method to obtainApparentlyin Eq.7 is a random variable dependent on the realizationωs.The deterministic effective stiffness tensorin the homogenized problem(Eq.4)is determined as the mathematical expectation of.Letbe indepen-dent and identically distributed random variables,Kolmogorov’s strong law of large numbers indicates that

    is calculated as an approximation of the effective stiffness tensorˉ.The accuracy of the approximationdepends on the sample sizeN.

    In fact,aˉ depends on the size ofε–cell.Under zero displacement boundary condition,it was found thatˉ converges to the true effective stiffness tensor with the first–order accuracy as theε–cell size goes to infinity.Compared to the homogenization and multiscale methods,more accurate effective elastic properties have been obtained by Richardson extrapolation technique with reduced amount of computations[Wu,Nie and Yang(2014)].That is,the extrapolation result

    With accurate effective elastic coefficients,Eq.4 is solved to get the homogenized solutionu0(x).Finally,we could compute the second–order two–scale solution from Eq.2.

    2.2 Strength prediction

    To predict the tensile yield strength for random heterogeneous materials,the following limit analysis problem is considered

    Find Σt=max Σ,such that

    The shape of the structure ? is a column with rectangular cross section.Assuming the axis of the column is parallel to thex3–axis,the macroscopic traction Σ is loaded on the surface atx3=LwhereLis the length of the column,and the surface atx3=0 is fixed.Gεis the material strength domain at pointxwhich is defined as

    whereis the yield function defined by certain yield criteria.The tensile yield strength Σtof the heterogeneous materials is dominated by the tensile yield strength of component materials and is determined by solving this problem.

    The second–order two–scale method approximates the multiscale solutionuεof Eq.11 by the second–order two–scale solution.That is,

    Find Σt=max Σ,such that

    To predict the tensile yield strength Σt,the homogenized problem is solved at the macroscale and it is required that the second–order two–scale stress fieldσε2is not outside the strength domainGε.

    Taking into consideration the randomness of the heterogeneous materials,the tensile yield strength is defined as

    based on Kolmogorov’s strong law of large numbers.In the equation,Σt,i(i=1,2,...)are independent and identically distributed random variables.

    3 Morphology and mesh of the ternary blend

    In PA6/EPDM–g–MA/HDPE ternary blend,the core–shell particles are uniformly distributed in the matrix and these particles can be considered as spheres[Dou,Wang,Zhou,Li,Gong,Yin and Yang(2013)].To predict the mechanical properties of the ternary blend by the second–order two–scale method,the microscopic morphology in the unit cell should be generated first.However,it is difficult to use CAD software to generate the morphology of random heterogeneous materials,because the number of particles in the unit cell is large and a lot of random unit cells need to be generated.Furthermore,it is difficult to generate the morphology based on the digital images of actual random heterogeneous materials in three–dimensional space.Yu et al.[Yu,Cui and Han(2008)]proposed an effective computer generation method to construct the morphology of unit cells filled with randomly distributed particles.The morphology of the unit cell is described by the probability distribution which reflects the randomness of particles.Since all of the size,position and orientation of every particle are random variables,and the shape of particles can be sphere,ellipsoid and polyhedron,complex morphology of actual random heterogeneous materials can be simulated by the method.In addition,for the purpose of solving Eq.5 and Eq.6 by the finite element method,a fast mesh generation method was developed by Han et al.[Han,Cui and Yu(2008)]for the randomly distributed ellipsoid–filled unit cell.High–quality mesh can be generated by handling the sliver elements and smoothing the mesh further.The core–shell structures have also been constructed and the mesh has been generated for the shells.

    Tetrahedron elements are more adaptable for complex geometry of structures in three–dimensional space.The tetrahedron elements are generated for both matrix and particles in the unit cell comprising some randomly distributed particles.To generate the core–shell structures,the internal surface and external surface of an ellipsoid are assumed to be concentric ellipsoidal surfaces.Firstly,the tetrahedron elements inside an ellipsoid are shrunk around the centroid at the same rate which is calculated by the volume fractions of the shell and core,and then the internal and external surfaces of the shell are obtained.Next the corresponding nodes on the internal and external surfaces are connected to construct triangular prism elements.Finally refined triangular prism elements are generated by partitioning the triangular prisms along their length.

    Apart from EPDM–g–MA/HDPE core–shell particles,there are some pure EPDM–g–MA particles and pure HDPE particles in actual PA6/EPDM–g–MA/HDPE ternary blend.When the weight ratio of three component materials is fixed,the ratio of pure particles is correlated to the thickness of shells in the core–shell particles which has great effect on the mechanical properties of the ternary blend.Pure particles were not considered in the polymer composites filled with core–shell structures in[Han,Cui and Yu(2008)].In this paper,more realistic morphology of polymer blends composed of both pure particles and core–shell particles is generated.To this end,we first input some data such as the volume fractions of three component materials,the volume fractions of pure EPDM–g–MA and HDPE particles,and the thickness of shells into the algorithm.Then we generate the morphology of the unit cell filled with particles and partition tetrahedron elements for the matrix and particles.The volume fraction of particles is the sum of the volume fractions of EPDM–g–MA and HDPE.Next the particles are divided into three types,that is,EPDM–g–MA/HDPE core–shell particles,pure EPDM–g–MA particles and pure HDPE particles.Considering that the pure particles are randomly distributed in the unit cell,a particle is selected randomly and marked as pure HDPE particle.The volume fraction of the particle is computed and compared to the given volume fraction of pure HDPE particles.If the volume fraction of the particle does not reach the one we set,the procedure is repeated by selecting another particle randomly from the remainder particles and adding up the volume fraction of pure HDPE particles,until the given volume fraction of pure HDPE particles can be reached.Similar procedure is then implemented to select and mark pure EPDM–g–MA particles.The remainder particles will be the core–shell particles.Based on the given thickness of shells,the tetrahedron elements in the particles are shrunk and triangular prism elements are then generated to construct the shell structures.Fig.3 presents unit cells filled with pure particles,with core–shell particles,and with both pure particles and core–shell particles.In the figure,uniformly distributed spherical particles with the same size are generated,because it is difficult to identify the probability distribution of particle’s size by experiment.We mention that more complex morphology comprising ellipsoids with different sizes and orientations can be obtained by the algorithm.In addition,the thickness of shells can also be determined randomly.

    Figure 3:Unit cells with pure particles(a),with core–shell particles(b),and with both pure particles and core–shell particles(c).

    4 Numerical results

    4.1 Validation of the second–order two–scale method

    In computations,there are more than 100 particles in every random unit cell,so that the statistical characteristic of the particles can be well reflected and the unit cell can be used to simulate the random morphology of actual heterogeneous materials.The second–order two–scale method is validated by comparing effective elastic properties predicted with the results of Mori–Tanaka method and Hashin–Shtrikman upper and lower bounds.Since those two methods are widely used for two–phase heterogeneous materials,the effective elastic properties of PA6/EPDM–g–MA binary blend computed by the three methods are compared.

    The mechanical properties of component materials for simulations are listed in Tab.1.The data is provided by the State Key Laboratory of Polymer Materials Engineering at Sichuan University.As reported in Tab.2,for PA6/EPDM–g–MA binary blend with two different weight ratios[Li,Yin,Zhou,Gong,Yang,Xie and Chen(2012)],the Young’s modulus computed by the second–order two–scale method is outside the Hashin–Shtrikman bounds,while Mori–Tanaka method predicts the effective Young’s modulus inside the Hashin–Shtrikman bounds.On the contrary,the second–order two–scale method provides effective shear modulus that lies in the Hashin–Shtrikman bounds,while Mori–Tanaka method gives the effective shear modulus outside the Hashin–Shtrikman bounds.When integrating Richardson extrapolation technique into the second–order two–scale method,both effective Young’s modulus and effective shear modulus lie in the Hashin–Shtrikman bounds.In addition,there is a big difference of results between the second–order two–scale method and Mori–Tanaka method,while there is a small difference of results between the second–order two–scale method and Hashin–Shtrikman upper bounds.

    Table 1: Mechanical properties of component materials in PA6/EPDM–g–MA/HDPE ternary blend.

    In fact,Mori–Tanaka method is more suitable for random heterogeneous materials with simple morphology and small volume fraction of reinforcement material.For random heterogeneous materials with a high contrast of component properties,the Hashin–Shtrikman upper and lower bounds are very broad.In contrast,the second–order two–scale method is more effective to predict effective mechanical properties of random heterogeneous materials.Furthermore,microscopic stress and strain fields can be analyzed by the method to predict the strength of random heterogeneous materials.Of course,biggerε–cells are required to obtain more accurate effective properties by using the method directly.In this case,Richardsonextrapolation can be embedded in the method to efficiently provide more accurate results as well as to reduce the amount of computations.

    Table 2:Comparison of effective elastic moduli for PA6/EPDM–g–MA binary blend predicted by the second–order two–scale(SOTS)method,Richardson extrapolation(RE),Mori–Tanaka(MT)method and Hashin–Shtrikman(HS)bounds(MPa).

    4.2 Effective properties of the ternary blend(70/15/15 wt%)

    4.2.1Effect of sample size on the accuracy of simulated results

    It is mentioned in section 2 that the sample average is used to estimate the mathematical expectation for both effective stiffness and strength of random heterogeneous materials.The size of sample has an effect on the accuracy of effective stiffness and strength properties.Larger sample size leads to more accurate approximations,but it increases the amount of computations.To choose a suitable sample size,samples with different sizes are used to compute the effective elastic moduli and tensile yield strength of PA6/EPDM–g–MA/HDPE ternary blend.These results are presented in Fig.4.Since the sample average is a random variable,6 samples are generated for every sample size.The mechanical properties of three component materials are listed in Tab.1.

    As presented in Fig.4,the simulated effective Young’s modulus lies in the 1%relative error margin of the average(blue solid circles)of these results computed from 6 samples for every sample size,while the simulated tensile yield strength lies in the 1%relative error margin(red dashed line)only when the sample size is as large as 50.In addition,both effective Young’s modulus and tensile yield strength are more dispersive with smaller sample size;see the standard deviation of Young’s modulus as the blue line.On the contrary,increasing sample size leads to centralized data.

    Figure 4:Variation of effective Young’s modulus(a)and tensile yield strength(b)with increasing sample size.

    4.2.2Selection of yield criterion

    Many strength criteria have been developed in the past century.Several commonly used yield criteria for materials with identical yield strength in tension and compression are the maximum principal stress theory,the maximum principal strain theory,the maximum shear stress theory,the von Mises theory and the twin–shear theory.Each strength theory is suitable for only a certain kind of material.For example,the maximum shear stress theory,the von Mises theory and the twin–shear theory are more suitable for those materials satisfyingτy=0.5σy,τy=0.577σyandτy=0.667σyrespectively,whereτyis the shear yield strength andσyis the tensile yield strength[Yu and Li(2012)].For materials with unequal tensile and compressive yield strength,other strength theories like the Mohr–Coulomb theory and the general twin–shear theory have also been developed.

    In[Han,Cui and Yu(2008)],the von Mises theory was adopted to predict strength of composite materials.In order to select a suitable yield criterion in predicting tensile yield strength of PA6/EPDM–g–MA/HDPE ternary blend,effect of different yield criteria on the accuracy of tensile yield strength of the ternary blend is investigated in this paper.For the convenience of testing different yield criteria,the unified strength theory[Yu and Li(2012)]is embedded in the second–order two–scale method.The unified strength theory contains a series of well–known yield criteria,and a lot of new yield criteria can also be derived.

    The model of the unified strength theory is expressed as

    whereτ13,τ12andτ23are three principal shear stresses andτ13is the maximum principal shear stress.σ13,σ12andσ23are the corresponding normal stresses acting on the sections whereτ13,τ12andτ23act.Parameterbcan be used to select different yield criteria.βandCare determined by the formulas

    whereσtdenotes the tensile yield strength andσcthe compressive yield strength.When substitutingβandCinto Eq.15,another expression of the unified strength theory reads as

    whereσ1,σ2andσ3are the three principal stresses.

    Table 3:Typical cases of the unified strength theory.They are the maximum shear stress theory(MSST),approximate von Mises theory(VMT),twin–shear theory(TST),Mohr–Coulomb theory(MCT),general twin–shear theory(GTST),maximum principle stress theory(MPSeT)and maximum principle strain theory(MPSaT).

    Table 4:Tensile yield strength Σtof the ternary blend(MPa).

    Tab.3 reports some typical yield criteria which can be deduced or approximated by the unified strength theory with different parametersαandb.The unified strength theory is implemented in the second–order two–scale method to investigate the effect of yield criteria on the accuracy of yield strength of random heterogeneous materials.In Tab.4,some simulated tensile yield strengths of PA6/EPDM–g–MA/HDPE ternary blend by different yield criteria are listed.The tensile and compressive yield strength are assumed to be identical for every component material.The tensile yield strength predicted by the second–order two–scale method combined with yield criterion is smaller than the experimental result.And the twin–shear theory predicts the closest result to the experimental one.In the following computations,the twin–shear theory is selected as a suitable strength theory for predicting tensile yield strength of PA6/EPDM–g–MA/HDPE ternary blend.

    4.2.3Comparison of simulated and experimental results

    The effective elastic moduli and tensile yield strength of PA6/EPDM–g–MA/HDPE ternary blend are presented in Tab.5.The second–order two–scale method predicts effective Young’s modulus and tensile yield strength very close to experimental results.It indicates that the method is effective to predict the mechanical properties of the ternary blend.The simulated effective shear modulus is also listed in Tab.5 for completeness,although it was not measured by experiment.Since the elastic moduli of the constituent materials have a high contrast(see Tab.1),largerε–cells should be generated to get more accurate effective elastic moduli when the second–order two–scale method is used directly.However,this can easily exceed the capability of computers.Richardson extrapolation technique is adopted here to obtain high–precision effective elastic moduli with reduced amount of computer memory and CPU time.

    Table 5:Effective elastic moduli and tensile yield strength of the ternary blend.

    4.3 Effect of shell thickness on the mechanical properties

    4.3.1Varying weight ratio of pure particles

    In actual PA6/EPDM–g–MA/HDPE ternary blend,there are three types of particles,namely,EPDM–g–MA/HDPE core–shell particles,pure EPDM–g–MA particles and pure HDPE particles.Since the thickness of shells affects the mechanical properties of the ternary blend,it is valuable to investigate their relationship.With fixed weight ratio of component materials,the thickness of shells can be adjusted by changing the weight ratio of pure particles.For simplicity,it is assumed that only the pure HDPE particles exist in computations,and pure EPDM–g–MA particles are not considered.

    Fig.5 presents the variation of shell thickness,effective Young’s modulus,effective shear modulus and tensile yield strength as increasing the weight ratio of pure HDPE particles.The weight ratio is defined as the ratio of pure HDPE particle’s weight to the total HDPE’s weight.The weight ratio of PA6,EPDM–g–MA and HDPE is fixed(70/15/15 wt%).As more HDPE form pure particles,the shell thickness ratio in the core–shell particles is increased.Then both effective elastic moduli and tensile yield strength are increased.When the weight ratio of pure particles is as small as 5 wt%,there is a little effect on the effective elastic moduli and tensile yield strength.

    Figure 5:Variation of the shell thickness(a),effective Young’s modulus(b),effective shear modulus(c)and tensile yield strength(d)with different weight ratio of pure HDPE particles.

    4.3.2Varying weight ratio of component materials

    As shown in the above subsubsection,the shell thickness has a great effect on the mechanical properties of PA6/EPDM–g–MA/HDPE ternary blend.In this subsubsection,we consider the effect of shell thickness further.Only the core–shell particles are generated in the unit cell,and the volume fraction of particles is fixed as 35%.

    Figure 6:Variation of the weight ratio of component materials(a),effective Young’s modulus(b),effective shear modulus(c)and tensile yield strength(d)with different shell thickness.

    The weight ratios of component materials corresponding to different shell thicknesses are shown in Fig.6.With increasing shell thickness,the effective Young’s modulus,effective shear modulus and tensile yield strength of the ternary blend are also presented in the figure.When increasing the shell thickness,both effective Young’s modulus and effective shear modulus are decreased.It is because the volume fraction of EPDM–g–MA with smaller elastic moduli is increased,while the volume fraction of HDPE with larger elastic moduli is decreased.Meanwhile,the tensile yield strength of the ternary blend is reduced.When the thickness of shells is small,the effective elastic moduli and tensile yield strength decrease apparently as the shell thickness increases.However,the effect of shell thickness is reduced when the shell thickness is large.

    5 Conclusions

    The second–order two–scale method is used to predict mechanical properties of PA6/EPDM–g–MA/HDPE ternary blend with core–shell structures.Some details in the method’s simulations are discussed.The tensile yield strength predicted with different yield criteria is a little smaller than the experimental result and the twin–shear theory provides the closest result to the experimental one.The method can effectively predict the effective elastic moduli and tensile yield strength of the ternary blend.

    The relationship between shell thickness and mechanical properties of the ternary blend is investigated.With fixed weight ratio of component materials,increasing the content of pure HDPE particles leads to the increase of effective elastic moduli and tensile yield strength.However,the effect is little when only a few pure HDPE particles exist.With fixed volume fraction of particles,increasing the thickness of shells leads to the decrease of effective elastic moduli and tensile yield strength.However the effect is reduced when the shell thickness is large.

    Acknowledgement:The support of National Basic Research Program of China(973 program 2012CB025904)is gratefully acknowledged.Furthermore,the authors world like to thank Bo Yin for helpful discussions about polymer blends and providing experimental data.

    Bishay,P.;Atluri,S.(2012):High–performance 3d hybrid/mixed,and simple 3d voronoi cell finite elements,for macro– µ–mechanical modeling of solids,without using multi–field variational principles.Cmes–Computer Modeling in Engineering&Sciences,vol.84,no.1,pp.41–97.

    Cohen,E.;Zonder,L.;Ophir,A.;Kenig,S.;McCarthy,S.;Barry,C.;Mead,J.(2013): Hierarchical structures composed of confined carbon nanotubes in cocontinuous ternary polymer blends.Macromolecules,vol.46,no.5,pp.1851–1859.

    Dong,L.;Atluri,S.(2012): T–trefftz voronoi cell finite elements with elastic/rigid inclusions or voids for micromechanical analysis of composite and porous materials.Cmes–Computer Modeling in Engineering&Sciences,vol.83,no.2,pp.183–219.

    Dong,L.;Gamal,S.;Atluri,S.(2013): Stochastic macro material properties,through direct stochastic modeling of heterogeneous microstructures with randomness of constituent properties and topologies,by using trefftz computational grains(tcg).Cmc–Computers Materials&Continua,vol.37,no.1,pp.1–21.

    Dou,R.;Wang,W.;Zhou,Y.;Li,L.;Gong,L.;Yin,B.;Yang,M.(2013):Effect of core–shell morphology evolution on the rheology,crystallization,and mechanical properties of pa6/epdm–g–ma/hdpe ternary blend.Journal of Applied Polymer Science,vol.129,no.1,pp.253–262.

    Ghosh,S.;Lee,K.;Moorthy,S.(1996): Two scale analysis of heterogeneous elastic–plastic materials with asymptotic homogenization and voronoi cell finite element model.Computer Methods in Applied Mechanics and Engineering,vol.132,no.1–2,pp.63–116.

    Han,F.;Cui,J.;Yu,Y.(2008):The statistical two–order and two–scale method for predicting the mechanics parameters of core–shell particle–filled polymer composites.Interaction and Multiscale Mechanics,vol.1,no.2,pp.231–250.

    Han,F.;Cui,J.;Yu,Y.(2010): The statistical second–order two–scale method for mechanical properties of statistically inhomogeneous materials.International Journal for Numerical Methods in Engineering,vol.84,no.8,pp.972–988.

    Kaiser,J.;Stommel,M.(2012):Micromechanical modeling and strength prediction of short fiber reinforced polymers.Journal of Polymer Engineering,vol.32,no.1,pp.43–52.

    Kanit,T.;Forest,S.;Galliet,I.;Mounoury,V.;Jeulin,D.(2003): Determination of the size of the representative volume element for random composites:Statistical and numerical approach.International Journal of Solids and Structures,vol.40,no.13–14,pp.3647–3679.

    Ke,Z.;Shi,D.;Yin,J.;Li,R.;Mai,Y.(2008): Facile method of preparing supertough polyamide 6 with low rubber content.Macromolecules,vol.41,no.20,pp.7264–7267.

    Khdir,Y.;Kanit,T.;Zairi,F.;Nait-Abdelaziz,M.(2013): Computational homogenization of elastic–plastic composites.International Journal of Solids and Structures,vol.50,no.18,pp.2829–2835.

    Li,L.;Yin,B.;Zhou,Y.;Gong,L.;Yang,M.;Xie,B.;Chen,C.(2012):Characterization of pa6/epdm–g–ma/hdpe ternary blends:The role of core–shell structure.Polymer,vol.53,no.14,pp.3043–3051.

    Li,Y.(2004):Multi–scale algorithm predicting mechanical/heat parameters of the composite materials with random grain distribution of periodicity.PhD thesis,Chinese Academy of Science,2004.

    Liebscher,M.;Blais,M.;Potschke,P.;Heinrich,G.(2013): A morphological study on the dispersion and selective localization behavior of graphene nanoplatelets in immiscible polymer blends of pc and san.Polymer,vol.54,no.21,pp.5875–5882.

    Ma,J.;Temizer,I.;Wriggers,P.(2011): Random homogenization analysis in linear elasticity based on analytical bounds and estimates.International Journal of Solids and Structures,vol.48,no.2,pp.280–291.

    Malik,R.;Hall,C.;Genzer,J.(2013):Effect of protein–like copolymers composition on the phase separation dynamics of a polymer blend:A monte carlo simulation.Macromolecules,vol.46,no.10,pp.4207–4214.

    Reignier,J.;Favis,B.(2000): Control of the subinclusion microstructure in hdpe/ps/pmma ternary blends.Macromolecules,vol.33,no.19,pp.6998–7008.

    Shao,J.(2010):Mathematical statistics.Springer.

    Shin,H.;Yang,S.;Chang,S.;Yu,S.;Cho,M.(2013):Multiscale homogenization modeling for thermal transport properties of polymer nanocomposites with kapitza thermal resistance.Polymer,vol.54,no.5,pp.1543–1554.

    Song,Y.;Youn,J.(2006): Modeling of effective elastic properties for polymer based carbon nanotube composites.Polymer,vol.47,no.5,pp.1741–1748.

    Valera,T.;Morita,A.;Demarquette,N.(2006): Study of morphologies of pmma/pp/ps ternary blends.Macromolecules,vol.39,no.7,pp.2663–2675.

    Wu,Y.;Nie,Y.;Yang,Z.(2014):Prediction of effective properties for random heterogeneous materials with extrapolation.Archive of Applied Mechanics,vol.84,no.2,pp.247–261.

    Yang,Z.;Cui,J.(2013):The statistical second–order two–scale analysis for dynamic thermo–mechanical performances of the composite structure with consistent random distribution of particles.Computational Materials Science,vol.69,pp.359–373.

    Yi,Y.;Park,S.;Youn,S.(1998): Asymptotic homogenization of viscoelastic composites with periodic microstructures.International Journal of Solids and Structures,vol.35,no.17,pp.2039–2055.

    Yin,B.;Li,L.;Zhou,Y.;Gong,L.;Yang,M.;Xie,B.(2013):Largely improved impact toughness of pa6/epdm–g–ma/hdpe ternary blends:The role of core–shell particles formed in melt processing on preventing micro–crack propagation.Polymer,vol.54,no.7,pp.1938–1947.

    Yin,B.;Zhao,Y.;Yang,W.;Pan,M.;Yang,M.(2006):Polycarbonate/liquid crystalline polymer blend:Crystallization of polycarbonate.Polymer,vol.47,no.25,pp.8237–8240.

    Yu,M.;Li,J.(2012):Computational plasticity:With emphasis on the application of the unified strength theory.Springer.

    Yu,W.;Zhou,W.;Zhou,C.(2010): Linear viscoelasticity of polymer blends with co–continuous morphology.Polymer,vol.51,no.9,pp.2091–2098.

    Yu,Y.;Cui,J.;Han,F.(2008): An effective computer generation method for the composites with random distribution of large numbers of heterogeneous grains.Composites Science and Technology,vol.68,no.12,pp.2543–2550.

    Yu,Y.;Cui,J.;Han,F.(2009):The statistical second–order two–scale analysis method for heat conduction performances of the composite structure with inconsistent random distribution.Computational Materials Science,vol.46,no.1,pp.151–161.

    Zhou,Y.;Wang,W.;Dou,R.;Li,L.;Yin,B.;Yang,M.(2013): Effect of epdm–g–mah on the morphology and properties of pa6/epdm/hdpe ternary blends.Polymer Engineering and Science,vol.53,no.9,pp.1845–1855.

    Zohdi,T.;Wriggers,P.(2005):An introduction to computational micromechanics.Lecture notes in applied and computational mechanics.Springer–Verlag Berlin Heidelberg.

    国产一区二区三区在线臀色熟女| 久久狼人影院| 嫩草影院精品99| 午夜精品久久久久久毛片777| 国产激情久久老熟女| 脱女人内裤的视频| 成人国产一区最新在线观看| 亚洲激情在线av| 色播亚洲综合网| 在线观看日韩欧美| 人妻丰满熟妇av一区二区三区| 侵犯人妻中文字幕一二三四区| 亚洲国产毛片av蜜桃av| 亚洲中文av在线| 成人午夜高清在线视频 | 午夜两性在线视频| 黄色成人免费大全| 免费在线观看影片大全网站| 午夜福利在线在线| 久热这里只有精品99| 亚洲精品粉嫩美女一区| 国产黄a三级三级三级人| 久久久久久久午夜电影| 欧美日韩中文字幕国产精品一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 香蕉丝袜av| 大香蕉久久成人网| x7x7x7水蜜桃| 欧美中文日本在线观看视频| 在线播放国产精品三级| 国产精品野战在线观看| 欧美绝顶高潮抽搐喷水| 欧美成人午夜精品| 精品电影一区二区在线| 久久国产精品男人的天堂亚洲| 亚洲,欧美精品.| 精品久久久久久久毛片微露脸| 1024视频免费在线观看| 久久热在线av| 亚洲国产欧美日韩在线播放| 亚洲中文av在线| 国产极品粉嫩免费观看在线| 免费观看精品视频网站| 国产精品久久久久久亚洲av鲁大| 琪琪午夜伦伦电影理论片6080| 日韩有码中文字幕| 免费一级毛片在线播放高清视频| av中文乱码字幕在线| 亚洲无线在线观看| 亚洲一区高清亚洲精品| 成年版毛片免费区| 国产91精品成人一区二区三区| 又大又爽又粗| 中文字幕久久专区| 日韩欧美 国产精品| 天堂动漫精品| 很黄的视频免费| 亚洲午夜理论影院| 午夜福利欧美成人| 嫁个100分男人电影在线观看| 制服人妻中文乱码| ponron亚洲| 啦啦啦 在线观看视频| 男人操女人黄网站| 午夜日韩欧美国产| 国产野战对白在线观看| 丝袜美腿诱惑在线| 欧洲精品卡2卡3卡4卡5卡区| 妹子高潮喷水视频| 色综合站精品国产| 91麻豆av在线| 亚洲一区中文字幕在线| 久久精品aⅴ一区二区三区四区| 免费搜索国产男女视频| 国产精品一区二区免费欧美| 大型黄色视频在线免费观看| 黄频高清免费视频| 99热这里只有精品一区 | www国产在线视频色| 一本大道久久a久久精品| 国产成人系列免费观看| 国产精品久久久久久人妻精品电影| 国产亚洲欧美精品永久| 国产精品亚洲一级av第二区| 99在线人妻在线中文字幕| 中文字幕人妻熟女乱码| 免费一级毛片在线播放高清视频| 国产在线观看jvid| 日韩高清综合在线| 丁香六月欧美| 男人舔奶头视频| 国产精品自产拍在线观看55亚洲| 久久久国产成人精品二区| 不卡av一区二区三区| 国产精品香港三级国产av潘金莲| 亚洲精华国产精华精| 男女那种视频在线观看| 97碰自拍视频| 亚洲国产精品成人综合色| 国产精品 欧美亚洲| 一二三四在线观看免费中文在| 国产精品,欧美在线| 18禁裸乳无遮挡免费网站照片 | av在线播放免费不卡| 一个人观看的视频www高清免费观看 | 每晚都被弄得嗷嗷叫到高潮| 丝袜美腿诱惑在线| 亚洲avbb在线观看| 国产一级毛片七仙女欲春2 | 一级黄色大片毛片| 国产亚洲欧美在线一区二区| 国产视频内射| 白带黄色成豆腐渣| 99在线视频只有这里精品首页| 99国产精品一区二区蜜桃av| 国产又黄又爽又无遮挡在线| 久久欧美精品欧美久久欧美| 日韩欧美免费精品| 日韩欧美国产在线观看| 精品电影一区二区在线| 听说在线观看完整版免费高清| 欧美中文日本在线观看视频| 午夜激情av网站| 国产精品,欧美在线| 欧美人与性动交α欧美精品济南到| 国产精品野战在线观看| 亚洲国产精品999在线| 51午夜福利影视在线观看| 欧美中文综合在线视频| 国内少妇人妻偷人精品xxx网站 | 久久久国产精品麻豆| 首页视频小说图片口味搜索| 亚洲成人免费电影在线观看| 精品乱码久久久久久99久播| e午夜精品久久久久久久| 亚洲最大成人中文| 久久久久久久久久黄片| 桃色一区二区三区在线观看| 亚洲中文字幕日韩| 国产精品爽爽va在线观看网站 | 大型黄色视频在线免费观看| 亚洲国产欧美一区二区综合| 日韩大尺度精品在线看网址| 巨乳人妻的诱惑在线观看| 最近最新免费中文字幕在线| 夜夜躁狠狠躁天天躁| 自线自在国产av| 久久人妻福利社区极品人妻图片| 人人澡人人妻人| 亚洲五月天丁香| 精品无人区乱码1区二区| 国产亚洲精品av在线| 久久人人精品亚洲av| 大型av网站在线播放| 老司机午夜十八禁免费视频| 亚洲av成人一区二区三| av在线播放免费不卡| 成人亚洲精品一区在线观看| 91麻豆av在线| 日本免费一区二区三区高清不卡| cao死你这个sao货| 久久热在线av| 国产一级毛片七仙女欲春2 | 午夜久久久在线观看| 又黄又粗又硬又大视频| 亚洲第一青青草原| e午夜精品久久久久久久| 亚洲色图av天堂| 在线免费观看的www视频| 国产国语露脸激情在线看| 搞女人的毛片| 啦啦啦 在线观看视频| 久久久久久亚洲精品国产蜜桃av| 国产精品亚洲美女久久久| 韩国精品一区二区三区| 国产av不卡久久| 亚洲aⅴ乱码一区二区在线播放 | 免费在线观看亚洲国产| 国产在线精品亚洲第一网站| 国语自产精品视频在线第100页| 亚洲第一av免费看| 亚洲人成77777在线视频| 可以在线观看的亚洲视频| 人妻丰满熟妇av一区二区三区| 中文亚洲av片在线观看爽| 久热这里只有精品99| 大型av网站在线播放| 欧美一级毛片孕妇| 亚洲av片天天在线观看| 丝袜在线中文字幕| 天堂√8在线中文| 一本一本综合久久| 日韩精品中文字幕看吧| 欧美性猛交黑人性爽| 国产亚洲欧美精品永久| 韩国精品一区二区三区| 桃红色精品国产亚洲av| 免费在线观看视频国产中文字幕亚洲| 深夜精品福利| 美女扒开内裤让男人捅视频| 亚洲精品国产区一区二| 国产伦人伦偷精品视频| 免费在线观看日本一区| 婷婷六月久久综合丁香| 97超级碰碰碰精品色视频在线观看| 一二三四在线观看免费中文在| 美女高潮到喷水免费观看| 欧美成人免费av一区二区三区| 成人特级黄色片久久久久久久| 90打野战视频偷拍视频| 欧美久久黑人一区二区| 精华霜和精华液先用哪个| 亚洲成av人片免费观看| 757午夜福利合集在线观看| 美女高潮喷水抽搐中文字幕| 91麻豆av在线| 欧美+亚洲+日韩+国产| 亚洲七黄色美女视频| 高潮久久久久久久久久久不卡| 国产亚洲精品第一综合不卡| 久9热在线精品视频| 亚洲va日本ⅴa欧美va伊人久久| 免费在线观看完整版高清| 18禁黄网站禁片午夜丰满| 精品福利观看| 女性生殖器流出的白浆| 欧美大码av| 无遮挡黄片免费观看| 黄片大片在线免费观看| 国产精品99久久99久久久不卡| 国产精品九九99| 亚洲avbb在线观看| 久久国产乱子伦精品免费另类| 男人的好看免费观看在线视频 | 国产在线观看jvid| 久久这里只有精品19| 少妇 在线观看| 国产一区二区三区在线臀色熟女| 欧美最黄视频在线播放免费| 免费av毛片视频| 免费在线观看亚洲国产| 老熟妇仑乱视频hdxx| 母亲3免费完整高清在线观看| 窝窝影院91人妻| 婷婷六月久久综合丁香| 亚洲成a人片在线一区二区| 精品国产亚洲在线| 18美女黄网站色大片免费观看| 韩国av一区二区三区四区| 88av欧美| 国产精品永久免费网站| 国产真人三级小视频在线观看| 一级作爱视频免费观看| 国产午夜福利久久久久久| 满18在线观看网站| 最新美女视频免费是黄的| 国产一级毛片七仙女欲春2 | 国产精品一区二区免费欧美| 国产在线观看jvid| 国产精品av久久久久免费| 两人在一起打扑克的视频| 搞女人的毛片| 久久狼人影院| 狠狠狠狠99中文字幕| 亚洲人成伊人成综合网2020| 热re99久久国产66热| 国产成人欧美| 在线免费观看的www视频| 日韩高清综合在线| 丁香六月欧美| 午夜福利在线在线| 久久精品成人免费网站| 99精品在免费线老司机午夜| 日韩精品青青久久久久久| 亚洲精品粉嫩美女一区| 免费在线观看黄色视频的| 黑人操中国人逼视频| 国产精品久久久久久亚洲av鲁大| 国内毛片毛片毛片毛片毛片| 欧美日韩亚洲国产一区二区在线观看| 亚洲人成网站在线播放欧美日韩| 国产亚洲av高清不卡| 久久中文看片网| 亚洲精品久久国产高清桃花| 免费在线观看亚洲国产| 天天一区二区日本电影三级| 亚洲国产欧美日韩在线播放| а√天堂www在线а√下载| 最新美女视频免费是黄的| 国产高清视频在线播放一区| 最好的美女福利视频网| 精品免费久久久久久久清纯| 国产aⅴ精品一区二区三区波| 一进一出抽搐gif免费好疼| 亚洲av电影在线进入| 欧美日韩亚洲国产一区二区在线观看| 欧美一级毛片孕妇| 欧美性长视频在线观看| 日本免费一区二区三区高清不卡| 黄色视频,在线免费观看| 无人区码免费观看不卡| 午夜两性在线视频| 啦啦啦 在线观看视频| 亚洲avbb在线观看| 欧美日韩黄片免| 大型黄色视频在线免费观看| 免费看十八禁软件| 国产1区2区3区精品| 久久国产精品男人的天堂亚洲| 免费女性裸体啪啪无遮挡网站| 99久久综合精品五月天人人| 亚洲电影在线观看av| 国产精品日韩av在线免费观看| 亚洲成a人片在线一区二区| 精品少妇一区二区三区视频日本电影| 国产黄a三级三级三级人| 女人被狂操c到高潮| 熟女电影av网| 亚洲片人在线观看| 精品免费久久久久久久清纯| xxx96com| 久久中文看片网| 特大巨黑吊av在线直播 | 久久久久久免费高清国产稀缺| www日本在线高清视频| 亚洲天堂国产精品一区在线| 久久久水蜜桃国产精品网| 丝袜在线中文字幕| 91九色精品人成在线观看| 99精品在免费线老司机午夜| 精品高清国产在线一区| 亚洲色图av天堂| 国产男靠女视频免费网站| 免费在线观看完整版高清| 日韩视频一区二区在线观看| www.www免费av| 亚洲成a人片在线一区二区| 国产成人av教育| av片东京热男人的天堂| 国产精品久久电影中文字幕| 亚洲人成网站高清观看| 9191精品国产免费久久| 中文字幕精品免费在线观看视频| 久久精品人妻少妇| 成年版毛片免费区| 午夜激情av网站| 欧美 亚洲 国产 日韩一| 国产1区2区3区精品| 精品一区二区三区av网在线观看| 美女国产高潮福利片在线看| 此物有八面人人有两片| 18禁观看日本| 午夜a级毛片| 日韩高清综合在线| 一级毛片女人18水好多| 欧美+亚洲+日韩+国产| 国产一区二区激情短视频| 在线观看免费午夜福利视频| 中文字幕精品免费在线观看视频| 免费电影在线观看免费观看| 精品无人区乱码1区二区| netflix在线观看网站| 男女下面进入的视频免费午夜 | 日本 欧美在线| 亚洲第一欧美日韩一区二区三区| 午夜激情福利司机影院| 久久精品91无色码中文字幕| 特大巨黑吊av在线直播 | 麻豆久久精品国产亚洲av| 亚洲av成人不卡在线观看播放网| 精品人妻1区二区| 精品国产一区二区三区四区第35| 99re在线观看精品视频| 久久狼人影院| 国产主播在线观看一区二区| 久久99热这里只有精品18| 久久亚洲精品不卡| 一区福利在线观看| 久久久久久国产a免费观看| 国产成人影院久久av| 欧美乱妇无乱码| 午夜老司机福利片| 九色国产91popny在线| 国产熟女xx| 精品不卡国产一区二区三区| 久久人人精品亚洲av| 午夜福利一区二区在线看| 丰满的人妻完整版| 国产一区二区在线av高清观看| 亚洲av熟女| 久久久精品国产亚洲av高清涩受| 国产亚洲欧美98| 91老司机精品| 成人av一区二区三区在线看| 黄片小视频在线播放| 一级片免费观看大全| 久久精品成人免费网站| 精品久久久久久久末码| 日本 欧美在线| 日韩大码丰满熟妇| 亚洲精品久久国产高清桃花| 久久性视频一级片| 国产精华一区二区三区| 99riav亚洲国产免费| 精品无人区乱码1区二区| 国产成人啪精品午夜网站| 免费无遮挡裸体视频| 国产私拍福利视频在线观看| 听说在线观看完整版免费高清| 国产精品久久久久久人妻精品电影| 1024手机看黄色片| xxx96com| 精品一区二区三区视频在线观看免费| 美女高潮到喷水免费观看| 亚洲欧美激情综合另类| 又黄又爽又免费观看的视频| 在线免费观看的www视频| 人人妻人人澡人人看| 欧美性长视频在线观看| 久久精品国产亚洲av香蕉五月| 欧美成狂野欧美在线观看| 中文字幕高清在线视频| 久久婷婷人人爽人人干人人爱| 久久久精品国产亚洲av高清涩受| 亚洲三区欧美一区| av视频在线观看入口| 热re99久久国产66热| 国产在线观看jvid| 69av精品久久久久久| 亚洲天堂国产精品一区在线| 日韩免费av在线播放| 制服丝袜大香蕉在线| 久久午夜综合久久蜜桃| 国产高清视频在线播放一区| 中文字幕人妻丝袜一区二区| 国产真实乱freesex| 看片在线看免费视频| 韩国精品一区二区三区| 日韩国内少妇激情av| 国产99白浆流出| 亚洲熟妇中文字幕五十中出| 一本久久中文字幕| 久久 成人 亚洲| 免费在线观看完整版高清| 亚洲成国产人片在线观看| 999久久久精品免费观看国产| 日韩欧美三级三区| 午夜福利视频1000在线观看| 正在播放国产对白刺激| 国产乱人伦免费视频| 国产精品二区激情视频| 桃红色精品国产亚洲av| 久久热在线av| 亚洲中文字幕一区二区三区有码在线看 | 神马国产精品三级电影在线观看 | 每晚都被弄得嗷嗷叫到高潮| 欧美午夜高清在线| 啪啪无遮挡十八禁网站| 午夜成年电影在线免费观看| 日韩国内少妇激情av| www.999成人在线观看| 国产成人欧美在线观看| 曰老女人黄片| 巨乳人妻的诱惑在线观看| 国产精品久久久久久人妻精品电影| 久久热在线av| 中文字幕精品免费在线观看视频| 午夜影院日韩av| 黄色视频不卡| 国产色视频综合| 韩国av一区二区三区四区| 色综合亚洲欧美另类图片| 欧美乱妇无乱码| 日日爽夜夜爽网站| 欧美成人午夜精品| 岛国视频午夜一区免费看| 欧美成狂野欧美在线观看| 日日爽夜夜爽网站| 日韩精品免费视频一区二区三区| 99在线视频只有这里精品首页| 不卡av一区二区三区| 啦啦啦 在线观看视频| 特大巨黑吊av在线直播 | 久久久久九九精品影院| 搡老熟女国产l中国老女人| 免费av毛片视频| 精品一区二区三区四区五区乱码| 亚洲五月色婷婷综合| 欧美日韩亚洲综合一区二区三区_| 丰满人妻熟妇乱又伦精品不卡| 日韩欧美国产一区二区入口| 国产成人影院久久av| 国产精品亚洲美女久久久| 久久中文看片网| 久久久久国产一级毛片高清牌| 免费在线观看影片大全网站| 亚洲aⅴ乱码一区二区在线播放 | 啦啦啦观看免费观看视频高清| 啦啦啦免费观看视频1| 欧美日韩一级在线毛片| 国语自产精品视频在线第100页| 琪琪午夜伦伦电影理论片6080| 午夜久久久在线观看| 精品人妻1区二区| 久久午夜亚洲精品久久| 欧美绝顶高潮抽搐喷水| 女性生殖器流出的白浆| 亚洲男人的天堂狠狠| 99国产极品粉嫩在线观看| 国产亚洲av嫩草精品影院| 色老头精品视频在线观看| 黄色视频,在线免费观看| 黑人操中国人逼视频| 美女高潮到喷水免费观看| 日本一本二区三区精品| 欧美午夜高清在线| 精品午夜福利视频在线观看一区| 人人妻,人人澡人人爽秒播| 日本一区二区免费在线视频| 亚洲人成网站在线播放欧美日韩| 丝袜美腿诱惑在线| 中文字幕av电影在线播放| 国产av不卡久久| 亚洲欧美日韩高清在线视频| 国产精品久久久人人做人人爽| 国产单亲对白刺激| 国产精品久久久久久亚洲av鲁大| 成人手机av| 精品一区二区三区视频在线观看免费| a在线观看视频网站| 又黄又粗又硬又大视频| 国产精品精品国产色婷婷| 亚洲中文日韩欧美视频| 久久香蕉国产精品| xxx96com| 亚洲,欧美精品.| 高清在线国产一区| 国产精品香港三级国产av潘金莲| 久久精品国产99精品国产亚洲性色| 久久精品人妻少妇| 99在线视频只有这里精品首页| 亚洲熟女毛片儿| 久久久久九九精品影院| 精品少妇一区二区三区视频日本电影| 国产成人精品久久二区二区91| 9191精品国产免费久久| 黄色视频不卡| 怎么达到女性高潮| 99热只有精品国产| 亚洲欧洲精品一区二区精品久久久| 男女下面进入的视频免费午夜 | 亚洲在线自拍视频| 亚洲精品久久成人aⅴ小说| 性欧美人与动物交配| 国产精品久久久久久亚洲av鲁大| 欧美人与性动交α欧美精品济南到| 亚洲人成网站在线播放欧美日韩| 亚洲国产欧美一区二区综合| 侵犯人妻中文字幕一二三四区| 一本久久中文字幕| 妹子高潮喷水视频| 国产真实乱freesex| 亚洲国产欧美日韩在线播放| 热99re8久久精品国产| 亚洲欧美日韩无卡精品| 久久久国产成人精品二区| 嫩草影视91久久| 精品熟女少妇八av免费久了| 亚洲精品国产区一区二| 亚洲五月婷婷丁香| 又紧又爽又黄一区二区| 日本 欧美在线| 激情在线观看视频在线高清| 操出白浆在线播放| 12—13女人毛片做爰片一| 欧美乱妇无乱码| 精品国产亚洲在线| 俺也久久电影网| 亚洲五月色婷婷综合| 久久精品91无色码中文字幕| 色老头精品视频在线观看| 亚洲欧美一区二区三区黑人| 国产伦在线观看视频一区| 淫秽高清视频在线观看| 成人一区二区视频在线观看| 国产欧美日韩精品亚洲av| 国产成人av激情在线播放| 精品乱码久久久久久99久播| 正在播放国产对白刺激| 免费av毛片视频| 亚洲欧洲精品一区二区精品久久久| 国产主播在线观看一区二区| 亚洲国产中文字幕在线视频| 国产一区在线观看成人免费| 亚洲avbb在线观看| 国产蜜桃级精品一区二区三区| 国产aⅴ精品一区二区三区波| 精品乱码久久久久久99久播| 高潮久久久久久久久久久不卡| 长腿黑丝高跟| 国产精品野战在线观看| 哪里可以看免费的av片| 久久久久免费精品人妻一区二区 | 18美女黄网站色大片免费观看| 亚洲国产日韩欧美精品在线观看 | 999精品在线视频| 中文字幕人妻熟女乱码| 又黄又爽又免费观看的视频| 午夜免费激情av| 日本免费一区二区三区高清不卡| 国产麻豆成人av免费视频| 亚洲av成人不卡在线观看播放网| e午夜精品久久久久久久| 天天躁狠狠躁夜夜躁狠狠躁| 国产av一区在线观看免费|