• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    From Geometric Transformations to Auxetic Metamaterials

    2014-04-17 01:39:37LigiaMunteanuVeturiaChiroiuandViorelSerban
    Computers Materials&Continua 2014年12期

    Ligia Munteanu,Veturia Chiroiuand Viorel?Serban

    1 Introduction

    The primary aim of this paper is to discuss the auxetic metamaterials controlled by geometric transformations.These geometric transformation are derived from the theory of small(infinitesimal)elastic deformation superimposed on finite elastic deformations[Toupin and Bernstein(1961);Bradford and Pi(2012)].This theory is used for describing the deformation of a cylindrical region filled with initial deformed foam.Finally,a cylindrical shell region filled with auxetic metamaterial is obtained.Auxetic behavior(negative Poisson ratio)exists across an enormous range of conditions,from near absolute zero and densities of approximately 10?15gcm?3for plasma ion crystals to above 106K and densities of 1011gcm?3for crystals[Baughman(2003);Lakes(1986,1987,1991)].The termauxeticis coming from the Greek wordauxetos,meaningthat which may be increased.The direct effect of a negative Poisson’s ratio is to cause an expansion that decreases density during streching.Baughman and Galvao(1993)have found a negative Poisson’s ratio in cubic crystals when they are stretched along the[110]and[1ˉ10]direction.

    Auxetic materials with lower symmetry can have giant strain amplification factors in comparison with the non-auxetic ones[Lakes and Elms(1993);Scarpa et al.(2005);Bezazi and Scarpa(2007);Donescu et al.(2009);Munteanu et al.(2012)].However,auxetic materials can have a Poisson’s ratio about 40 times larger than that for most materials;for example the porous polytetrafluoroethylene has a Poisson’s ratio up to?12[Baughman(2003)].

    In addition to traditional auxetic materials,auxetic metamaterials undergoe enormous flexibility and sustain a wide range of deformations which vary at different frequencies.Their buckling makes no much difference between 1kHz(λ=300km)and 1THz(λ=0.3mm).The structure of auxetic metamaterials is atomic and the arrangement of meta-cell is about 10?10m,just as required for seismic cloaking[Chiroiu et al.(2014)].The problem is related to the current research in invisibility cloaks via geometric transformations[Milton(2007);Milton and Nicorovici(2006);Schurig,Pendry and Smith(2006);Munteanu and Chiroiu(2011);Munteanu(2012)]and sonic composites[Hirsekorn et al.(2004);Munteanu and Chiroiu(2010);Choudhury and Iha(2013);Chiroiu et al.(2013);Munteanu et al.(2014)].

    Pendry et al(2006)and Leonhardt(2006)deduced from a geometric transformation in the Maxwell system a cloak that renders any object inside it invisible to electromagnetic radiation.

    In acoustics,the idea of the invisibility cloak is that the sound sees the space differently[Dupont et al.(2011);Qiu et al.(2009)].Cummer and Schurig(2007)analyzed a 2D acoustic cloaking for pressure waves in a transversely anisotropic fluid,while Novitsky et al.(2009)proposed a method for spherical invisibility cloaks,in which we do not need to know or use the coordinate transformation.By virtue of the cloak-generating function,all the parameters of the radially anisotropic spherical cloak are determined analytically and uniquely.

    Norris(2008)presented a theory of transformation acoustics that enables the realization of pentamode acoustic materials having anisotropic density and finite mass.This theory permits considerable freedom in choosing the transformation from physical to virtual space.Scandrett,Boisvert and Howarth(2010)extended this work by considering a range of cloaks,from those comprised of fluid layers which are isotropic in bulk moduli with anisotropic density to those having anisotropic bulk moduli and isotropic density.

    Starting from the same work,Cipolla,Gokhale and Norris(2010)investigate 3D acoustic materials composed of combinations of simple geometric shapes,e.g.,a cylinder with spherical end-caps.Certain classes of transformations for the design of such shapes are described and also,conditions under which these transforma-tions result in materials which minimize acoustic reflections.The standard process for defining cloak materials is to first define the transformation and then evaluate whether the materials are practically realizable.The same authors,Cipolla,Gokhale and Norris(2012)have inverted this process by defining desirable material properties and then deriving the appropriate transformations which guarantee the cloaking effect.

    Another approach is to develop materials with normal elastic behavior that approximate the Cosserat material[Cosserat and Cosserat(1909)].Preliminary work in this direction has been considered by Norris and Shuvalov(2011).The general theory has been applied to the case of cylindrical anisotropy for arbitrary radial transformation.

    The equations of motion for the transformed Cosserat material have been expressed in Stroh format,suitable for modeling cylindrical elastic cloaking.It is shown that there is a preferred approximate material with symmetric stress that could be a useful candidate for making cylindrical elastic cloaking devices.

    Parnell(2012)has shown that cloaking of objects from antiplane elastic waves can be achieved by employing nonlinear elastic pre-stress in a neo-Hookean elastomeric material.This approach would appear to eliminate the requirement of metama-terials with inhomogeneous anisotropic shear moduli and density.Waves in the pre-stressed medium are bent around the cloaked(cavity)region by inducing inhomogeneous stress fields via pre-stress.The equation governing antiplane waves in the pre-stressed medium is equivalent to the antiplane equation in an unstressed medium with inhomogeneous and anisotropic shear modulus and isotropic scalar mass density.

    Transformation elasticity,by analogy with transformation acoustics and optics,converts material domains without altering the wave properties. Milton and Cherkaev addressed in 1995 the following question:What are possible elasticity tensors of anisotropic materials?The answer is based on the arguments that any positive-definite tensor can be realized as the effective elasticity tensor.So far,pentamodes proposed by Milton and Cherkaev have been purely theoretical.The wordpentais derived from ancient Greek and meansfive.In the case of water,the five shear parameters equal zero,and only one parameter,compression,differs from that value.Following this theory Kadic et al.(2012)and Bückmann et al.(2012)have investigated and fabricated pentamode metamaterials by optical lithography.More recently,a elastostatic cloak was made by Wegener’s group for pentamode materials.Intensive work was made by the same group to try to control all quantities that usually characterise the mechanical materials[Stenger,Wilhelm and Wegener(2012);Kadic et al.(2012)].A multilayered radar absorbing structure(RAS)has been presented by Narayan,Latha and Jha(2013)based on transmission line transfer matrix method for millimeter wave applications.

    Geometric transformations cannot be applied to equations which are not invariant under coordinate transformations and,consequently,if cloaking exists for such equations(for example the elasticity equations),it would be of a different nature from acoustic and electromagnetic[Milton,Briane and Willis(2006)].The existence of an acoustic cloaking indicates that cloaks might possibly be built for other wave systems,including seismic waves that travel through the earth and the waves at the surface of the ocean[Cummer et al.(2008)].Farhat et al.(2009)discussed a special case of thin-elastic plates,for which the elasticity tensor is represented in a cylindrical basis by a diagonal matrix with two(spatially varying)non-vanishing entries.In a similar manner,Brun et al.(2009)derived the elastic properties of a cylindrical cloak for in-plane coupled shear and pressure waves.

    So,the following question arises:What kind of geometric transformations can be used for controlling elastic wave?To answer this question,we will reconsider the transformation itself and examine how the field and material are transported to a new compressed space,by using the theory of small(infinitesimal)elastic deformation superimposed on finite elastic deformations[Toupin and Bernstein(1961)].In this paper,the theory of small(infinitesimal)elastic deformation superimposed on finite elastic deformations is applied to deform a cylindrical regionr≤R2filled with initial deformed foam in the original space ? into a cylindrical shell regionR1≤r0≤R2filled with auxetic metamaterial in the compressed space ?0.In the original and final domains,the outer radiusR2is fixed.

    The paper is organized as follows:Section 2 is devoted to geometric transformations derived from the theory of small(infinitesimal)elastic deformation superimposed on finite elastic deformations.In Section 3,equations of motion for conventional foams are derived,and in Section 4 the transformed relations are developed.Section 5 is devoted to calculation of the material constants.The Lamé functions behavior is explained through thecrazing phenomenonwhich is a failure mode met at the bulk polymers.The Section 6 is devoted to seismic cloaking.Buildings and foundations can be protected from earthquakes by surrounding them with special designed shells made of auxetic material.Conclusions are found in Section 7.

    2 Geometric transformations

    Let us consider the geometric transformation(pull-back)from the stretched coordinate system(x0,y0,z0)of the compressed space to the original coordinate system(x,y,z),given byx(x0,y0,z0),y(x0,y0,z0)andz(x0,y0,z0).The change of coordinates is characterized by the transformation of the differentials through the JacobianJxx0of this transformation,i.e.

    From the geometrical point of view,the change of coordinates implies that,in the transformed region,one can work with an associated metric tensor[Zolla et al.(2007);Guenneau et al.(2011);Nicorovici(1994);Torrent and Sánchez-Dehesa(2008)]

    In terms of the acoustic parameters,one can replace the material from the original domain(homogeneous and isotropic)by an equivalent compressed one that is inhomogeneous(its characteristics depend on the(x0,y0,z0)coordinates)and anisotropic(described by a tensor),and whose properties,in terms ofJx0x,are given by

    Here,ρ0is a second order tensor.When the Jacobian matrix is diagonal,(3)and(4)can be more easily written.The cloak properties in transformed coordinates are given by(4)where

    The mapping given by(1)can be interpreted as a deformation applied to the initial space ? in order to obtain the deformed space ?0.In other words,a point and its infinitesimal region in ?0is obtained from an affine deformation applied to an initial point and its infinitesimal region in ?.

    The theory of small(infinitesimal)elastic deformation superimposed on finite elastic deformations given by Toupin and Bernstein in 1961 is used to deform a cylindrical regionr≤R2filled with traditional foam in the original space ? into a cylindrical shell regionR1≤r0≤R2filled with auxetic metamaterial in the compressed space ?0.In the original and final domains,the outer radiusR2is fixed.

    To develop such a map,three simultaneously distinct configurations of the material points with the same originOare introduced:

    -natural or stress-free configuration C0(position of a point P has coordinates

    -initially deformed equilibrium configuration?C(position of a point P has coordinatesXA(P)),

    -present configurationC(t),wheretis the time(position of a point P has coordinatesxi(P,t).

    A motion of the material body is one parameter family of mappings

    giving for each timet,a one-to-one relation between the present coordinates and the natural coordinates of each material point.The initial configuration is the present configuration at some timet,so that knowing the relation between the coordinate systems,we may deduce from(5)relations of the form

    The equations of the theory of small deformations superimposed on an initial finite deformation are derived from the general equations of the homogeneous elastic materials

    In(5)we used the following notations:

    tijcomponents of the Cauchy stress tensor inC(t),

    ρthe present density of mass inC(t),

    ρ0the density of mass in the natural configuration C0,components of the velocity vector,components of the acceleration vector,

    the deformation gradient of the present configuration relative to the natural configuration,

    Emnthe set of six independent finite strain measures which vanish if and only if the motion from C0toC(t)is rigid,

    Wis the stored elastic energy per unit underformed volume or elastic potential,

    δμνthe Christoffel symbol.

    We assume that the elastic potentialW(E)is a polynomial in the finite strain measures

    whereCμνλ?are the second-order elastic constants.

    We introduce the first order Piola-Kirchhoff non-symmetric stress tensor

    To obtain the equations of motion for a small deformation about the initial deformation,we consider the present coordinatesxi(P)as functionsxi(X1,X2,X3,t)of the initial coordinatesXA(P),in the present frame

    where each component of the gradientof the displacementuiof the present configuration relative to the initial configuration is small

    with?time corresponding to the initial configuration.In other words,we assume that both the rotations and strains of the present configuration measured relative to the initial configuration remain small for all time after the initial configuration of the material points has been achieved.The functionsXA(ξ)are satisfying the equilibrium equations corresponding to a biaxial deformation of the material

    By setting

    and using(15)we see from(12)that the linearized equations of motion foruihave the form

    Eqs.(18)are the natural form of the motion equations.Eqs.(18)may to transform to the initial form of the equations of motion for small displacementui

    3 Cosserat equations

    The behavior of conventional foams is described by Cosserat theory[Cosserat and Cosserat(1909);Mindlin(1965);Gauthier(1982);Donescu et al.(2009)].Chiral materials are not invariant to inversions:there is a distinction between rightand left-handed material[Lakes(1986,1987,1991)].An elastic chiral material(noncentrosymmetric material)is isotropic with respect to coordinate rotations but not with respect to inversions.Chiral effects cannot be expressed within classical elasticity since the modulus tensor,which is fourth rank,is unchanged under an inversion

    Materials may exhibit chirality on the atomic scale,as in quartz,sugar and in biological molecules.Materials may also exhibit chirality on a larger scale,as in bones,porous materials,composites containing twisted or spiraling fibers,composites with helical or screw-shaped inclusions.Materials such as piezoelectrics,represented by tensors of fifth rank,are also chiral.

    A chiral Cosserat material has three new elastic constants in addition to the six considered in the isotropic micropolar solid.Tensor properties of odd rank are zero if there is inversion symmetry,and can only be nonzero if there is handedness.

    In the following we shortly present the theory of chiral Cosserat medium in the absence of body forces and body couples written in a Cartesian coordinates system(x1,x2,x3)[Eringen(1966,1968);Lakes and Benedict(1982)].The motion equations are written as

    whereσklis the stress tensor,mklis the couple stress tensor,uis the displacement vector,?kis the microrotation vector which in Cosserat elasticity is kinematically different from the macrorotation vectoris the mass density andjis the microinertia andεklmis the Levi-Civita permutation tensor.The quantities?krefers to the rotation of points themselves,whilerkrefers to the rotation associated with the movement of neighbouring points.An index followed by a comma denotes partial differentiation with respect to space variables,while a superposed dot indicates the time derivative.

    The constitutive equations are

    whereekl=1/2(uk.l+ul,k)is the macrostrain tensor,λ,andμare the Lamé elastic constants,κis the Cosserat rotation modulus(κ=0 corresponds to decoupling of the rotational and translational degrees of freedom,whileκ→∞ corresponds to incompressibility),α,β,γare the Cosserat rotation gradient moduli,andCi,i=1,2,3 are the chiral elastic constants associated with noncentrosymmetry.ForCi=0,the isotropic micropolar elasticity constitutive laws are obtained,while forα=β=γ=κ=0,the classical isotropic linear elasticity case is retrieved.The internal energy must be nonnegative(the material is stable)and,therefore,the following restrictions on the micropolar elastic constants are obtained:0≤3λ+2μ+κ,0≤2μ+κ,0≤κ,0≤3α+β+γ,?γ≤β≤γ,0≤γ[Gauthier(1982);Lakes and Benedict(1982);Eringen(1966,1968)].

    The initial conditions attached to(22)are given by

    Eqs.(23)are similar in the form to equations of linear piezoelectricity.This correspondence can be useful to be used to define the Cosserat coefficients and the manner they are linked to the material itself.

    The material is characterized by nine material constants,i.e.Lamé elastic constantsλandμ,Cosserat rotation modulusκ,Cosseratgg rotation gradient moduliα,β,γ,and chiral elastic constantsCi,i=1,2,3.

    Determination of Cosserat elastic constants can be achieved by the method of size effects for torsion and bending in the case of rods.The method consists in studying the variation of the rigidity divided by the square of the diameter with respect to the square of the diameter.

    A more simple way to compute the material constants is to determine them directly from the expression of the potential energy of deformation per unit volumeψ

    where

    Eringen(1968),Gauthier and Jahsman(1975),and Lakes(1995)presented some technical constants forCi=0in terms of physical insight,derived from the tensorial constants:

    Gauthier and Jahsmann(1975)have demonstrated thatEandνare determined from a tension test of rods as in the classical case,while cylindrical bending of a plate givesEandlb.Size effect occurs in torsion,and the Cosserat constantsG,lt,Nandψcan be obtained from size effect data for torsion of rods of circular section.Bending of circular section rods of different size givesE,lb,N.

    The chiral coefficients are involved in the magnitude of couple stresses arising from chirality.Following Lakes(2001),the measurement ofmzzby a torque sensor in the compression of a glued slab gives(C1+C2+C3).The axial couple stress equation ismzz=(C1+C2+C3)ewhereeis the strain.By measuring the moment due tomxxin the side constraint by a torque sensor,we can determineC1via equationmxx=C1e.Measurement of the shear force gives(C2+C3).The modulusκcan be determined in the lubrificated slab compression test by measurement ofσxyby a shear force sensor via equationσxy=?κ?z.

    Let us consider a cylindrical cuber≤R2filled with conventional foam.The constitutive equations(23)of the foam are rewritten in cylindrical coordinates(Lakes and Benedict 1982)

    The micropolar strains in terms of the displacementsuand microrotations?are given by

    The motion equations(22)become

    The cylindrical cube is filled with conventional foam which has pores with average diameter around 900μmand a substantially isotropic distribution of the principal axis of the cells in the various directions.This foam has a positive Poisson’s ratio By deforming it,we try to obtain initially deformed foams which can be auxetic or not.For example,Bezazi and Scarpa(2007)have obtained by manufacturing process foams withν=0.25 at an initial compressive strain of 10%,which decreases sharply with the increase of compressive loading,to become slightly negative from 60 to 80%of tensile strain.

    4 Transformed relations

    An auxetic material with large absolute value of negative Poisson’s ratio is difficult to realize.The highly negative Poisson’s ratio material aboutν=?10 with extremely high permittivity is a good candidate for auxetic metamaterials.To obtain such a material,it is necessary to deform the foam(compression)virtually isotropically regardless of the deformation,nearly zero shear strain.An efficient auxetic metamaterial must allow the highest effective permittivity out of a given dielectric material.

    We start to transform a cylindrical region filled with conventional foam into a cylindrical region filled with initial deformed foam.

    The idea is to deform the cylindrical cube in the[111]direction,which is represented in Figure 1,by axisXparallel toOD(diagonal of the cube)and normal toABC.The deformation can be analyzed easily by considering the three sets of axes with the same originOand described in Section 2:

    -natural or stress-free configuration C0(position of a point P has coordinates

    -initially deformed equilibrium configuration(position of a point P has coordinatesXA(P)),

    -present configurationC(t),wheretis the time(position of a point P has coordinatesxi(P,t).

    Figure 1a presents the cylindrical cube filled with conventional foam,and figure 1b,representation of the sets of axesand(x1,x2,x3),used to study the cylindrical cube in a biaxially deformed state.The angleθis defined in(29).

    It can be easily shown that the transformation map fromis

    The pores in the underformed cylindrical cube may be specified by three coordinateswhich are integer or half-integer multiples of the constanta,the only restriction being thatmust be an integer multiplier ofa.Applying(30)we find that the corresponding coordinates in the(X1,X2,X3)reference system are

    wherel,m,nare integers,the only restrictions being thatmandnmust have the same parity

    Figure 1:a)A cylindrical cube filled with conventional foam of side a;b)Representation of the sets of axes

    Figure 2:Representation of the cylindrical cube in(X1,X2,X3)reference system.

    Figure 2 shows a possible arrangement of pores into the cylindrical cube,as obtained from(31),for the planeand the two neighboring planesx1=0 andof a central pore.Figure 2 shows all pores positions shown in Figure 1,except for the pointD,which lies in the planeUsing(31)is it easy to represent the eight’nearest neighbors’of the central pore(say the pore atO).

    In Figure 3 we show them schematically both in the(ξ1,ξ2,ξ3)and(X1,X2,X3)systems of axes.In the underformed cylindrical cube they are located at a distancefromO.

    In the(x1,x2,x3)system,a biaxial deformation in the[111]direction can be described by the transformation

    whereXiare the coordonates of the pore positions in initial deformed state

    The transformation(32)can be used to obtain the coordinates after the biaxial deformation,for twelve nearest neighbours shown in Figure 3.Alternatively,Figure 3 is used directly to read the coordinates,with the proviso that,in the equations of the planes,abecomesa(1+ε0)and,in the planes themselves,abecomesa(1+ε).Relations(30)and(32)allow transforming the foam in the configuration C0into foam with initial deformation in the configurationThis conventional foam is characterized by the material constants given by(20).

    Next,we couple the above transformation with a linear geometric transformation(1)applied to the foam in the configuration.This transformation maps the cylindrical cuber≤R2filled with initial deformed foam(auxetic or not)into the cylindrical shellR1≤r0≤R2filled with a new material.The transformation is given by

    whereare radially contracted cylindrical coordinatesr,?,z.The Cartesian basis(x1,x2,x3)is defined asx1=rsinθcos?,x2=rsinθsin?,x3=rcosθ.The Jacobian of the transformation from cylindrical to stretched cylindrical coordinates is given by

    This new material is an auxetic metamaterial characterized by material functionsgiven by

    Figure 3:Representation of the twelve nearest neighbours(a)in thesystem and b)in the(X1,X2,X3)system.

    We are concentrated in next section to the properties of auxetic metamaterial.The interaction of meta-cells may be a way to understand this material.The auxetics gain its properties from its structure rather than directly from the composition.The meta-cells are much smaller in physical size than the wavelength.The material functions re fl ect the small scale anisotropy,heterogenity and large scale homo-geneity.Metamaterials offer new propagation modes which can be explored as media for data exchange[Stevens(2013)]or resonators for the implementation of effective media metamaterials[Naqui,Martin(2014)].New concepts in the area of hybrid metamaterials are presented by Sonkusale,Xu and Rout(2014).

    5 Computation of the auxetic metamaterial functions

    We derive general formulae for calculation the material functions.We adopt the Delsanto model(1992)in which the potential energy of deformation per unit volumeψgiven by(26)equals the Born-Mayer ion-core repulsive energy written as

    where ? is the cylindrical cube volume andαr,βrare the repulsive energy parameter and respectively the repulsive range parameter.The sum is extended to all the nearest neighbors which are meta-cells located at distancesR(n).The material constants are determined from(26)

    Starting with(36)-(38),Delsanto proceeded to determine the elastic constants based on the formula

    In(39)Xiare the coordinates corresponding to configuration,andxiare the final coordinates.It is important to note that,in applying of(39)the coordinatesXiare constants since they refer to a predefined initial state.Using(39)it is straightforward to prove that the following relation holds for a differentiable functionf(r),

    QuantitiesY(n),Z(n)andR(n)are calculated for the th nearest neighbour.Further,we present in Figure 4 the variation of the Lamé functions,λ(black)andμ(red)with respect to the strain.The Lamé functions were evaluated for strains between-10%and 10%.This figure raises some questions.If consider the linear elasticity,is related to the bulk modulus;it can be negative in principle,and the shear modulusmust be positive.The(1+ν)factor reduces to zero forν=?1.Forν→?∞,λ,μ→0 the material seems to weaken in terms of these properties.Figure 4 shows that the shear modulus can be negative for certain strain.Let take an arbitrary strain in Figure 4,say-0.055.Our computations show that the Poisson’s ratio is?12,and the Lamé functions have valuesλ=0.2517 andμ=?0.136,respectively.These values correspond toE=3GPA.The strange behavior of the Lamé functions shown in figure 4 can receive an explanation.

    Figure 4:Plots of the Lamé function λ (black)and μ (red)in the(x1,x2,x3)system as a function of the strain.The units are 1GPa.

    Caddock and Evans(1989)have investigated auxetic microporous polymeric materials and obtained expanded auxetic forms with Poisson’s ratio larger in absolute value than?12.They explain the large Poisson’s ratio by complex microstructure of the material characterised by nodules interconnected by fibrils.The dominant deformation mechanism for significant auxetic behavior is done by the nodule translation through hinging of the fibrils.

    Kinloch and Young(1999)have observed a new phenomenon which appears during deformation of microporous polymeric materials.It comes thecrazing phenomenonwhich is a failure mode met at the bulk polymers.During predominant uniaxial tensile loading,the bulk forms denser ligaments(or fibrils)while preserving its continuity.

    Hence,the behavior of the Lamé functions in figure 4 can be explained through thecrazing phenomenon.The cracks are bridging the pores by such fibrils of about 10?10m.This phenomenon is an important mechanism which works to the benefit of the metamaterial.Also,such fibres play an important role for energy dissipation in the auxetic metamaterial.

    The auxetic material does not break at macro level;contrary have intrinsic porosity with fibres in order to achieve a large negative Poisson’s ratio.This material needsfibres to allow pores to behave as hinges to fl ex,or nodules to spread out and so on.The material needs space to allow meta-cells to behave as hinges to fl ex,or nodules to spread out and so on.On the optimization of microstructures using the material design,see Li et al.(2006).

    6 Seismic cloaking

    Buildings and other structures can be protected from earthquakes by surrounding them with cloaking structures made of auxetic metamaterial.The cloaking structures can effectively convert the destructive seismic waves into a different type of wave whose intensity dissipates quickly.

    For seismic cloak we choose an auxetic metamaterial with Poisson’s ratio equals?10 obtained for a strain equals-0.08. The Lame functions are the valuesλ=0.1731 andμ=?0.0952.The structure of auxetic metamaterial is atomic and the arrangement of meta-cells is about 10?10m.

    Let us consider a building foundation of heightl,and the impulsive source(a seismic weight drop source)acting on the ground surface at 300 m from the foundation(Figure 5).

    Figure 5:The seismic source and the foundation.

    Our idea is to hide the foundation with a cloak whose function is to de fl ect the rays that would have struck the foundation,guide them around it,and return them to their original paths.

    The cloak is composed by a number ofMcylindrical shellsR1≤r0≤R2,of lengthl,arranged on a circle of radiusR.The cloak is placed in the ground around the structure in the plane of lower base of the foundation.The boundary ofVwhich encloses the foundation is denoted byS,andpis the distance from one shell structure to the next one.The cloak and the cross section are shown in Figure 6a,b.The projection of foundation on the circle’s plane is shown in the middle of the circle in Figure 6b.

    The seismic invisibility conjures to the destructive interference,which is the essence of the Stokes’s explanation[Stokes(1868)]for Leslie’s experiment[Leslie(1821)].In this experiment,the audibility of a bell ringing in a partly exhausted bell jar is diminished by the introduction of hydrogen[Williams(1984)].As in seismic cloaking,the waves would not see the object and largely pass around it.

    Figure 6:Seismic cloak structure.a)arrangement of M cylindrical shells on a circle enclosing the foundation.b)cross section through the cloak.

    In order to illustrate the efficiency of the proposed seismic invisibility cloak,we have computed the surface wave fieldφinside the cloak.The wave field is evaluated for a seismic source situated at 300 m from the foundation and 30 m depth(see Figure 7).Any waves insideVhave the potentialφwhich verifies the equation

    WithcSthe velocity ofSseismic waveswithμthe Lamé constant andρthe density of the soil.The selection of the free space Green functionGis made from the Kirchhoff’s theorem

    under the constraint that

    is valid forxandylying withinV.By integrating(55)and(57)we obtain the interior wave fieldφinside the cloak

    Wherenthe normal to that surface leading into the volumeVcontaining the building.The integral(58)is evaluated fora=1 M,l=1.5 M,R=6 M,d=0.355 andp=2.355.After computing the integral(58)isφ=3.5×10?4.This result shows that the surface integral(58)almost vanishes withinV.

    Figure 7:A 2D cross section of the ray trajectories in the cloak diverted within the arrangement of shells.The secure foundation is hidden inside the secure space of the cloak.

    Since geometric transformation establishes a one-to-one correspondence between spatial geometries and auxetic medium,invisibility can be visualized in terms of virtual geometries.Therefore,we have explained the main ideas of this paper in terms of pictures.

    Figure 7 shows the isolated cloak from the region situated outside ofV.No rays can get into the secure volume,nor can any rays get out.Any ray attempting to penetrate the secure space is smoothly guided around by the cloak in order to travel in the same direction as if it had passed through the empty volume of space.The rays fieldφgenerated by the seismic source essentially follows the Poynting vector and it is smoothly confined on the cloak boundary region.The cloak is seismically isolated and the surface waves are not detectable by observers inside the cloak because the amplitudes on the boundary vanish.

    A 3D view of the cloak is shown in Figure 8.The profile of the cloak is highly anisotropic within the arrangement of the cylindrical shells and isotropic outside it.

    7 Conclusions

    The primary aim of this paper is to discuss the auxetic metamaterials controlled by geometric transformations.These transformations are derived from the theory of small(infinitesimal)elastic deformation superimposed on finite elastic deformations.Using this theory,a cylindrical region filled with initial deformed foam is transformed through deformation into a cylindrical shell region filled with auxetic metamaterial.For calculation of the material constants,the Delsanto model is adopted.In this model,the potential energy of deformation per unit volume is given the Born-Mayer ion-core repulsive energy.The Lamé functions behavior is explained through thecrazing phenomenonwhich is a failure mode met at the bulk polymers.

    We show that the auxetic metamaterial is capable to create barriers that would cloak buildings from the seismic waves of earthquakes by diverting the seismical energy around building and foundations.The seismic waves traveling toward the building are directed around the building and leave the building unscathed.The auxetic cylinders arrangement around the foundation manipulates the seismic waves in order to destructively interferes and to counteract the effects of seismic waves.The cloak can effectively convert the destructive seismic waves into a different type of wave whose intensity dissipates quickly.

    Acknowledgement:The authors gratefully acknowledge the financial support of the National Authority for Scientific Research ANCS/UEFISCDI through the through the project PN-II-ID-PCE-2012-4-0023,Contract nr.3/2013.The authors acknowledge the similar and equal contributions to this article.

    Baughman,R.H.(2003):Avoidung the shrink.Nature425.

    Bezazi,A.;Scarpa,F.(2007):Mechanical behaviour of conventional and negative Poisson’s ratio thermoplastic polyurethane foams under compressive cyclic loading.International Journal of Fatique,vol.29,pp.922–930

    Bradford,M.A.;Pi,Y.-L.(2012):Nonlinear elastic-plastic analysis of composite members of high-strenght steel and geopolymer concrete.CMES:Computer Modeling in Engineering&Sciences,vol.89,no.5,pp.389-416.

    Brun,M.;Guenneau,S.;Movchan,A.B.(2009):Achieving control of in-plane elastic waves.Applied Physics Letters,vol.94,061903.

    Bückmann,T.;Stenger,N.;Kadic,M.;Kaschke,J.;Fr?lich,A.;Kennerknecht,T.;Eberl,T.;Thiel,M.;Wegener,M.(2012):Tailored3Dmechanical metamaterials made by dip-in direct-laser-writing optical lithography.Adv.Mater.,vol.24,pp.2710-2714.

    Baughman,R.H.,Galvao,D.S.(1993):Crystalline network with unusual predicted mechanical and thermal properties.Nature,vol.365,pp.735-737.

    Caddock,B.D.;Evans,K.E.(1989):Microporous materials with negative Poisson’s ratio.I.Microstructure and mechanical properties.Journal of Physics D:Appled Physics,vol.22,1877.

    Cipolla,J.L.;Gokhale,N.H.J.;Norris,A.N.(2010):Generalized transformation acoustics for material design.Journal of the Acoustical Society of America,vol.128.

    Cipolla,J.L.;Gokhale,N.H.J.;Norris,A.N.(2012):Special transformations for pentamode acoustic cloaking.J.Acoust.Soc.Am.,vol.132,no.4,pp.2932-2941.

    Chang,Z.;Hu,J.;Hu,G.-K.(2010):Transformation method and wave control.Acta Mech.Sin.,vol.26,pp.889-898.

    Chiroiu,V.;Bri?san,C.;Popescu,M.A.;Girip,I.;Munteanu,L.(2013):On the sonic composites without/with defects.Journal of Applied Physics,vol.114,164909.

    Chiroiu,V.;Munteanu,L.;Ioan,R.;Mo?snegu?tu,V.(2014):On the seismic cloaking.Romanian Journal of Acoustics and Vibration,vol.11,no.1,pp.31-34.

    Choudhury,B.;Iha,R.M.(2013):A review of metamaterial invisibility cloaks.CMC:Computers,Materials&Continua,vol.33,no.3,pp.275-308.

    Cosserat.E.;Cosserat,F.(1909):Theorie des Corps Deformables(Hermann et Fills,Paris).

    Cummer,S.A.;Popa,B.L.;Schurig,D.;Smith,D.R.;Pendry,J.;Rahm,M.;Starr,A.(2008):Scattering theory derivation of a 3D acoustic cloaking shell.Physical Review Letters,vol.100,024301.

    Cummer,S.A.;Schurig,D.(2007):One path to acoustic cloaking.New Journal of Physics,vol.9,pp.45.

    Delsanto,P.P.;Provenzano,V.;Uberall,H.(1992):Coherency strain effects in metallic bilayers.J.Phys.:Condens.Matter,vol.4,pp.3915-3928.

    Donescu,St.;Chiroiu,V.;Munteanu,L.(2009):On the Young’s modulus of a auxetic composite structure.Mechanics Research Communications,vol.36,pp.294–301.

    Dupont,G.;Farhat,M.;Diatta,A.;Guenneau,S.;Enoch,S.(2011):Numerical analysis of three-dimensional acoustic cloaks and carpets.Wave Motion,vol.48,no.6,pp.483–496.

    Eringen,A.C.(1966):Linear Theory of Micropolar Elasticity.Journal of Mathematics and Mechanics,vol.15,pp.909–924.

    Eringen,A.C.(1968):Theory of micropolar elasticity,in Fracture(ed.R.Liebowitz)2,Academic Press,pp.621–729.

    Farhat,M.;Enoch,S.;Guenneau,S.;Movchan,A.B.(2009):Cloaking bending waves propagating in thin elastic plates,Phys.Rev.B 79,033102,2009.

    Gauthier,R.D.(1982):Experimental investigations on micropolar mediain:Mechanics of Micropolar Media,CISM Courses and lectures,edited by O.Brulin and R.K.T.Hsieh,World scientific,pp.395-463.

    Guenneau,S.;McPhedran,R.C.;Enoch,S.;Movchan,A.B.;Farhat,M.;Nicorovici,N.A.(2011):The colours of cloaks.Journal of Optics,vol.13,no.2,024014.

    Hirsekorn,M.;Delsanto,P.P.;Batra,N.K.;Matic,P.(2004):Modelling and simulation of acoustic wave propagation in locally resonant sonic materials.Ultrasonics,vol.42,pp.231–235.

    Kadic,M.;Bückmann,T.;Stenger,N.;Thiel,M.;Wegener,M.(2012):On the practicability of pentamode mechanical metamaterials.Appl.Phys.Lett.,vol.100,191901.

    Kinloch,A.J.;Young,R.J.(1999):Fracture Behavior of Polymers,Elsevier Applied Science,Essex 1983;E.K.Gamstedt,R.Talrega,Fatigue damage mechanisms in unidirectional carbon-fibre-reinforced plastics.J.Mater.Sci.,vol.34,2535.

    Lakes,R.S.(1986):Experimental microelasticity of two porous solids.Int.J.Solids Struct.vol.22,pp.55–63.

    Lakes,R.S.(1987):Foam structures with a negative Poisson’s ratio.Science,vol.235,pp.1038–1040.

    Lakes,R.S.(1991):Experimental micro mechanics methods for conventional and negative Poisson’s ratio cellular solids as Cosserat continua.J.Eng.Mater.Technol.,vol.113,pp.148–155.

    Lakes,R.S.;Elms,K.(1993):Indentability of conventional and negative Poisson’s ratio foams.Journal Composite Materials,vol.27,pp.1193-1202.

    Lakes,R.S.;Benedict,R.L.(1982):Noncentrosymmetry in micropolar elasticity.Int.J.Engng.Sci.vol.20,no.10,pp.1161-1167.

    Lakes,R.(1995):Experimental methods for study of Cosserat elastic solids and other generalized elastic continua in Continuum models for materials with microstructure.ed.H.Muhlhaus,J.Wiley,N.Y.,Ch1,1-22.

    Lakes,R.(2001):Elastic and viscoelastic behavior of chiral materials.Int.J.of mechanics Sciences,vol.43,pp.1579-1589.

    Leonhardt,U.(2006):Optical conformal mapping.Science,vol.312,pp.1777–1780.

    Leslie,J.(1821):On sounds excited in hydrogen gas.Trans.Camb.Phil.Soc.,vol.1,no.2,pp.267-268.

    Li,D.S.;Saheli,G.;Khaleel,M.;Garmestani,H.(2006):Microstructure opti-mization in fuel cell electrodes using materials design,CMC:Computers,Materials&Continua,vol.4,pp.31-42.

    Mindlin,D.(1965):Stress functions for a Cosserat continuumInternational Journal of Solids and Structures.vol.1,pp.265–271.

    Mindlin,R.D.;Tiersten,H.F.(1962):Effect of couple stresses in linear elasticity.Arch.Rational Mech.Analy,vol.11,pp.415-448.

    Milton,G.W.;Cherkaev,A.V.(1995):Which elasticity tensors are realizable?J.Eng.Mater.Technol.,vol.117,pp.483–493.

    Milton,G.W.;Nicorovici,N.A.(2006):On the cloaking effects associated with anomalous localized resonance.Proc.Roy.Soc.A,vol.462,pp.3027–3059.

    Milton,G.W.;Briane,M.;Willis,J.R.(2006):On cloaking for elasticity and physical equations with a transformation invariant form.New Journal of Physics,vol.8,248.

    Milton,G.W.(2007):New metamaterials with macroscopic behavior outside that of continuum elastodynamics.New Journal of Physics,vol.9,pp.359–372.

    Milton,G.W.(2013):Adaptable nonlinear bimode metamaterials using rigid bars,pivots,and actuators.J.Mech.Phys.Solids,611543–1560

    Munteanu,L.;Chiroiu,V.;Donescu,St.;Bri?san,C.(2014):A new class of sonic composites.Journal of Applied Physics,vol.115,104904-1-11.

    Munteanu,L.(2012):Nanocomposites.Publishing House of the Romanian Academy Bucharest.

    Munteanu,L.;Chiroiu,V.(2010):On the dynamics of locally resonant sonic composites.European Journal of Mechanics-A/Solids,vol.29,no.5,pp.871–878.

    Munteanu,L.;Chiroiu,V.(2011):On the three-dimensional spherical acoustic cloaking.New Journal of Physics,vol.13,no.8,pp.1–12

    Munteanu,L.;Bri?san,C.;Donescu,St.;Chiroiu,V.(2012):On the compression viewed as a geometric transformation.CMC:Computers,Materials&Continua,vol.31,no.2,pp.127–146.

    Naqui,J.;Martin,F.(2014):Some applications of metamaterials resonators based on symmetry properties.CMC:Computers,Materials&Continua,vol.39,no.3,pp.267-288.

    Narayan,S.;Latha,S.;Jha,R.M.(2013):EM analysis of metamaterial based radar absorbing structure(RAS)for millimeter wave applications.CMC:Computers,Materials&Continua,vol.34,no.2,pp.131-142.

    Nicorovici,N.A.;McPhedran,R.C.;Milton,G.W.(1994):Optical and di-electric properties of partially resonant composites.Phys.Rev.B,vol.490,pp.8479–8482.

    Norris,A.N.(2008):Acoustic cloaking theory.Proc.R.Soc.London,Ser.A,vol.464 pp.2411-2434.

    Norris,A.N.;Shuvalov,A.L.(2011):Elastic cloaking theory.Wave Motion,vol.48,no.6,pp.525-538.

    Novitsky,A.;Qiu,C.-W.;Zouhdi,S.(2009):Transformation-based spherical cloaks designed by an implicit transformation-independent mthod:theory and optimization.New Journal of Physics,vol.11,113001.

    Parnell,W.J.(2012):Nonlinear pre-stress for cloaking from antiplane elastic waves.Proceedings of the Royal Society A mathematical,Physical&Engineering Sciences,vol.468(2138)

    Parnell,W.J.;Norris,A.N.;Shearer,T.(2012):Employing pre-stress to generate finite cloaks for antiplane elastic waves.Appl.Phys.Lett.,vol.100,no.17.

    Pendry,J.B.;Shurig,D.;Smith,D.R.(2006):Controlling electromagnetic fields.Science,vol.312,pp.1780–1782

    Qiu,C.W.;Hu,L.;Zhang,B.;Wu,B.I.;,Johnson,S.G.;Joannopoulos,J.D.(2009):Spherical cloaking using nonlinear transformations for improved segmentation into concentric isotropic coatings.Optics Express,vol.17,no.16,pp.13467–13478.

    Scandrett,C.L.;Boisvert,J.E.;Howarth,T.R.(2010):Acoustic cloaking using layered pentamode materials.J.Acoust.Soc.Am.,vol.127,no.5,pp.2856–2864.

    Scarpa,F.;Giacomin,J.;Zhang,Y.;Pastorino,P.(2005):Mechanical Performance of Auxetic Polyurethane foam for antivibration glove applications.Cellular Polymer,vol.24,pp.253-268.

    Schurig,D.;Pendry,B.;Smith,D.R.(2006):Calculation of material properties and ray tracing in transformation media.Opt.Express,vol.14,pp.9794-9804.

    Sonkusale,S.R.;Xu,W.;Rout,S.(2014):Active metamaterials for modulation and detection.CMC:Computers,Materials&Continua,vol.39,no.3,pp.301-315.

    Stenger,N.;Wilhelm,M.;Wegener,M.(2012):Experiments on Elastic Cloaking in Thin Plates.Phys.Rev.Lett.,vol.108,014301.

    Stevens,C.J.(2013):Power transfer via matematerials.CMC:Computers,Materials&Continua,vol.33,no.1,pp.1-18.

    Stokes,G.(1868):On the communication of vibrations from a vibrating body to a surrounding gas.Phil.trans.R.Soc.Lond.,vol.158,447.

    Torrent,D.;Sánchez-Dehesa,J.(2008):Anisotropic mass density by twodimensional acoustic metamaterials.New J.Phys.,vol.10,023004.

    Toupin,R.A.;Bernstein,B.(1961):Sound waves in deformed perfectly elastic materials Acoustoelastic effect.J.Acoust.Soc.Am.,vol.33,no.2,pp.216-225.

    Williams,F.(1984):Antisound,Proc.R.Soc Lond.A,vol.395,pp.63-88.

    Zolla,F.;Guenneau,S.;Nicolet,A.;Pendry,J.B.(2007):Electromagnetic analysis of cylindrical invisibility cloaks and the mirage effect.Opt.Letters,vol.32,pp.1069–1071.

    黄片wwwwww| 国产真实乱freesex| 国产91av在线免费观看| 国产成人一区二区在线| 亚洲真实伦在线观看| 波多野结衣高清作品| 男女视频在线观看网站免费| 成人永久免费在线观看视频| 日本与韩国留学比较| 欧美性猛交黑人性爽| 国内精品宾馆在线| 丝袜喷水一区| 不卡一级毛片| 国产黄a三级三级三级人| 99riav亚洲国产免费| 日本三级黄在线观看| 国产成人freesex在线 | 亚洲久久久久久中文字幕| 中国美白少妇内射xxxbb| 中文字幕av成人在线电影| 深夜精品福利| 国产亚洲av嫩草精品影院| 亚洲成人精品中文字幕电影| 国产一区二区亚洲精品在线观看| 狂野欧美白嫩少妇大欣赏| 一级毛片aaaaaa免费看小| 亚洲国产高清在线一区二区三| 成人国产麻豆网| 久久6这里有精品| 一级av片app| 色5月婷婷丁香| 国产av在哪里看| 色综合站精品国产| 少妇熟女欧美另类| 国产伦一二天堂av在线观看| 村上凉子中文字幕在线| 99久久中文字幕三级久久日本| 国产精品久久久久久av不卡| 国产aⅴ精品一区二区三区波| 婷婷精品国产亚洲av| 精品久久久久久久久亚洲| 日本a在线网址| 免费看日本二区| 亚洲无线观看免费| 在线观看一区二区三区| 18禁在线无遮挡免费观看视频 | 亚洲欧美日韩高清专用| 成人欧美大片| 免费看a级黄色片| 嫩草影院精品99| 非洲黑人性xxxx精品又粗又长| 国产精品野战在线观看| 久久欧美精品欧美久久欧美| or卡值多少钱| 老司机午夜福利在线观看视频| 精品少妇黑人巨大在线播放 | 午夜福利高清视频| 18禁在线播放成人免费| 晚上一个人看的免费电影| 欧美激情久久久久久爽电影| 国产私拍福利视频在线观看| 成人午夜高清在线视频| 欧美国产日韩亚洲一区| 午夜福利在线观看免费完整高清在 | 黑人高潮一二区| 最近手机中文字幕大全| 丝袜喷水一区| 国产精品久久久久久亚洲av鲁大| av在线天堂中文字幕| 女人被狂操c到高潮| 久久精品国产亚洲av涩爱 | 久久综合国产亚洲精品| 国产v大片淫在线免费观看| 日本熟妇午夜| 久久精品国产清高在天天线| 国产精品一区www在线观看| 99久久精品一区二区三区| 国产爱豆传媒在线观看| 狂野欧美激情性xxxx在线观看| 亚洲国产色片| 国产在线男女| 永久网站在线| 九九热线精品视视频播放| 午夜激情欧美在线| 亚洲最大成人中文| eeuss影院久久| 亚洲国产精品成人综合色| 内地一区二区视频在线| 夜夜看夜夜爽夜夜摸| 国产高清视频在线观看网站| 国产视频内射| 国产黄片美女视频| 99在线人妻在线中文字幕| 人妻少妇偷人精品九色| 内射极品少妇av片p| av国产免费在线观看| 欧美zozozo另类| 内地一区二区视频在线| 麻豆久久精品国产亚洲av| 国产一区二区激情短视频| 亚洲人与动物交配视频| 国产亚洲精品av在线| 国产av在哪里看| 国产黄色小视频在线观看| 老司机午夜福利在线观看视频| 亚洲色图av天堂| 色吧在线观看| 国产中年淑女户外野战色| 搡老熟女国产l中国老女人| 亚洲精品日韩av片在线观看| 亚洲精品国产av成人精品 | 十八禁网站免费在线| 亚洲婷婷狠狠爱综合网| 欧美xxxx黑人xx丫x性爽| 亚州av有码| 我要看日韩黄色一级片| 久久午夜亚洲精品久久| 成熟少妇高潮喷水视频| 亚洲国产精品久久男人天堂| 中文字幕久久专区| 欧美区成人在线视频| 亚洲乱码一区二区免费版| 少妇丰满av| 亚洲无线在线观看| 插阴视频在线观看视频| 亚洲av电影不卡..在线观看| 国产亚洲欧美98| 偷拍熟女少妇极品色| 亚洲欧美清纯卡通| 免费看日本二区| av黄色大香蕉| 一个人看视频在线观看www免费| 日本黄大片高清| 老熟妇仑乱视频hdxx| 久久精品国产自在天天线| 亚洲av.av天堂| 久久久成人免费电影| 床上黄色一级片| 狂野欧美激情性xxxx在线观看| 亚洲精品国产av成人精品 | 两性午夜刺激爽爽歪歪视频在线观看| 国产91av在线免费观看| 级片在线观看| 欧美日本视频| 黄色日韩在线| 欧美+亚洲+日韩+国产| 欧美精品国产亚洲| 天天躁日日操中文字幕| 国产蜜桃级精品一区二区三区| 国产亚洲精品av在线| 欧美绝顶高潮抽搐喷水| 亚洲经典国产精华液单| 国产精品综合久久久久久久免费| 国产精品国产高清国产av| 亚洲人成网站在线播放欧美日韩| 久久热精品热| 国产精品国产三级国产av玫瑰| 男女视频在线观看网站免费| 欧洲精品卡2卡3卡4卡5卡区| 黄色一级大片看看| 村上凉子中文字幕在线| 成人特级av手机在线观看| 亚洲欧美清纯卡通| 级片在线观看| 亚洲经典国产精华液单| 日本 av在线| av视频在线观看入口| 免费看日本二区| 日韩精品中文字幕看吧| 此物有八面人人有两片| 淫秽高清视频在线观看| 国产精品一区www在线观看| 成人一区二区视频在线观看| 国产一级毛片七仙女欲春2| 久久中文看片网| 亚洲精品久久国产高清桃花| 亚洲国产精品国产精品| 国产毛片a区久久久久| 日韩制服骚丝袜av| 男人和女人高潮做爰伦理| 成人一区二区视频在线观看| 最新中文字幕久久久久| 国产美女午夜福利| 亚洲中文字幕日韩| 俄罗斯特黄特色一大片| 国内精品久久久久精免费| 2021天堂中文幕一二区在线观| 久久韩国三级中文字幕| 免费观看精品视频网站| 精品国产三级普通话版| 麻豆乱淫一区二区| 久久精品91蜜桃| 亚洲性夜色夜夜综合| 亚洲图色成人| av在线观看视频网站免费| а√天堂www在线а√下载| 日本三级黄在线观看| 国产免费男女视频| 成年女人永久免费观看视频| 久久久a久久爽久久v久久| 插逼视频在线观看| 午夜亚洲福利在线播放| 看片在线看免费视频| 看非洲黑人一级黄片| 男人和女人高潮做爰伦理| 内射极品少妇av片p| 深夜精品福利| 国产精品久久久久久久久免| 国产三级中文精品| 禁无遮挡网站| 成年版毛片免费区| 我要搜黄色片| 国产激情偷乱视频一区二区| 我的女老师完整版在线观看| 精品午夜福利视频在线观看一区| 日韩一本色道免费dvd| 欧美在线一区亚洲| 成人精品一区二区免费| 精品乱码久久久久久99久播| 亚洲久久久久久中文字幕| 日韩人妻高清精品专区| 插阴视频在线观看视频| 亚洲av五月六月丁香网| 国产精品女同一区二区软件| 亚洲在线自拍视频| 成人国产麻豆网| 少妇人妻精品综合一区二区 | 国产精品人妻久久久久久| 丰满的人妻完整版| 欧美成人精品欧美一级黄| 亚洲成人久久性| 91久久精品国产一区二区成人| 国产精品电影一区二区三区| 久久久成人免费电影| 99热这里只有是精品在线观看| 熟女电影av网| 国产精品久久久久久av不卡| 免费看光身美女| 国产高清视频在线观看网站| 天堂影院成人在线观看| 欧美日韩精品成人综合77777| 一进一出抽搐动态| 在线观看66精品国产| 我要看日韩黄色一级片| 国产精品野战在线观看| 亚洲av美国av| 亚洲精品乱码久久久v下载方式| 又粗又爽又猛毛片免费看| 一边摸一边抽搐一进一小说| 日韩精品中文字幕看吧| 日本免费a在线| 精品国内亚洲2022精品成人| 久久中文看片网| 91精品国产九色| 午夜福利高清视频| 麻豆国产av国片精品| 白带黄色成豆腐渣| 嫩草影院新地址| 99久久精品一区二区三区| 日日撸夜夜添| 亚洲国产精品久久男人天堂| 色噜噜av男人的天堂激情| 欧美xxxx性猛交bbbb| 中文亚洲av片在线观看爽| 综合色丁香网| 中国美白少妇内射xxxbb| 国产亚洲91精品色在线| 乱码一卡2卡4卡精品| 18禁黄网站禁片免费观看直播| 熟女人妻精品中文字幕| 成人av一区二区三区在线看| 久久久色成人| 三级男女做爰猛烈吃奶摸视频| 一级毛片久久久久久久久女| 亚洲人成网站在线观看播放| 久久久久久久久久黄片| 99久久成人亚洲精品观看| 国产精品福利在线免费观看| 99热6这里只有精品| 亚洲电影在线观看av| 色播亚洲综合网| 在线播放无遮挡| 九色成人免费人妻av| 久久精品国产鲁丝片午夜精品| 成人三级黄色视频| 成年免费大片在线观看| 天天躁夜夜躁狠狠久久av| 性色avwww在线观看| 日韩精品中文字幕看吧| 亚洲欧美日韩卡通动漫| 久久鲁丝午夜福利片| a级毛片a级免费在线| 啦啦啦观看免费观看视频高清| 丰满的人妻完整版| 99久久成人亚洲精品观看| 18禁黄网站禁片免费观看直播| 久久精品国产亚洲网站| 又粗又爽又猛毛片免费看| 男人和女人高潮做爰伦理| 一级黄色大片毛片| 少妇猛男粗大的猛烈进出视频 | av国产免费在线观看| 久久人人爽人人片av| 12—13女人毛片做爰片一| 插阴视频在线观看视频| 熟女电影av网| avwww免费| 午夜激情福利司机影院| 天天躁夜夜躁狠狠久久av| 亚洲av免费高清在线观看| 国产老妇女一区| 两个人视频免费观看高清| 国产午夜精品论理片| 亚洲无线在线观看| 午夜免费男女啪啪视频观看 | 日韩在线高清观看一区二区三区| 露出奶头的视频| 成人欧美大片| 久久久久久国产a免费观看| 国产色婷婷99| 国产国拍精品亚洲av在线观看| 级片在线观看| 国产精品国产三级国产av玫瑰| 直男gayav资源| 国产不卡一卡二| 男人狂女人下面高潮的视频| 97人妻精品一区二区三区麻豆| 国产日本99.免费观看| 国产老妇女一区| 欧美性感艳星| 九九爱精品视频在线观看| 亚洲av成人精品一区久久| 国产色爽女视频免费观看| 久久人人精品亚洲av| 免费人成视频x8x8入口观看| 久久久久久久久久久丰满| 全区人妻精品视频| 国产精品一区二区三区四区久久| 在线免费观看不下载黄p国产| 欧美日本视频| 日韩制服骚丝袜av| 日韩 亚洲 欧美在线| 99久久九九国产精品国产免费| 国产黄a三级三级三级人| 中文字幕免费在线视频6| 国产精品一区二区性色av| 少妇裸体淫交视频免费看高清| 精品人妻一区二区三区麻豆 | 国产精品一及| 久久久国产成人精品二区| 麻豆久久精品国产亚洲av| 毛片一级片免费看久久久久| 中文字幕av在线有码专区| 大香蕉久久网| 午夜福利18| 亚洲最大成人手机在线| 色综合色国产| 久久久精品94久久精品| 日本在线视频免费播放| 1000部很黄的大片| 岛国在线免费视频观看| 大又大粗又爽又黄少妇毛片口| 3wmmmm亚洲av在线观看| 国产人妻一区二区三区在| 少妇熟女aⅴ在线视频| 少妇的逼好多水| 九九爱精品视频在线观看| 久久热精品热| 午夜福利在线观看吧| 91在线观看av| 免费av毛片视频| 麻豆乱淫一区二区| 中文亚洲av片在线观看爽| 日本爱情动作片www.在线观看 | 精品久久久久久久久亚洲| 午夜激情福利司机影院| av天堂中文字幕网| 99九九线精品视频在线观看视频| 久久人妻av系列| 精品人妻视频免费看| 偷拍熟女少妇极品色| 两个人视频免费观看高清| 淫妇啪啪啪对白视频| 一级a爱片免费观看的视频| 一本一本综合久久| 亚洲国产精品合色在线| 中国美女看黄片| 黄色欧美视频在线观看| 我的女老师完整版在线观看| 久久久久久久久久久丰满| 少妇被粗大猛烈的视频| 国产麻豆成人av免费视频| 成年女人看的毛片在线观看| 69av精品久久久久久| 午夜久久久久精精品| 日韩精品有码人妻一区| 性欧美人与动物交配| av中文乱码字幕在线| 非洲黑人性xxxx精品又粗又长| 亚洲第一区二区三区不卡| 精品久久久久久久久av| 亚洲精品乱码久久久v下载方式| 久久国产乱子免费精品| 国产精品美女特级片免费视频播放器| 九九在线视频观看精品| 波多野结衣高清作品| 久久午夜亚洲精品久久| 波野结衣二区三区在线| 日日摸夜夜添夜夜爱| 搡老熟女国产l中国老女人| 床上黄色一级片| 中文在线观看免费www的网站| 久久亚洲精品不卡| 午夜福利成人在线免费观看| 日本与韩国留学比较| 国产黄色视频一区二区在线观看 | 精品一区二区三区视频在线| 99视频精品全部免费 在线| 久久6这里有精品| 亚洲国产日韩欧美精品在线观看| 变态另类丝袜制服| 又爽又黄a免费视频| 少妇被粗大猛烈的视频| 成人二区视频| 波多野结衣高清无吗| 久久久国产成人免费| 成人特级黄色片久久久久久久| 亚洲精品影视一区二区三区av| 伦精品一区二区三区| 日韩成人av中文字幕在线观看 | 欧美一区二区国产精品久久精品| 精品久久久噜噜| 精品午夜福利在线看| 久久久a久久爽久久v久久| 欧美日本亚洲视频在线播放| 精品人妻熟女av久视频| 三级国产精品欧美在线观看| 日本欧美国产在线视频| 寂寞人妻少妇视频99o| 在线观看午夜福利视频| 亚洲色图av天堂| 精品免费久久久久久久清纯| 91狼人影院| 免费电影在线观看免费观看| 校园春色视频在线观看| 亚洲国产精品sss在线观看| 国产69精品久久久久777片| 久久精品人妻少妇| 国产人妻一区二区三区在| 成人av一区二区三区在线看| 老司机影院成人| 夜夜看夜夜爽夜夜摸| 给我免费播放毛片高清在线观看| 老熟妇乱子伦视频在线观看| 男女之事视频高清在线观看| 亚洲欧美成人精品一区二区| 国产一区二区激情短视频| 亚洲精品乱码久久久v下载方式| 日日啪夜夜撸| 成人无遮挡网站| 人人妻人人澡人人爽人人夜夜 | 成人综合一区亚洲| 国产精品av视频在线免费观看| 欧美成人免费av一区二区三区| 午夜影院日韩av| 美女高潮的动态| 人人妻,人人澡人人爽秒播| 亚洲国产色片| 两个人的视频大全免费| 久久久色成人| 99久久九九国产精品国产免费| 女生性感内裤真人,穿戴方法视频| 国产人妻一区二区三区在| 欧美人与善性xxx| 日韩欧美免费精品| 免费av观看视频| 亚洲精品国产成人久久av| 在线国产一区二区在线| 村上凉子中文字幕在线| 久久综合国产亚洲精品| 校园人妻丝袜中文字幕| 看十八女毛片水多多多| 免费观看人在逋| 大香蕉久久网| 精品久久久久久久末码| 成人亚洲欧美一区二区av| 在线观看午夜福利视频| 欧美区成人在线视频| 一本久久中文字幕| 亚洲电影在线观看av| 午夜免费激情av| 国产成人精品久久久久久| 久久九九热精品免费| 永久网站在线| 男人和女人高潮做爰伦理| 22中文网久久字幕| 99在线视频只有这里精品首页| 日韩人妻高清精品专区| 中文字幕精品亚洲无线码一区| 又粗又爽又猛毛片免费看| 日本黄色片子视频| 亚洲成人中文字幕在线播放| 亚洲国产精品久久男人天堂| 亚洲精品色激情综合| 国产激情偷乱视频一区二区| 俄罗斯特黄特色一大片| 久久鲁丝午夜福利片| 在线观看午夜福利视频| 免费观看在线日韩| 久久国内精品自在自线图片| 精品熟女少妇av免费看| 免费观看的影片在线观看| 日日摸夜夜添夜夜添小说| 亚洲中文字幕日韩| 久久久久九九精品影院| 夜夜看夜夜爽夜夜摸| 午夜精品在线福利| 国产一级毛片七仙女欲春2| 别揉我奶头~嗯~啊~动态视频| 成年女人看的毛片在线观看| 精品一区二区三区视频在线| 国产乱人视频| 亚洲成人久久爱视频| 久久精品人妻少妇| 国产真实乱freesex| 91午夜精品亚洲一区二区三区| 午夜激情福利司机影院| 国产男靠女视频免费网站| 91精品国产九色| 亚洲美女视频黄频| 一本精品99久久精品77| 在线免费观看的www视频| 亚洲av成人精品一区久久| 亚洲综合色惰| 最近最新中文字幕大全电影3| 国产老妇女一区| 欧美性猛交黑人性爽| 熟妇人妻久久中文字幕3abv| 两个人视频免费观看高清| 小说图片视频综合网站| 简卡轻食公司| 欧美日韩在线观看h| 在线看三级毛片| 亚洲精品日韩av片在线观看| 老司机午夜福利在线观看视频| 日本 av在线| 亚洲av成人精品一区久久| 久久久久久久午夜电影| 日韩国内少妇激情av| 国产一区二区激情短视频| 欧美+日韩+精品| av卡一久久| 国产白丝娇喘喷水9色精品| 亚洲国产精品成人综合色| 成人亚洲欧美一区二区av| 国内精品宾馆在线| 天天躁夜夜躁狠狠久久av| 国产免费男女视频| 一级毛片电影观看 | av天堂在线播放| 精品不卡国产一区二区三区| 日韩欧美免费精品| 国产毛片a区久久久久| 久久久久国内视频| av在线蜜桃| 少妇人妻精品综合一区二区 | 免费av不卡在线播放| 一本久久中文字幕| 日韩欧美 国产精品| 非洲黑人性xxxx精品又粗又长| 欧美日韩在线观看h| 成熟少妇高潮喷水视频| 国产精品久久久久久精品电影| 99久久精品国产国产毛片| 成人综合一区亚洲| 亚洲熟妇中文字幕五十中出| 免费人成在线观看视频色| 18禁在线播放成人免费| 三级经典国产精品| 男人和女人高潮做爰伦理| 国产乱人视频| 免费看av在线观看网站| 国内揄拍国产精品人妻在线| 在线播放国产精品三级| АⅤ资源中文在线天堂| 亚洲中文日韩欧美视频| 国产黄色小视频在线观看| 久久久久国产精品人妻aⅴ院| 女人十人毛片免费观看3o分钟| 免费无遮挡裸体视频| 97热精品久久久久久| 我的老师免费观看完整版| 久久人人爽人人片av| 五月伊人婷婷丁香| 国产aⅴ精品一区二区三区波| 国产亚洲91精品色在线| 国产亚洲精品av在线| 免费人成视频x8x8入口观看| 亚洲欧美精品自产自拍| 中文字幕精品亚洲无线码一区| 亚洲精品成人久久久久久| 国产在视频线在精品| 国产精品三级大全| 免费看光身美女| 春色校园在线视频观看| 亚洲精品亚洲一区二区| 亚洲av不卡在线观看| 99热只有精品国产| 亚洲人成网站在线观看播放| 亚洲av熟女| 精品一区二区三区人妻视频| 99热这里只有是精品在线观看| 男人舔女人下体高潮全视频| 精品久久久噜噜| 日韩欧美免费精品|