• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Meshless Local Petrov-Galerkin Mixed Collocation Method for Solving Cauchy Inverse Problems of Steady-State Heat Transfer

    2014-04-17 08:52:27TaoZhangYiqianHeLeitingDongShuLiAbdullahAlotaibiandSatyaAtluri

    Tao ZhangYiqian HeLeiting DongShu LiAbdullah Alotaibi and Satya N.Atluri

    1 Introduction

    Computational modeling of solid/fluid mechanics,heat transfer,electromagnetics,and other physical,chemical&biological sciences have experienced an intense development in the past several decades.Tremendous efforts have been devoted to solving the so-called direct problems,where the boundary conditions are generally of the Dirichlet,Neumann,or Robin type.Existence,uniqueness,and stability of the solutions have been established for many of these direct problems.Numerical methods such as finite elements,boundary elements,finite volume,meshless methods etc.,have been successfully developed and available in many off-the shelf commercial softwares,see[Atluri(2005)].On the other hand,inverse problems,although being more difficult to tackle and being less studied,have equal,if not greater importance in the applications of engineering and sciences,such as in structural health monitoring,electrocardiography,etc.

    One of the many types of inverse problems is to identify the unknown boundary fields when conditions are over-specified on only a part of the boundary,i.e.the Cauchy problem.Take steady-state heat transfer problem as an example.The governing differential equations can be expressed in terms of the primitive variable temperatures:

    In spite of the popularity of FEM for direct problems,it is essentially very unsuitable for solving inverse problems.This is because the traditional primal FEM are based on the global Symmetric Galerkin Weak Form of equation(1):

    wherevare test functions,and both the trial functionsTand the test functionsvare required to be continuous and differentiable.It is immediately apparent from equation(2)that the symmetric weak form[on which the primal finite element methods are based]does not allow for the simultaneous prescription of both the heat fluxesqn[≡T,i]as well as temperaturesTat the same segment of the boundary,??.Therefore,in order to solve the inverse problem using FEM,one has to first ignore the over-specified boundary conditions,guess the missing boundary conditions,so that one can iteratively solve a direct problem,and minimize the difference between the solution and over-prescribed boundary conditions by adjusting the guessed boundary fields,see[Kozlov,Maz’ya and Fomin(1991);Cimetiere,Delvare,Jaoua and Pons(2001)]for example.This procedure is cumbersome and expensive,and in many cases highly-dependent on the initial guess of the boundary fields.

    Recently,simple non-iterative methods have been under development for solving inverse problems without using the primal symmetric weak-form:with global RBF as the trial function,collocation of the differential equation and boundary conditions leads to the global primal RBF collocation method[Cheng and Cabral(2005)];with Kelvin’s solutions as trial function,collocation of the boundary conditions leads to the method of fundamental solutions[Marin and Lesnic(2004)];with non-singular general solutions as trial function,collocation of the boundary conditions leads to the boundary particle method[Chen and Fu(2009)];with Trefftz trial functions,collocation of the boundary conditions leads to Trefftz collocation method[Yeih,Liu,Kuo and Atluri(2010);Dong and Atluri(2012)].The common idea they share is that the collocation method is used to satisfy either the differential equations and/or the boundary conditions at discrete points.Moreover,collocation method is also more suitable for inverse problems because measurements are most often made at discrete locations.

    However,the above-mentioned direct collocation methods are mostly limited to simple geometries,simple constitutive relations,and text-book problems,because:(1)these methods are based on global trial functions,and lead to a fully-populated coefficient matrix of the system of equations;(2)the general solutions and particular solutions cannot be easily found for general nonlinear problems,and problems with arbitrary boundary conditions;(3)it is difficult to derive general solutions that are complete for arbitrarily shaped domains,within a reasonable computational burden.With this understanding,more suitable ways of constructing the trial functions should be explored.

    One of the most simple and flexible ways is to construct the trial functions through meshless interpolations.Meshless interpolations have been combined with the global Symmetric Galerkin Weak Form to develop the so-called Element-Free Galerkin(EFG)method,see[Belytschko,Lu,and Gu(1994)].However,as shown in the Weak Form(2),because temperatures and heat fluxes cannot be prescribed at the same location,cumbersome iterative guessing and optimization will also be necessary if EFG is used to solve inverse problems.Thus EFG is not suitable for solving inverse problems,for the same reason why FEM is not suitable for solving inverse problems.

    Instead of using the global Symmetric Galerkin Weak-Form,the Meshless Local Petrov-Galerkin(MLPG)method by[Atluri and Zhu(1998)]proposed to construct both the trial and test functions in a local subdomain,and write local weak-forms instead of global ones.Various versions of MLPG method have been developed in[Atluri and Shen(2002a,b)],with different trial functions(Moving Least Squares,Local Radial Basis Function,Shepard Function,Partition of Unity methods,etc.),and different test functions(Weight Function,Shape Function,Heaviside Function,Delta Function,Fundamental Solution,etc.).These methods are primal methods,in the sense that all the local weak forms are developed from the governing equation with primary variables.For this reason,the primal MLPG collocation method,which involves direct second-order differentiation of the temperature fields,as shown in equation(1),requires higher-order continuous basis functions,and is reported to be very sensitive to the locations of the collocation points.

    Instead of the primal methods,MLPG mixed finite volume and collocation method were developed in[Atluri,Han and Rajendran(2004);Atluri,Liu and Han(2006)].The mixed MLPG approaches independently interpolate the primary and secondary fields,such as temperatures and heat fluxes,using the same meshless basis functions.The compatibility between primary and secondary fields is enforced through a collocation method at each node.Through these efforts,the continuity requirement on the trial functions is reduced by one order,and the complicated second derivatives of the shape function are avoided.Successful applications of the MLPG mixed finite volume and collocation methods were made in nonlinear and large deformation problems[Han,Rajendran and Atluri(2005)];impact and penetration problems[Han,Liu,Rajendran and Atluri(2006);Liu,Han,Rajendran and Atluri(2006)],topology optimization problems[Li and Atluri(2008a,b)];inverse problems of linear isotropic/anisotropic elasticity[Zhang,Dong,Alotaibi and Atluri(2013)A thorough review of the applications of MLPG method is given in[Sladek,Stanak,Han,Sladek,Atluri(2013)].

    This paper is devoted to numerical solution of the inverse Cauchy problems of steady-heat transfer.Both temperature and heat flux boundary conditions are prescribed only on part of the boundary of the solution domain,whilst no information is available on the remaining part of the boundary.To solve the dilemma that global-weak-form-based methods(such as FEM,BEM and EFG)which do not allow the primal and dual fields to be prescribed at the same part of the boundary,the MLPG mixed collocation method is developed for inverse Cauchy problem of heat transfer.The moving least-squares approximation is used to construct the shape function.The nodal heat fluxes are expressed in terms of nodal temperatures by enforcing the relation between heat flux and temperatures at each nodal point.The governing equations for steady-state heat transfer problems are satisfied at each node using collocation method.The temperature and heat flux boundary conditions are also enforced by collocation method at each measurement location along the boundary.The proposed method is conceptually simple,numerically accurate,and can directly solve the inverse problem without using any iterative optimization.The outline of this paper is as follows:we start in section 2 by introducing the meshless interpolation method with emphasis on the Moving Least Squares interpolation.In section 3,the detailed algorithm of the MLPG mixed collocation method for inverse heat transfer problem is given.In section 4,several numerical examples are given to demonstrate the effectiveness of the current method involving direct and inverse heat transfer problems.Finally,we present some conclusions in section 5.

    2 Meshless Interpolation

    Among the available meshless approximation schemes,the Moving Least Squares(MLS)is generally considered to be one of the best methods to interpolate random data with a reasonable accuracy,because of its locality,completeness,robustness and continuity.The MLS is adopted in the current MLPG collocation formulation,while the implementation of other meshless interpolation schemes is straightforward within the present framework.For completeness,the MLS formulation is briefly reviewed here,while more detailed discussions on the MLS can be found in[Atluri(2004)]

    The MLS method starts by expressing the variableT(x)as polynomials:

    where pT(x)is the monomial basis.In this study,we use first-order interpolation,so that pT(x)=[1,x,y]for two-dimensional problems.a(x)is a vector containing the coefficients of each monomial basis,which can be determined by minimizing the following weighted least square objective function,defined as:

    where,xI,I=1,2,···,mis a group of discrete nodes within the influence range of node x,?T Iis the fictitious nodal value,wI(x)is the weight function.A fourth order spline weight function is used here:

    where,rIstands for the radius of the support domain ?x.

    Substituting a(x)into equation(3),we can obtain the approximate expression as:

    where,matrices A(x)and B(x)are defined by:

    ΦI(x)is named as the MLS basis function for nodeI,and it is used to interpolated both temperatures and heat fluxes,as discussed in section 3.2.

    3 MLPG Mixed Collocation Method for Inverse Cauchy Problem of Heat Transder

    3.1 Inverse Cauchy Problem of Heat Transder

    Consider a domain ? wherein the steady-state heat transfer problem,without internal heat sources,is posed.The governing differential equation is expressed in terms of temperature in equation(1).It can also be expressed in a mixed form,in terms of both the tempereature and the heat flux fields:

    For inverse problems,we consider that both heat flux and temperature are prescribed at a portion of the boundary,denoted asSC:

    The inverse problem is thus defined as,with the measured heat fluxes as well as temperatures atSC,which is only a portion of the boundary of the whole domain,can we determine heat fluxes as well as temperatures in the other part of the boundary as well as in the whole domain?A MLPG mixed collocation method is developed to solve this problem,and is discussed in detail in the following two subsections.

    3.2 MLPG Mixed Collocation Method

    We start by interpolating the temperature as well as the heat flux fields,using the same MLS shape function,as discussed in section 2:

    We rewrite equations(11)and(12)in matrix-vector form:

    With the heat flux–temperature gradient relation as shown in equation(8),the heat fluxes at nodeIcan be expressed as:

    whereNis the total number of nodes in the domain.

    This allows us to relate nodal heat fluxes to nodal temperatures,which is written here in matrix-vector form:

    And the balance equation of heat transfer is independently enforced at each node,as:

    or,in an equivalent Matrix-Vector from:

    By substituting equation(16)and(14)into equation(18),we can obtain a discretized system of equations in term of nodal temperatures:

    From equation(15)and(17),we see that both the heat transfer balance equation,and the heat flux temperature-gradient relation are enforced by the collocation method,at each node of the MLS interpolation.In the following subsection,the same collocation method will be carried out to enforce the boundary conditions of the inverse problem.

    3.3 Over-Specified Boundary conditions in a Cauchy Inverse Heattransfer Problem

    In most applications of inverse problems,the measurements are only available at discrete locations at a small portion of the boundary.In this study,we consider that both temperatures?T Jas well as heat fluxes?qJnare prescribed at discrete points xI,I=1,2,3...,Mon the same segment of the boundary.We use collocation method to enforce such boundary conditions:

    or,in matrix-vector form:

    3.4 Regularization for Noisy Measurements

    Equation(19)and(21)can rewritten as:

    This gives a complete,discretized system of equations of the governing differential equations as well as the over-specified boundary conditions.It can be directly solved using least square method without iterative optimization.

    However,it is well-known that the inverse problems are ill-posed.A very small perturbation of the measured data can lead to a significant change of the solution.In order to mitigate the ill-posedness of the inverse problem,regularization techniques can be used.For example,following the work of Tikhonov and Arsenin[Tikhonov and Arsenin(1977)],many regularization techniques were developed.[Hansen and O’Leary(1993)]has given an explanation that the Tikhonov regularization of ill-posed linear algebra equations is a trade-off between the size of the regularized solution,and the quality to fit the given data.With a positive regularization parameter,which is determined by the L-curve method,the solution is determined as:

    This leads to the regularized solution:

    4 Numerical Examples

    In this section,we firstly apply the proposed method to solve a direct problem with an analytical solution,in order to verify the accuracy and efficiency of the method.Then we apply the proposed method to solve three inverse Cauchy problems with noisy measurements,in order to explore the accuracy,stability,and converge of the MLPG mixed collocation method for solving inverse problems of heat transfer.

    4.1 MLPG mixed collocation method for the direct heat transfer problem

    Example 1:Patch Test

    In this case,we consider a rectangular domain ?={(x,y)|0≤x≤a,0≤y≤b},as shown in Figure 1.Its left boundary is maintained at the temperatureT=0°C,and the right boundary is prescribed with a temperature distribution asT=Ay°C.The upper and lower boundaries are adiabatic.There is no heat source in the domain.The thermal conductivity isk=1w/(m·°C).The analytical solution is:

    Figure 1:Heat conduction in a rectangular domain.

    Figure 2:The normalized analytically and numerically solved T,qx qy along the line y=3 for the direct heat transfer problem of Example 1.

    In this example,we consider thata=b=10,A=5,and use a uniform nodal configuration of 30×30nodes.When the support domain is too small or too large,the relative computational error will become unacceptably large.It was found thatr=2.5-3.0 is an economical choice that gives good results without significantly increasing the computational burden,see[Wu,Shen,and Tao(2007)].We select a support size of 25 times of the nodal distance,and use the first-order polynomial basis is used in the MLS approximations.

    We solve this problem by using the MLPG mixed collocation method.Figure 2 gives the analytically and numerically solved temperature and heat fluxes,normalized to their maximum values.It can be seen that the computational results with MLPG mixed collocation method agrees well with the analytical solutions.

    4.2 MLPG mixed collocation method for Cauchy inverse problem of heat transfer

    Example 2:An L-shaped Domain

    Figure 3:Heat transfer in an L-shape domain.

    The second example is a Cauchy inverse heat transfer problem in the L-shaped domain as illustrated in Figure 3 The exact solution is given in the polar coordinates by:

    Figure 4:The nodal configuration and boundary collocation points of example 2.

    wherekis the thermal conductivity,taken as 1 in this example.Equation(27)implies that the radial heat fluxqris singular at the re-entrant cornerOwherer=0 Node discretization of the L-shaped domain and the locations of temperature and heat flux measurements are shown in Figure 4 Temperatures and heat flues are overspecified at SC={(x,y)|0≤x≤10,y=-10}∪{(x,y)|-10≤y≤0,x=-10}∪{(x,y)|1≤x≤10,y=0}∪{(x,y)|1≤y≤8,x=0}%1 white noise is added to the measured temperatures and heat fluxes.By MLPG mixed collocation method,we solve this inverse problem,and give the temperature and heat fluxes along the line y=-1.As can be seen from Figure 5 good agreements are given between the computed results and the analytical solution,even though the measurements are contaminated by noises.

    Example 3:A semi-infinite domain

    In this case,the steady-state heat transfer problem in a semi-infinite domain is considered,as shown in Figure 6.The half-space ? ={(x,y)|y≥0}is insulated and kept at a temperature of zero at{(x,y)|y=0,|x|>1},The line segment of{(x,y)|y=0,|x|<1}is kept at a temperature of unity.The analytical solution[Brown and Churchill(2008)]of this example is given as:

    Figure 5:T,qx,and qy along the line y=-1,normalized to their maximum values,for the inverse problem of Example2.

    This problem is solved using a truncated finite domain by MLPG mixed collocation method,in ?={(x,y)|-2≤x≤2,0≤y≤1}The nodal configuration and collo-cation points are shown in figure 7,with temperature and heat fluxes measured at SC={(x,y)|-1≤x≤1,y=2},and polluted by 1%white noise.By MLPG mixed collocation method,we solve this inverse Cauchy problem of heat transfer,and plot the numerically identified temperature and heat fluxes along the liney=0.5 Figure 8 gives the comparison between numerical and analytical solution,demonstrating the validity of the proposed MLPG mixed collocation method

    Figure 6:Heat conduction in a semi-infinite domain.

    Figure 7:The finite truncated domain and the nodal configuration of the MLPG mixed collocation model for example 3.

    Figure 8:T qx,and qy along the line y=0.5,normalized to their maximum values,for the inverse problem of Example 3.

    Example 4:Patch with different levels of white noise,different numbers of collocation points,and different sizes ofSc

    We reconsider the heat transfer problem in a rectangular domain ?={(x,y)|0≤x≤a,0≤y≤b},as shown in Figure 1.But for this case,an inverse problem is solved instead of a direct one.Different levels of white noise,different numbers of collocation points,and different sizes ofScare considered to investigate the stability,convergence,and sensitivity of the proposed MLPG mixed collocation method for inverse Cauchy problems.

    a.Numerical stability

    SC={(x,y)|0≤y≤b,x=0}∪{(x,y)|0≤y≤b,x=a}.We analyze the numerical solutions with three levels of noise(1%,3%and 5%)added to:(i)the Dirichlet data(temperatures);(ii)the Neumann data(heat fluxes);and(iii)the Cauchy data(temperatures and heat fluxes),respectively.

    Figure 9-11 present the heat fluxesqx,qyand temperatureTaty=3 numerically identified by using the MLPG mixed collocation method It can be seen that,for each fixed level of noise,the numerical solutions are stable approximations to the corresponding exact solution,free of unbounded and rapid oscillations.

    b.Numerical convergence

    In this problem,we consider noisy measurements with.pq=pT=5%along SC={(x,y)|0≤x≤10,y=0}∪{(x,y)|x=0,1≤y≤1 0}∪{(x,y)|x=10,0≤y≤10}Different numbers of uniformly distributed collocation points are used,i.e.nc=2,4,10,20,40,80,160,320,640,1280,on each of the three sides of SC

    In order to analyze the accuracy,we introduce the following root mean-square(RMS)errors:

    Figure 9:The numerically identified(a)T(b)qx,(c)qy along the line y=3 with various levels of noise added into the prescribed temperatures(the Dirichlet data),i.e.pT∈{1%,3%,5%}for the Cauchy problem given by example 4.

    Figure 10:The numerically identified(a)T(b)qx,(c)qy along the line y=3with various levels of noise added into the prescribed fluxes(the Neumann data),i.e.pq∈{1%,3%,5%}for the Cauchy problem given by example 4.

    Figure 11:The numerically identified(a)T(b)qx,(c)qy along the line y=3with various levels of noise added into the prescribed temperatures and heat fluxes(the Cauchy data),i.e.pq=pT∈{1%,3%,5%}for the Cauchy problem given by example 4.

    Table 1:The numerical errors based on MLPG mixed collocation method using different number of collocation points(nc=2,4,10,20,40,80,160,320,640,1280)for example 4 with 5%noise.

    Figure 12:The errors as functions of the number of the collocation points for example 4.

    c.Influence of the size of SC

    Figure 13:Four different sizes of accessible boundary(S1c,S2c,S3c,S4c),respectively.

    In this case,we investigate how the size ofSCaffects the accuracy of the numerical solution.For the given Cauchy problem,measured temperatures and heat fluxes are contaminated with with 5%random noise.Four different sizes ofScare considered and are illustrated in Figure 13,in which collocation points alongScare shown as red circles.These four different accessible boundaries are defined as:

    Table 2 presents the numerical accuracy of the MLPG mixed collocation method.It can be seen that the numerical accuracy improves with larger sizes ofSc,but it is still acceptable even with the smallest size ofSc

    Table 2:The numerical errors of MLPG mixed collocation method using different sizes of Sc for example 4.

    5 Conclusion

    In this article,the MLPG mixed collocation method is applied to solve the inverse Cauchy problems of steady-state heat transfer.The temperature as well as the heat fluxes are interpolated independently using the same MLS basis functions.The balance and compatibility equations are satisfied at each node in a strong sense using the collocation method.The boundary conditions are also enforced using the collocation method,allowing temperature and heat flux to be over-specified at the same portion of the boundary.For the inverse problems where noise is present in the measurement,Tikhonov regularization method is used,to mitigate the inherent ill-posed nature of inverse problem with its regularization parameter determined by the L-Curve method.Through several numerical examples,we investigated the numerical accuracy,stability,and convergence of the MPLG mixed collocation method.It is shown that the proposed method is simple,accurate,stable,and thus is suitable for solving inverse problems of heat transfer.

    Acknowledgement:The first author acknowledges the financial Supported by the National High Technology research and Development Program of China(863 Program,grant No.2012AA112201).This work was funded by the Deanship of Scientific Research(DSR),King Abdulaziz University,under grant No.(3-130-25-HiCi).The authors,therefore,acknowledge the technical and financial support of KAU.

    Atluri,S.N.(2004):The Meshless Local Petrov Galerkin(MLPG)Method for Domain&Boundary Discretizations.Tech Science Press,665 pages.

    Atluri,S.N.(2005):Methods of computer modeling in engineering&the sciences volume I.Tech Science Press,560 pages.

    Atluri,S.N.;Han,Z.D.;Rajendran,A.M.(2004):A New Implementation of the Meshless Finite Volume Method,Through the MLPG “Mixed”Approach.CMES:Computer Modeling in Engineering&Sciences,vol.6,no.6,pp.491-514.

    Atluri,S.N.;Liu,H.T.;Han,Z.D.(2006):Meshless local Petrov-Galerkin(MLPG)mixed collocation method for elasticity problems.CMES:Computer Modeling in Engineering&Sciences,vol.14,no.3,pp.141-152.

    Atluri,S.N.;Zhu,T.(1998):A new meshless local Petrov-Galerkin(MLPG)approach in computational mechanics.Computational Mechanics,vol.22,pp.117127.

    Atluri,S.N.;Shen,S.P.(2002a):The Meshless Local Petrov-Galerkin(MLPG)Method.Tech Science Press,pp.480 pages.

    Atluri,S.N.;Shen,S.P.(2002b):The Meshless Local Petrov-Galerkin(MLPG)Method:a simple and less-costly alternative to the finite element and boundary element method.CMES:Computer Modeling in Engineering&Sciences,vol.3,no.1,pp.11-51.

    Belytschko,T.;Lu,Y.Y.and Gu,L.(1994):Element free Galerkin methods.International Journal for Numerical Methods in Engineering,vol.37,pp.229-256.

    Brown,J.W.;Churchill,R.V.(2008):Complex variables and applications(8th).China Machine Press.

    Cheng,A.D.;Cabral,J.J.S.P.(2005):Direct solution of ill-posed boundary value problems by radial basis function collocation method.International Journal for Numerical Methods in Engineering,vol.64,issue 1,pp.45-64.

    Chen,W.;Fu,Z.J.(2009):Boundary particle method for inverse Cauchy problems of inhomogeneous Helmholtz equations.Journal of Marine Science and Technology,vol.17,issue 3,pp.157-163.

    Cimetiere,A.;Delvare,F.;Jaoua,M.;Pons,F.(2001):Solution of the Cauchy problem using iterated Tikhonov regularization.Inverse Problems,vol.17,issue 3,pp.553-570.

    Dong,L.;Atluri,S.N.(2012):A Simple Multi-Source-Point Trefftz Method for Solving Direct/Inverse SHM Problems of Plane Elasticity in Arbitrary Multiply-Connected Domains.CMES:Computer Modeling in Engineering&Sciences,vol.85,issue 1,pp.1-43.

    Hansen,P.C.;O’Leary,D.P.(1993):The use of the L-curve in the regularization of discrete ill-posed problems.SIAM Journal of Scientific Computing,vol.14,pp.1487-1503.

    Han,Z.D.;Rajendran,A.M.;Atluri,S.N.(2005):Meshless Local Petrov-Galerkin(MLPG)approaches for solving nonlinear problems with large deformations and rotations.CMES:Computer Modeling in Engineering and Sciences,vol.10,issue 1,pp.1-12.

    Han,Z.D.;Liu,H.T.;Rajendran,A.M.;Atluri,S.N.(2006):The applications of meshless local Petrov-Galerkin(MLPG)approaches in high-speed impact,penetration and perforation problems.CMES:Computer Modeling in Engineering&Sciences,vol.14,no.2,pp.119-128.

    Kozlov,V.A.E.;Maz’ya,V.G.;Fomin,A.V.(1991):An iterative method for solving the Cauchy problem for elliptic equations.Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki,vol.31,issue.1,pp.64-74.

    Li,S.;Atluri,S.N.(2008a):Topology optimization of structures based on the MLPG Mixed Collocation Method.CMES:Computer Modeling in Engineering&Sciences,vol.26,no.1,pp.61-74.

    Li,S.;Atluri,S.N.(2008b):The MLPG Mixed Collocaiton Method for Material Orientation and Topology Optimization of Anisotropic Solid and Structures.CMES:Computer Modeling in Engineering&Sciences,vol.30,no.1,pp.37-56.

    Liu,H.T.;Han,Z.D.;Rajendran,A.M.;Atluri,S.N.(2006):Computational modeling of impact response with the rg damage model and the meshless local Petrov-Galerkin(MLPG)approaches.CMC:Computers,Materials&Continua,vol.4,no.1,pp.43-53.

    Liu,Y.;Zhang,X.;Lu,M.W.(2005):Meshless Method Based on Least-Squares Approach for Steady-and Unsteady-State Heat Conduction Problems.Numer.Heat Transfer,Part B,vol.47,pp.257-276.

    Marin,L.;Lesnic,D.(2004):The method of fundamental solutions for the Cauchy problem in two-dimensional linear elasticity.International journal of solids and structures,vol.41,issue 13,pp.3425-3438.

    Sladek,J.;Stanak,P.;Han,Z.D.;Sladek,V.;Atluri,S.N.(2013):Applications of the MLPG Method in Engineering&Sciences:A Review.CMES:Computer Modeling in Engineering&Sciences,vol.92,issue 5,pp.423-475.

    Tikhonov,A.N.;Arsenin,V.Y.(1977):Solutions of Ill-Posed Problems.John Wiley&Sons,New York.

    Wu,X.H.;Shen,S.P.;Tao,W.Q.(2007):Meshless Local Petrov-Galerkin collocation method for two-dimensional heat conduction problems.CMES:Computer Modeling in Engineering&Sciences,vol.22,no.1,pp.65-76.

    Yeih,W.;Liu,C.S.;Kuo,C.L.;Atluri,S.N.(2010):On solving the direct/inverse Cauchy problems of Laplace equation in a multiply connected domain,using the generalized multiple-source-point boundary-collocation Trefftz method&characteristic lengths.CMC:Computers,Materials&Continua,vol.17,no.3,pp.275-302.

    Zhang,T.;Dong,L,Alotaibi,A;and Atluri,S.N.(2013):Application of the MLPG Mixed Collocation Method for Solving Inverse Problems of Linear Isotropic/Anisotropic Elasticity with Simply/Multiply-Connected Domains.CMES:Computer Modeling in Engineering&Sciences,vol.94,no.1,pp.1-28.

    午夜爱爱视频在线播放| 一区二区三区精品91| 国产又色又爽无遮挡免| 久久99热6这里只有精品| 日本av手机在线免费观看| 精品久久久久久电影网| 欧美xxⅹ黑人| 久久亚洲国产成人精品v| 亚洲久久久久久中文字幕| 亚洲av免费高清在线观看| 听说在线观看完整版免费高清| av播播在线观看一区| 国产av码专区亚洲av| 别揉我奶头 嗯啊视频| 日本一二三区视频观看| 91精品伊人久久大香线蕉| 久久热精品热| 国产探花极品一区二区| 男女那种视频在线观看| 久久韩国三级中文字幕| 啦啦啦在线观看免费高清www| 午夜福利高清视频| 人妻一区二区av| 精品99又大又爽又粗少妇毛片| 久久国内精品自在自线图片| 久久久精品欧美日韩精品| 一级毛片黄色毛片免费观看视频| 亚洲欧美一区二区三区国产| 国产av国产精品国产| 亚洲av男天堂| 日本免费在线观看一区| 亚洲欧美成人精品一区二区| 国产成人a区在线观看| 69人妻影院| 久久久久精品久久久久真实原创| 人人妻人人看人人澡| 熟妇人妻不卡中文字幕| 在线 av 中文字幕| 久久99热这里只频精品6学生| 国产成年人精品一区二区| 免费观看av网站的网址| 中文字幕久久专区| 嘟嘟电影网在线观看| 成年人午夜在线观看视频| 69人妻影院| 九色成人免费人妻av| 3wmmmm亚洲av在线观看| 亚洲欧美一区二区三区黑人 | 水蜜桃什么品种好| 69av精品久久久久久| 国产黄a三级三级三级人| 日韩伦理黄色片| 日韩人妻高清精品专区| h日本视频在线播放| 中文资源天堂在线| 99热这里只有精品一区| 亚洲成人久久爱视频| 久久久久久久精品精品| 爱豆传媒免费全集在线观看| 22中文网久久字幕| 大香蕉久久网| 亚洲丝袜综合中文字幕| 欧美成人精品欧美一级黄| 午夜爱爱视频在线播放| 午夜福利视频1000在线观看| 精品少妇久久久久久888优播| 日韩av免费高清视频| 搡女人真爽免费视频火全软件| 成人一区二区视频在线观看| 2021天堂中文幕一二区在线观| 三级男女做爰猛烈吃奶摸视频| 男人舔奶头视频| 国产老妇女一区| 青春草国产在线视频| 天美传媒精品一区二区| 麻豆乱淫一区二区| 乱码一卡2卡4卡精品| 麻豆成人av视频| av天堂中文字幕网| 视频区图区小说| 九色成人免费人妻av| 日日摸夜夜添夜夜爱| 简卡轻食公司| 伊人久久国产一区二区| www.av在线官网国产| 亚洲av欧美aⅴ国产| 亚洲国产av新网站| 午夜免费鲁丝| 久久精品久久久久久久性| 国产欧美日韩精品一区二区| 男的添女的下面高潮视频| 日韩三级伦理在线观看| 美女内射精品一级片tv| 蜜桃久久精品国产亚洲av| 久热这里只有精品99| 国产精品一区二区三区四区免费观看| 边亲边吃奶的免费视频| 七月丁香在线播放| 最后的刺客免费高清国语| 水蜜桃什么品种好| 午夜激情福利司机影院| 欧美变态另类bdsm刘玥| 亚洲精品日韩在线中文字幕| 噜噜噜噜噜久久久久久91| 中文乱码字字幕精品一区二区三区| av在线app专区| 久久久久久久久久久免费av| 国产精品av视频在线免费观看| 欧美zozozo另类| 婷婷色av中文字幕| 天天一区二区日本电影三级| 成人黄色视频免费在线看| 欧美性猛交╳xxx乱大交人| 一级黄片播放器| 美女被艹到高潮喷水动态| 亚洲欧美一区二区三区黑人 | 国产一级毛片在线| 另类亚洲欧美激情| 永久网站在线| 菩萨蛮人人尽说江南好唐韦庄| 精品一区在线观看国产| 韩国av在线不卡| 午夜爱爱视频在线播放| 国产高清三级在线| 国产高清不卡午夜福利| 三级男女做爰猛烈吃奶摸视频| 搡女人真爽免费视频火全软件| 可以在线观看毛片的网站| 女人久久www免费人成看片| 亚洲熟女精品中文字幕| 一区二区三区四区激情视频| 亚洲精品国产av蜜桃| 日日摸夜夜添夜夜添av毛片| 一区二区三区精品91| 色吧在线观看| 久久久久九九精品影院| 51国产日韩欧美| 99热全是精品| 国产又色又爽无遮挡免| 日产精品乱码卡一卡2卡三| 大片电影免费在线观看免费| 中文乱码字字幕精品一区二区三区| 精品人妻一区二区三区麻豆| 人体艺术视频欧美日本| 日韩大片免费观看网站| 毛片女人毛片| 男女无遮挡免费网站观看| 欧美最新免费一区二区三区| 亚洲精品乱久久久久久| 好男人在线观看高清免费视频| 精品人妻一区二区三区麻豆| av在线蜜桃| 在线观看三级黄色| 人妻少妇偷人精品九色| 国产毛片在线视频| 亚洲怡红院男人天堂| 六月丁香七月| 男女无遮挡免费网站观看| 22中文网久久字幕| 亚洲av一区综合| 男人狂女人下面高潮的视频| 99精国产麻豆久久婷婷| 精品久久国产蜜桃| 婷婷色av中文字幕| 大陆偷拍与自拍| 国产精品一及| 国产亚洲一区二区精品| 十八禁网站网址无遮挡 | 精品熟女少妇av免费看| 搡老乐熟女国产| 美女高潮的动态| 免费看光身美女| 久久精品国产自在天天线| 国产高清有码在线观看视频| 中文字幕制服av| 黄色配什么色好看| 爱豆传媒免费全集在线观看| 国产乱来视频区| 大又大粗又爽又黄少妇毛片口| 纵有疾风起免费观看全集完整版| 国产综合精华液| 在线亚洲精品国产二区图片欧美 | 欧美成人一区二区免费高清观看| 联通29元200g的流量卡| 2022亚洲国产成人精品| 国产高清有码在线观看视频| 亚洲国产精品国产精品| 亚洲国产高清在线一区二区三| 国产成年人精品一区二区| 人妻少妇偷人精品九色| 日韩,欧美,国产一区二区三区| 久久精品国产自在天天线| 亚洲国产最新在线播放| 国产色婷婷99| 亚洲欧美日韩无卡精品| 亚洲婷婷狠狠爱综合网| 一级毛片aaaaaa免费看小| 中文字幕av成人在线电影| 亚洲最大成人av| 天堂俺去俺来也www色官网| 熟女av电影| 只有这里有精品99| 欧美xxxx黑人xx丫x性爽| 国产一区有黄有色的免费视频| 麻豆久久精品国产亚洲av| 男女国产视频网站| 亚洲精品乱码久久久v下载方式| 色综合色国产| 大码成人一级视频| 久热久热在线精品观看| 国产精品久久久久久久电影| 深爱激情五月婷婷| 国产综合懂色| 免费高清在线观看视频在线观看| 好男人视频免费观看在线| 男女那种视频在线观看| 亚洲精品视频女| 校园人妻丝袜中文字幕| 日韩电影二区| 视频区图区小说| 亚洲四区av| 免费av观看视频| 日韩中字成人| 亚洲国产精品成人久久小说| 国产白丝娇喘喷水9色精品| 五月玫瑰六月丁香| 欧美 日韩 精品 国产| 在线a可以看的网站| 亚洲国产欧美在线一区| 国产精品蜜桃在线观看| 麻豆久久精品国产亚洲av| 欧美一区二区亚洲| 麻豆精品久久久久久蜜桃| 九草在线视频观看| 久久久国产一区二区| 美女高潮的动态| 大陆偷拍与自拍| 97在线视频观看| 蜜桃亚洲精品一区二区三区| av网站免费在线观看视频| 免费大片18禁| 国产成人a区在线观看| 久久久午夜欧美精品| 久久人人爽av亚洲精品天堂 | 久久鲁丝午夜福利片| 99热国产这里只有精品6| 国产在视频线精品| 久久精品国产亚洲av涩爱| 亚洲怡红院男人天堂| 黄色视频在线播放观看不卡| 国产男女超爽视频在线观看| 综合色av麻豆| 丝袜喷水一区| 97人妻精品一区二区三区麻豆| 国模一区二区三区四区视频| 特级一级黄色大片| 一边亲一边摸免费视频| 亚洲久久久久久中文字幕| 三级国产精品欧美在线观看| 欧美zozozo另类| 联通29元200g的流量卡| 久久久成人免费电影| 久久久久精品性色| av福利片在线观看| 色视频在线一区二区三区| 久久久a久久爽久久v久久| av在线观看视频网站免费| 一级毛片我不卡| 91精品一卡2卡3卡4卡| 亚洲美女视频黄频| 国产人妻一区二区三区在| 黄色一级大片看看| 日韩av免费高清视频| 18禁动态无遮挡网站| 麻豆久久精品国产亚洲av| av在线播放精品| 一级毛片aaaaaa免费看小| 亚洲av成人精品一二三区| 国产精品99久久99久久久不卡 | 国产成人aa在线观看| 国产欧美亚洲国产| 欧美性感艳星| 日韩欧美一区视频在线观看 | 国产午夜精品久久久久久一区二区三区| 97热精品久久久久久| 欧美老熟妇乱子伦牲交| 有码 亚洲区| 内地一区二区视频在线| 亚洲精品日韩av片在线观看| 在线免费观看不下载黄p国产| 欧美激情久久久久久爽电影| 亚洲最大成人av| 一级爰片在线观看| 国内揄拍国产精品人妻在线| 热re99久久精品国产66热6| 夜夜看夜夜爽夜夜摸| 欧美日韩视频高清一区二区三区二| 涩涩av久久男人的天堂| 国产一区二区三区av在线| 久久久久网色| 亚洲电影在线观看av| 午夜免费鲁丝| 熟女av电影| 国产男人的电影天堂91| 国产大屁股一区二区在线视频| 国产精品福利在线免费观看| 亚洲欧美一区二区三区国产| 在线a可以看的网站| 午夜亚洲福利在线播放| 亚洲精华国产精华液的使用体验| 大片电影免费在线观看免费| 精品99又大又爽又粗少妇毛片| 国产乱人视频| 高清欧美精品videossex| 黄色一级大片看看| 亚洲精品久久午夜乱码| 国产成人午夜福利电影在线观看| 在线观看三级黄色| 真实男女啪啪啪动态图| 精华霜和精华液先用哪个| 黄色视频在线播放观看不卡| 国产精品一区二区性色av| 男男h啪啪无遮挡| 国产精品人妻久久久久久| 高清日韩中文字幕在线| 99久久人妻综合| 亚洲av中文av极速乱| 国产亚洲av嫩草精品影院| 国产精品.久久久| 久久影院123| 国产日韩欧美在线精品| 免费不卡的大黄色大毛片视频在线观看| 晚上一个人看的免费电影| 日日啪夜夜撸| 亚洲人与动物交配视频| 国产爱豆传媒在线观看| 在现免费观看毛片| 亚洲欧美精品自产自拍| 国产在视频线精品| 国产av码专区亚洲av| 亚洲色图综合在线观看| 伊人久久精品亚洲午夜| 欧美一区二区亚洲| 中国美白少妇内射xxxbb| 久久人人爽人人爽人人片va| 精品久久久噜噜| 久久久成人免费电影| 国产精品蜜桃在线观看| 91aial.com中文字幕在线观看| 乱系列少妇在线播放| 高清午夜精品一区二区三区| 一本久久精品| 国产黄片美女视频| 91久久精品国产一区二区成人| 亚洲欧洲日产国产| 丝袜喷水一区| 亚洲国产精品专区欧美| 国产精品蜜桃在线观看| 精品人妻视频免费看| 水蜜桃什么品种好| 国产爱豆传媒在线观看| 亚洲国产色片| 高清午夜精品一区二区三区| 亚洲va在线va天堂va国产| 国产精品99久久久久久久久| 亚洲精品国产成人久久av| 亚洲人成网站高清观看| 国产精品一及| 日日啪夜夜爽| 国产精品av视频在线免费观看| 性色av一级| 中文天堂在线官网| 老司机影院成人| 99视频精品全部免费 在线| 少妇猛男粗大的猛烈进出视频 | av卡一久久| 伦精品一区二区三区| 一边亲一边摸免费视频| 久久精品熟女亚洲av麻豆精品| 免费电影在线观看免费观看| 亚洲精品乱码久久久v下载方式| 亚洲天堂av无毛| 色视频www国产| 天天躁夜夜躁狠狠久久av| 国产亚洲av嫩草精品影院| 成人亚洲精品一区在线观看 | 国产在视频线精品| 国产有黄有色有爽视频| 最近手机中文字幕大全| 国产av码专区亚洲av| 亚洲婷婷狠狠爱综合网| 欧美最新免费一区二区三区| 一区二区三区免费毛片| 国产精品一区二区在线观看99| 久久99热这里只频精品6学生| 久久亚洲国产成人精品v| 激情五月婷婷亚洲| 亚洲丝袜综合中文字幕| 有码 亚洲区| 国产色爽女视频免费观看| 亚洲欧洲国产日韩| 91精品国产九色| 男人舔奶头视频| 亚洲国产精品成人久久小说| 亚洲精品aⅴ在线观看| 99久久精品国产国产毛片| 欧美区成人在线视频| 国产精品久久久久久av不卡| 欧美最新免费一区二区三区| 欧美日韩国产mv在线观看视频 | 免费电影在线观看免费观看| 真实男女啪啪啪动态图| 久久久久久久久大av| 别揉我奶头 嗯啊视频| 国内揄拍国产精品人妻在线| 99热这里只有精品一区| 视频区图区小说| 亚洲精品456在线播放app| 免费看a级黄色片| 少妇熟女欧美另类| 久久精品人妻少妇| 亚洲精品成人av观看孕妇| 亚洲精品视频女| 午夜激情福利司机影院| 亚洲精品,欧美精品| 三级国产精品片| 国产精品偷伦视频观看了| 国产精品一二三区在线看| 欧美亚洲 丝袜 人妻 在线| 久久人人爽人人片av| 午夜福利在线在线| 一级黄片播放器| 亚洲精品久久久久久婷婷小说| 久久精品国产亚洲网站| av播播在线观看一区| 美女高潮的动态| 亚洲熟女精品中文字幕| 久久久久久久大尺度免费视频| 免费观看a级毛片全部| 91精品国产九色| 3wmmmm亚洲av在线观看| 亚洲av不卡在线观看| 深夜a级毛片| 久久99热6这里只有精品| 一区二区三区精品91| 国产精品久久久久久精品古装| 国产午夜精品久久久久久一区二区三区| 国产精品久久久久久精品古装| 成人黄色视频免费在线看| 特大巨黑吊av在线直播| 最新中文字幕久久久久| 国产 一区 欧美 日韩| 一级毛片 在线播放| 国产一区有黄有色的免费视频| av免费在线看不卡| 日韩视频在线欧美| 国产精品爽爽va在线观看网站| 久久这里有精品视频免费| 久久精品综合一区二区三区| 国产成人午夜福利电影在线观看| 在线观看美女被高潮喷水网站| av在线亚洲专区| 久久人人爽av亚洲精品天堂 | 亚洲精品日韩av片在线观看| 中文字幕制服av| 亚洲欧美成人综合另类久久久| 老司机影院毛片| 亚洲,一卡二卡三卡| 波野结衣二区三区在线| 99久国产av精品国产电影| 欧美精品人与动牲交sv欧美| 日韩一区二区三区影片| 3wmmmm亚洲av在线观看| 又爽又黄a免费视频| 18禁裸乳无遮挡动漫免费视频 | 男女边吃奶边做爰视频| 在线播放无遮挡| 天美传媒精品一区二区| 国产高清不卡午夜福利| 麻豆成人午夜福利视频| 2021天堂中文幕一二区在线观| 亚洲精品中文字幕在线视频 | 亚洲成人精品中文字幕电影| 狠狠精品人妻久久久久久综合| 国产伦精品一区二区三区视频9| 别揉我奶头 嗯啊视频| 欧美bdsm另类| 天堂俺去俺来也www色官网| 三级经典国产精品| 欧美激情国产日韩精品一区| www.色视频.com| 久久精品久久久久久久性| 国产精品偷伦视频观看了| 天堂俺去俺来也www色官网| freevideosex欧美| 能在线免费看毛片的网站| 午夜视频国产福利| 我的女老师完整版在线观看| 欧美成人精品欧美一级黄| 日韩不卡一区二区三区视频在线| av在线app专区| 国产成人福利小说| 国产精品人妻久久久久久| av国产精品久久久久影院| 九草在线视频观看| 久久99热这里只频精品6学生| 久久久精品免费免费高清| 久久精品久久久久久噜噜老黄| 国产精品蜜桃在线观看| 99热国产这里只有精品6| 欧美 日韩 精品 国产| 少妇丰满av| 秋霞在线观看毛片| 亚洲精品aⅴ在线观看| 精品一区二区三区视频在线| 人体艺术视频欧美日本| 一个人观看的视频www高清免费观看| 免费看光身美女| 亚洲国产欧美人成| 国产欧美日韩精品一区二区| 国产男女内射视频| 另类亚洲欧美激情| 国产国拍精品亚洲av在线观看| 亚洲久久久久久中文字幕| 看非洲黑人一级黄片| 99热这里只有是精品在线观看| 永久免费av网站大全| 嫩草影院入口| 日本熟妇午夜| 嫩草影院精品99| 国产精品国产av在线观看| 久久人人爽人人爽人人片va| av线在线观看网站| 五月伊人婷婷丁香| 秋霞在线观看毛片| 午夜日本视频在线| 97精品久久久久久久久久精品| 日韩av不卡免费在线播放| 简卡轻食公司| 亚洲av欧美aⅴ国产| 日本欧美国产在线视频| 一级毛片黄色毛片免费观看视频| 成人无遮挡网站| 亚洲av二区三区四区| 丝袜美腿在线中文| 国产精品.久久久| av在线播放精品| 亚洲国产日韩一区二区| 久久99热这里只频精品6学生| 国产精品99久久久久久久久| 综合色丁香网| 久久精品国产亚洲av涩爱| 深爱激情五月婷婷| 三级男女做爰猛烈吃奶摸视频| 水蜜桃什么品种好| 日韩精品有码人妻一区| 亚洲三级黄色毛片| 国产高清有码在线观看视频| 你懂的网址亚洲精品在线观看| 麻豆乱淫一区二区| 少妇人妻久久综合中文| 国产精品国产av在线观看| 欧美zozozo另类| 国产高潮美女av| 女的被弄到高潮叫床怎么办| 亚洲精品色激情综合| 人人妻人人爽人人添夜夜欢视频 | 亚洲av日韩在线播放| 麻豆精品久久久久久蜜桃| www.色视频.com| 18+在线观看网站| 王馨瑶露胸无遮挡在线观看| 亚洲精品视频女| av线在线观看网站| 精品一区在线观看国产| 少妇高潮的动态图| 黄色视频在线播放观看不卡| 成人国产麻豆网| 亚洲av中文字字幕乱码综合| 一个人观看的视频www高清免费观看| 身体一侧抽搐| 晚上一个人看的免费电影| 久久久国产一区二区| 岛国毛片在线播放| 禁无遮挡网站| 亚洲av欧美aⅴ国产| 国产精品蜜桃在线观看| 99热网站在线观看| tube8黄色片| 啦啦啦在线观看免费高清www| 国产精品三级大全| 国产v大片淫在线免费观看| 亚洲自拍偷在线| 极品教师在线视频| 亚洲欧美成人综合另类久久久| 国产久久久一区二区三区| 99久久精品热视频| 精品人妻一区二区三区麻豆| 中国三级夫妇交换| 99热这里只有是精品50| 日韩av免费高清视频| kizo精华| 日本爱情动作片www.在线观看| 国产精品.久久久| 国语对白做爰xxxⅹ性视频网站| 亚洲电影在线观看av| 亚洲国产精品成人久久小说| 日日啪夜夜撸| 亚洲精品456在线播放app| 日韩不卡一区二区三区视频在线| 国产在线一区二区三区精| av又黄又爽大尺度在线免费看| 人妻 亚洲 视频| 亚洲av电影在线观看一区二区三区 | 在线观看一区二区三区|