• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Symmetric Coupling of the Meshless Galerkin Boundary Node and Finite Element Methods for Elasticity

    2014-04-17 08:52:23XiaolinLi

    Xiaolin Li

    1 Introduction

    Meshless(or meshfree)methods have been proposed and achieved remarkable progress in the past two decades[Atluri(2004);Li and Liu(2004);Liu(2009)].Compared with traditional mesh-based numerical methods such as the finite element method(FEM)and the boundary element method(BEM),meshless methods get rid of,or at least alleviate,the difficulty of meshing and remeshing the entire structure by simply adding or deleting nodes.Meshless methods have developed so fast that they are applied successfully to a variety of science and engineering problems.

    The moving leastsquare(MLS)is an approximation scheme of constructing continuous functions from a set of unorganized sampled point values.Since the numerical approximations start from scattered nodes instead of elements,the MLS scheme is one of the most extensively used schemes to form the meshless shape functions.Some MLS-based meshless methods,such as the element-free Galerkin(EFG)method[Liu(2009)],theh-pmeshless method[Duarte and Oden(1996)],the moving least square reproducing kernel method(MLSRKM)[Li and Liu(1996)]and the meshless local Petrov-Galerkin(MLPG)method[Sladek,Stanak,and Han(2013)]have been developed.They are domain type,as the FEM,in which the problem domain is discretized by nodes.

    The boundary integral equation(BIE)is an important and attractive computational tool as it can reduce the dimensionality of the considered problem by one.The boundary type meshless methods are developed by the combination of the meshless idea with BIEs,such as the boundary node method(BNM)[Mukherjee and Mukherjee(2005)],the boundary cloud method(BCM)[Li and Aluru(2002)],the hybrid boundary node method(HBNM)[Miao,He,and Luo(2012)]and the boundary face method(BFM)[Zhang,Qin,Han,and Li(2009)].In these methods,the MLS scheme is used to generate the shape functions on the boundary of a domain.These methods take the advantages of both the BIE in dimension reduction and the MLS scheme in elements elimination.However,since the MLS scheme lacks the delta function property,they cannot exactly satisfy boundary conditions.The technique used in the BNM to impose boundary conditions doubles the number of system equations.This technique is also used in the BCM,the HBNM and the BFM,together with the addition of a penalty formulation.

    Liew,Cheng,and Kitipornchai(2006)developed an improved MLS scheme that uses weighted orthogonal polynomials as basis functions.The improved MLS scheme has been introduced into BIEsto develop a boundary element-free method(BEFM).Because the improved MLS scheme still lacks the delta function property,boundary conditions in the BEFM are implemented with constraints.To construct meshless shape functions with delta function properties,Li and Li(2014)discussed mathematically an improved interpolating MLS scheme and developed an interpolating BEFM for potential problems and unilateral problems.Besides,Liuet al.developed the point interpolation method(PIM)and introduced it into BIEs to produce boundary PIMs[Gu and Liu(2003);Liu(2009)].Recently,Li(2014)developed a dual boundary node method(DBNM)for implementation of boundary conditions in BIEs-based meshless methods.In the DBNM,boundary conditions are introduced directly into dual BIEs including the conventional BIE and hypersingular BIE.Consequently,the DBNM can apply boundary conditions directly and easily,and the number of both unknowns and system equations in the DBNM is only half of that in the BNM.

    Li and Zhu(2009b)and Li(2011a)developed a boundary type meshless method called the Galerkin boundary node method(GBNM).It combines the MLS scheme with a variational(weak)version of BIEs.The MLS scheme is implemented for constructing the trial and test functions of the variational form,thus only the boundary of a problem domain is discretized by a set of scattered nodes instead of elements.Unlike other MLS-based methods mentioned above,boundary conditions in the GBNM do not present any difficulty and can be implemented with ease via multiplying the MLS shape function and integrating on the boundary.The GBNM has been applied to elastic problems with pure displacement boundary conditions[Li and Zhu(2009a)]and pure traction boundary conditions[Li and Li(2013)].It is well known that mixed boundary value problems play an important role in many different applications of physics,mechanics and engineering.In this paper,the GBNM is further developed for solving elastic problems with mixed boundary conditions of displacement and traction type.

    In contrast with other boundary type meshless methods aforementioned,another outstanding feature of the GBNM is the conservation of the symmetry and positive definiteness of the variational problems in the process of numerical implementation.The property of symmetry can be an added advantage in coupling the GBNM with other numerical methods.Some coupled methods,such as the coupled BEM and FEM[Brebbia and Georgion(1979);Stephan(2004);Beer(2001);Ganguly,Layton,and Balakrishna(2000);Haas and Kuhn(2003);Dong and Atluri(2012a,b,2013)],the coupled EFG and FEM[Belytschko and Organ(1995)],the coupled MLPG and FEM[Liu(2009)],the coupled MLPG and BEM[Tadeu,S-tanak,and Sladek(2013)],the coupled improved EFG and BEM[Zhang,Liew,and Cheng(2008)],and the coupled reproducing kernel particle boundary element-free method(RKPBEFM)and FEM[Qin and Cheng(2008)],have been developed.In this paper,based on the coupled techniques propose by Ganguly,Layton,and Balakrishna(2000),Haas and Kuhn(2003),Zhang,Liew,and Cheng(2008)and Qin and Cheng(2008),a direct symmetric coupling of the GBNM and the FEM is also developed for elasticity problems.In the present coupled method,the resulting coupling matrix is symmetric and positive definite.

    Error analysis and convergence study,which ensure convergence of numerical methods,are crucial in meshless research.The associated mathematical proofs guarantee that meshless methods will converge to the true solution.Over the past two decades,it has been developed so fast in the areas of meshless research from both computational and mathematical point of views.A large amount of research has been devoted to deriving error estimation for MLS-based domain type meshless methods such as theh-pmeshless method[Duarte and Oden(1996)],the MLSRKM[Li and Liu(1996)]and the finite point method[Cheng and Cheng(2008)].Nevertheless,although boundary type meshless methods perform very well in practice,not much is rigorously known on the mathematical foundation of these schemes.Until now,a rigorous mathematical analysis of boundary type meshless methods was given for the GBNM for potential problems[Li and Zhu(2009b);Li(2011a,2012)],for Stokes problems[Li and Zhu(2009c);Li(2011b)]and for elasticity problems with pure displacement or traction boundary conditions[Li and Zhu(2009a);Li and Li(2013)].Thus,one aim of this paper is to provide a solid mathematical foundation to the GBNM for the mixed boundary value problems of elastostatics.Besides,the error analysis and convergence study of the coupled GBNM-FEM are also presented in Sobolev spaces.

    An outline of this paper is as follows.In Section 2 we give a detailed numerical implementation and error analysis of the GBNM for elasticity problems with mixed boundary conditions.Section 3 deals with the GBNM-FEM coupling approach and the corresponding error analysis.Numerical examples are presented in Section 4.Section 5 contains conclusions.

    2 The GBNM for mixed elasticity problems

    2.1 BIEs

    Let ? be a bounded or unbounded domain in Rd(d=2,3)with boundary Γ =Γu∪Γt,Γu∩Γt=/0,Γu/=/0,with given displacement data on Γu,and traction data on Γt.In linear elasticity for isotropic materials,the governing equation is

    where u=(u1,u2,···,ud)Tis the displacement field;λandμare classical Lamé constants;?,? and?·stand for the Laplacian,gradient and divergence operators,respectively.Suitable boundary conditions are associated with this field equation.They can be of the following types:

    Eqs.(1)-(3)compose the standard mixed boundary value problem of linear elasticity.The associated BIE is[Zhu and Yuan(2009)]

    Here,I is the identity matrix,r=|x-y|,E(x,y)=-lnrford=2 andE(x,y)=1?rford=3.LetTbe the differential operator which transforms a displacement field in ? into the corresponding traction on its boundary.When the derivatives are taken with respect to x or y,then we denote it byTxandTy,respectively.Under this notation,Ty(x,y)=(TyU(x,y))Tis the strongly singular fundamental solution.

    In Eq.(4),letting x tend to Γ,we obtain the strongly singular displacement BIE

    Then applying the operatorTxto Eq.(5)yields the hypersingular traction BIE

    In Eqs.(5)and(6),we have used the standard notations for the boundary integral operators defined on Γ,

    Here,Tx(x,y)=TxU(x,y)and S(x,y)=TxTy(x,y)are the strongly singular and hypersingular fundamental solutions,respectively.

    Obviously,the kernel functions are symmetric,i.e.,U=UT,S=STand Ty=TTx.Thus,to find the complete Cauchy data[u,t]|Γand to achieve a symmetric formulation,Eq.(5)is used where the boundary traction t is unknown,while Eq.(6)is used where the boundary displacement u is unknown.Then according to boundary conditions(2)and(3),we get the following BIEs:

    2.2 Variational formulation

    Let

    denote the usual Sobolev space of functions defined on Γ[Zhu and Yuan(2009)].In the following,we often write‖·‖τ,Γfor the Sobolev norm‖·‖Hτ(Γ).

    Besides,let H-τ(Γ)be the dual space of Hτ(Γ)with respect to the duality〈·,·〉Γwhich is defined for functionswandvby

    Then Eqs.(7)and(8)lead to the following variational problem:

    The unique solvability of the variational problem(9)follows from the continuity of the boundary integral operators introduced above and the coerciveness of the operatorsVandD.

    2.3 Approximation

    Let{xi}Ni=1be a set ofNboundary nodes xi∈Γ and let

    whereMis an approximation operator,tiand uiare the nodal values,and Φiis the shape function of the MLS approximation,which can be defined as[Li and Zhu(2009b);Li(2011a)]

    where s is a local coordinate of the boundary point x on Γ,Pj(s)is a basis of orderβconsisting of monomials in s,∧(x)={I1,I2,···,Iκ}is the set of the global sequence numbers of boundary nodes that lie on the influence domain of x,and the matrices A(s)and B(s)are defined by

    In what follows,we assume that there exists a positive numberγ≥1?2 such that the chosen weight functionwiisγ-times continuously differentiable and the boundary Γ isγ-times piecewise continuous.Then we can conclude that the MLS shape function Φiisγ-times continuously differentiable[Liand Zhu(2009b);Li(2011a)].

    be the meshless space.Then the approximation of the variational problem(9)is

    2.4 Discretization

    Inserting Eqs.(10)and(11)into the variational problem(14),we get the following linear algebraic equations

    for allk,i=1,2,···,Nuandm,j=Nu+1,Nu+2,···,N.The components of the right-hand side are given by

    for allk=1,2,···,Nuandm=Nu+1,Nu+2,···,N.

    From the symmetry of the kernel functions and the coerciveness of the operatorsVandD,we conclude that the block matrices V and D are symmetric and positive definite.Hence,the stiffness matrix in Eq.(15)is block skew-symmetric and positive definite.Then,one can solve Eq.(15)by a generalized Krylov subspace method such as the generalized minimum residual method(GMRES).Since this method can not utilize symmetry and positive definiteness simultaneously and sufficiently,equivalent system equations deserve to be established for the practical numerical implementation.

    On the other hand,the symmetry and positive definiteness of the block matrix V indicate that it is invertible.Thus,Xtcan be obtained from the first of Eq.(15)as

    Then,inserting Eq.(21)into the second of Eq.(15)leads to the Schur complement system

    The stiffness matrix in Eq.(22)is symmetric and positive definite,a property that enables the use of more efficient equation solvers and therefore leads to substantial reductions in solution time.Moreover,this property can be an added advantage in coupling the GBNM with the FEM.After solving the reduced system(22),the unknown vector Xtcan be computed in a post processing step via Eq.(21)from the now known vector Xu.Finally,the yet unknowns t on Γuand u on Γtcan be computed using Eqs.(10)and(11),respectively.Then,the approximate solution uhof the mixed elastic problem(1)-(3)can be computed from Eq.(4)as

    Eqs.(16)-(20)and(23)have integrations over the boundary.As in many other meshless methods such as the EFG and the BNM,cells are used in this research to approximate the boundary and carry out numerical integration.It is worth mentioning that cells are used just for integration,and pose no restriction on shape or compatibility.In these integrations,if x and y belong to distinct cells,the integrands are regular and thus,the associated double integrals can be evaluated by usual Gaussian quadrature formulas.Otherwise,these double integrals are weakly singular,strongly singular or hypersingular.There have been various regularization procedures proposed in the past to handle various singular integrals.Li(2012)developed a technique to tackle the weakly singular,strongly singular and hypersingular integrations simultaneously.This technique is attractive and is used to carry out the singular integrations in this research.

    2.5 Error analysis

    In this subsection,we will estimate the error of using the GBNM for solving the mixed elastic problem(1)-(3).In what follows,byCwe will denote a general constant which is independent ofhand may have different values at different occurrences.

    Lemma 2.1(Li and Zhu(2009b);Li(2011a))Let M be the MLS approximation operator and let P be the L2-projection onto H h,then for anyv∈Hm+1(Γ)with0≤m≤γ,we have

    Theorem 2.1Let(t,u)and(th,uh)be the solutions of variational problems(9)and(14),respectively.Then if(t,u)∈H m(Γ),we have

    Proof.Subtraction Eq.(14)from Eq.(9)leads to

    then using(Pt,Mu)-(th,uh)∈H hyields

    According to the coerciveness and continuity of the bilinear formB(·,·),we have

    Gathering Eqs.(25)-(27)and using Lemma 2.1 we finally obtain

    which completes the proof.

    Theorem 2.2Under the conditions of Theorem 2.1,

    Proof.From the duality argument it follows that

    SinceP(τ,μ)∈H h,from Eq.(24)one gets

    B((t,u)-(th,uh),(τ,μ))=B((t,u)-(th,uh),(τ,μ)-P(τ,μ))

    Then using the continuity ofB(·,·),Theorem 2.1 and Lemma 2.1 yields

    Finally,inserting Eq.(29)into Eq.(28)ends the proof.

    Theorem 2.3Letuanduh be defined by Eqs.(4)and(23),respectively.Assume that(t,u)∈H m(Γ)with1?2≤m≤γ.Then for anyx∈?with ?x=miny∈Γ|x-y|≥δ>0,we have

    Proof.Subtraction Eq.(23)from Eq.(4)yields

    Using?x≥δ>0,we have

    Thus,substituting Eq.(31)into Eq.(30)and invoking Theorem 2.2 end the proof.Theorem 2.3 indicates that the approximate solution obtained by the meshless GBNM converges to the analytical solution of the elastic problem(1)-(3).The same type of estimate can be obtained for the stress tensorσ.More specifically,we have

    Theorem 2.4Let σ be the exact stress solution of the elastic problem(1)-(3)and let σh be the corresponding GBNM solution,then under conditions of Theorem 2.3,

    Theorems 2.3 and 2.4 indicate that the errors of stress and displacement in the meshless GBNM are all of the same convergence rate.

    Furthermore,the convergence can be established in energy norms.

    Theorem 2.5Letuanduh be defined by Eqs.(4)and(23),respectively.If(t,u)∈H m(Γ)with1?2≤m≤γ,then

    Proof.Since Eq.(4)defines an isomorphism fromH-1/2(Γ)ontoH1(?),we have

    The proof is completed via invoking Theorem 2.1.

    3 Coupling of the GBNM and the FEM

    3.1 Coupled formulation

    As shown in Fig.1,a bounded or unbounded problem domain ? is decomposed into two disjoint sub-domains,?Gand ?F,with the GBNM-FEM coupling interface ΓI.The GBNM is used in ?Gand the FEM is used in ?F.Without loss of generality,it is assumed that both displacement and traction boundary conditions are given on ΓGand ΓF.The boundaries of ?Gand ?Fare denoted as ΓG= ΓuG∪ΓtG∪ΓIand ΓF= ΓuF∪ΓtF∪ΓI,respectively.Note that if the problem domain ? is unbounded,as shown in Fig.1(b),both the displacement boundary Γuand traction boundary Γtare empty.We consider the model boundary value problems as

    Figure 1:The coupling domain of the GBNM and the FEM.(a)the problem domain ? is bounded and(b)the problem domain ? is unbounded.

    Then,as in Sections 2.2 and 2.4,evaluating Eqs.(36)and(37)in the sense of Galerkin yields

    where TIand Tuare the traction vector at the nodes on ΓIand ΓuG,respectively;UIand Utare the displacement vector at the nodes on ΓIand ΓtG,respectively.In the matrices Vij,Aijand Dij,the first index denotes the position of the source point x and the second index stands for the position of the field point y.

    Since both the displacements and tractions are unknown on the interface ΓI,applying Eqs.(5)and(6)for x∈ΓIwe gain

    Then evaluating Eqs.(39)and(40)in the sense of Galerkin yields

    According to the scheme used for evaluating an equivalent nodal force[Beer(2001)],we can define a vector of equivalent nodal forces on the interface ΓIas

    As in Section 2.4,Eq.(42)can be transformed to the following Schur complement system by eliminating the traction vectors,

    Eq.(43)correlates the nodal displacements with nodal forces.

    On the other hand,the FEM sub-domain ?Fyields the following system of equation by the well-known finite element implementation,

    where KFis the domain stiffness matrix,U and FFare the nodal displacements and nodal forces,respectively.This equation can be split into two parts corresponding to a region containing the interfacial degrees of freedom and a region containing the non-interfacial degrees of freedom,

    Moreover,the compatibility and equilibrium conditions on the coupling interface ΓImust be satisfied.Therefore,the displacements on ΓIfor ?Fand ?Gshould be equal,i.e.

    Finally,combining Eqs.(43)and(44),in view of Eqs.(45)and(46),we obtain the coupled equations as follows:

    Since the FEM matrix in Eq.(44)is obtained from the usual energy based FEM approaches,the resultant matrix is symmetric and positive definite.The sum of the symmetric and positive definite matrices continues to be symmetric and positive definite.Thus the resulting coupling matrix presented in Eq.(47)is symmetric and positive definite.

    3.2 Error analysis

    In this subsection,we will estimate the error of using the symmetric coupled GBNMFEM for solving the mixed elastic problem(32)-(35).In what follows,letube the exact displacement solution of the elastic problem and letuhbe the approximated displacement obtained by the GBNM,the FEM or the coupled GBNM-FEM.

    In the GBNM sub-domain ?G,using Theorem 2.5 we have

    Theorem 3.1Let hG be the spacing of boundary nodes in the GBNM sub-domain?G.Then

    In the FEM sub-domain ?F,let us use a regular partition of the interior domain ?Fand lethFdenote the maximum of the longest element sides.On these elements,letHFdenote a finite dimensional subspaces ofH1(?F),satisfying

    Theorem 3.2The error estimation in the FEM sub-domain?F is

    As stated in the previous section,when the coupled GBNM-FEM is used,the problem domain ? is decomposed into two disjoint sub-domains,?Gand ?F.Thus,

    As a consequence,the error estimation of the coupled GBNM-FEM can be established by combining Theorems 3.1 and 3.2.

    Theorem 3.3The error estimation in the problem domain?is

    4 Numerical examples

    4.1 Examples of the GBNM

    Two examples are selected to demonstrate the applicability of the GBNM for elasticity problems.

    The first example that is considered is a three-dimensional problem in a cubic domain.The cube is bounded by the planesx1=±1,x2=±1 andx3=±1.The following analytical solution is used,

    Displacements are imposed on facesx3=±1 and boundary tractions on all other faces.The material constants that are used in our analysis are Young’s modulusE=1.0 and Poisson’s rationν=0.25.

    Figure 2:Results of(a)displacement u and(b)stress σ for the cubic problem.

    Fig.2 shows a comparison between the numerical results with the analytical solutions for displacement u and stressσalong the arc given by the formulasx1=sinβ,x2=0,x3=cos(2β),β∈[0,0.5π].In this analysis,the cubic surface is discretized using 48 distributed nodes.It is clearly shown that the numerical results agree very well with the analytical ones.

    To investigate the convergence of the present method,three different nodal arrangements of 48,192 and 768 boundary nodes have been used.Fig.3 shows the log-log plot of errors with respect to the nodal spacing.As we expected,the numerical results from the proposed meshless method gradually converge to the analytical values along with the decrease of the nodal spacing.

    Figure 3:Convergence of the GBNM.

    Figure 4:A cylindrical tube subjected to uniform internal pressure.

    The second example to be considered is a cylindrical tube subjected to uniform internal pressure.Due to symmetry,only the upper right quadrant of the structure is modeled as shown in Fig.4.The plane stress case is considered,and the parameters are chosen as Young’s modulusE=10,Poisson’s rationν=0.25 and internal pressurep=1.0.Besides,the geometry is chosen asa=1 andb=2.In the polar coordinate system(r,θ),the analytical displacements are[Timoshenko and Goodier(1970)]

    and the corresponding stresses are

    The numerical results by the GBNM are plotted in Fig.5.We again verify these results with the available analytical solution.In this analysis,the boundary is discretized by 60 boundary nodes(12 nodes on AB,CD and AD,and 24 nodes on BC).As expected,these numerical results agree well with the analytical values.

    Figure 5:Results of(a)radial displacement ur and(b)stress σ along the radius.

    4.2 Examples of the coupled GBNM-FEM

    In this subsection,we will present two numerical examples to show the accuracy and efficiency of the coupled GBNM-FEM of this paper.

    Consider a beam subjected to a parabolic traction at the free end as shown in Fig.6.The beam is of lengthLand heightH,and has a unit thickness.The beam is assumed to be in a state of plane stress.The analytical solution for this problem is[Timoshenko and Goodier(1970)]

    Figure 6:A beam and its computational model.

    The beam is separated into two parts.The GBNM is used in the right part and the FEM is used in the left part.The parameters are taken asE=3.0×107kPa,ν=0.3,L=48m,H=12m andP=1000kN in the computation.

    The numerical results,which are furnished by the coupled method,are shown in Fig.7 together with the analytical solutions.In this analysis,48 boundary nodes are used in the GBNM region,and 128 quadrangular FEM elements are used in the FEM region.From this figure,we can find that the numerical solutions are in excellent agreement with the analytical solutions.

    Figure 7:Results of displacement u2 at x2=0.

    The convergence is presented in Fig.8,wherehis equivalent to the maximmum element size in the FEM in this case.We can find that the greater precision of the solution will be obtained when more nodes are selected.

    Figure 8:Convergence of the coupled GBNM-FEM.

    Next,we consider a semi-infinite soil-structure interaction problem.As shown in Fig.9(a),the FEM is used in the structure region ?F,and the GBNM is used in the infinite soil foundation region ?G.As in[Brebbia and Georgion(1979);Qin and Cheng(2008)],the infinite foundation can be treated by truncating the semi-infinite plane at a finite distance from the structure.The computational model is plotted in Fig.9:36 boundary nodes are used in the GBNM region,and 48 triangular elements are used in the FEM region.

    Consider five concentrated vertical loads on the top of the structure.Table 1 gives the vertical displacement on the top of the structure.The results obtained using the FEM[Brebbia and Georgion(1979)],the coupled BEM-FEM[Brebbia and Georgion(1979)]and the coupled RKPBEFM-FEM[Qin and Cheng(2008)]are also given in the table for comparison.Although no analytical solutions exist for such a complex problem,the solutions of the presented coupled method are in good agreement with the results of other methods.

    5 Conclusions

    The meshless GBNM is developed in this paper for the numerical solution of mixed elasticity problems in two and three dimensions.In this method,an equivalent variational form of BIEs is used,thus boundary conditions are applied directly and easily.Another prominent feature of the present approach is that the resulting system matrix is not only symmetric but also positive definite.This paper also examines an efficient symmetric coupling of the GBNM with the FEM.In the coupled method,the resulting coupling matrix is symmetric and positive definite.Theoretical error estimates of the GBNM and the coupled GBNM-FEM are established.From the error analysis,it is shown that the error bound of the numerical solution is directly related to the nodal spacing.Some numerical examples have been given and the numerical results are accurate and are in agreement with the theoretical analysis.

    Figure 9:Schematic diagram for the problem of a structure standing on a semiinfinite foundation.(a)The coupled GBNM/FEM model.(b)Meshes and loads on the FEM region.

    Table 1:Vertical displacement(×10-4)along top of the structure

    Acknowledgement:This work was supported by the National Natural Science Foundation of China(No.11101454),the Educational Commission Foundation of Chongqing of China(No.KJ130626),the Natural Science Foundation Project of CQ CSTC(No.cstc2013jcyjA30001),and the Program of Chongqing Innovation Team Project in University(No.KJTD201308).

    Atluri,S.N.(2004):The Meshless Method(MLPG)for Domain&BIE Discretizations.Tech.Science Press,California.

    Beer,G.(2001):Programming the Boundary Element Method.Wiley,Chichester.Belytschko,T.;Organ,D.(1995):Coupled finite element-element-free Galerkin method.Computational Mechanics,vol.17,pp.186–195.

    Brebbia,C.A.;Georgion,P.(1979): Combination of boundary and finite elements in elastostatics.Applied Numerical Mathematics,vol.3,pp.212–219.

    Cheng,R.;Cheng,Y.(2008):Error estimates for the finite point method.Applied Numerical Mathematics,vol.58,pp.884–898.

    Dong,L.;Atluri,S.N.(2012): Development of 3D Trefftz voronoi cells with ellipsoidal voids/or elastic/rigid inclusions for micromechanical modeling of heterogeneous materials.CMC:Computer Materials&Continua,vol.30,pp.39–82.

    Dong,L.;Atluri,S.N.(2012):SGBEM(using non-hyper-singular traction BIE),and super elements,for non-collinear fatigue-growth analyses of cracks in stiffened panels with composite-patch repairs.CMES:Computer Modeling in Engineering&Sciences,vol.89,pp.417–458.

    Dong,L.;Atluri,S.N.(2013):SGBEM Voronoi Cells(SVCs),with embedded arbitrary-shaped inclusions,voids,and/or cracks,for micromechanical modeling of heterogeneous materials.CMC:Computer Materials&Continua,vol.33,pp.111–154.

    Duarte,C.A.;Oden,J.T.(1996):H-p clouds—an h-p meshless method.Numerical Methods for Partial Differential Equations,vol.12,pp.675–705.

    Ganguly,S.;Layton,J.B.;Balakrishna,C.(2000): Symmetric coupling of multi-zone curved Galerkin boundary elements with finite elements in elasticity.International Journal for Numerical Methods in Engineering,vol.48,pp.633–654.

    Gu,Y.T.;Liu,G.R.(2003):Hybrid boundary point interpolation methods and their coupling with the element free Galerkin method.Engineering Analysis with Boundary Elements,vol.27,pp.905–917.

    Haas,M.;Kuhn,G.(2003): Mixed-dimensional,symmetric coupling of FEM and BEM,Engineering Analysis with Boundary Elements.Engineering Analysis with Boundary Elements,vol.27,pp.575–582.

    Li,F.;Li,X.L.(2014): The interpolating boundary element-free method for unilateral problems arising in variational inequalities.Mathematical Problems in Engineering,vol.2014,pp.Article ID 518727.

    Li,G.;Aluru,N.R.(2002): Boundary cloud method:a combined scattered point/boundary integral approach for boundary-only analysis.Computer Methods in Applied Mechanics and Engineering,vol.191,pp.2337–2370.

    Li,S.F.;Liu,W.K.(1996):Moving least square reproducing kernel method(II)Fourier analysis.Computer Methods in Applied Mechanics and Engineering,vol.139,pp.159–193.

    Li,S.F.;Liu,W.K.(2004):Meshfree Particle Methods.Springer,Berlin.

    Li,X.L.(2011): Meshless Galerkin algorithms for boundary integral equations with moving least square approximations.Applied Numerical Mathematics,vol.61,pp.1237–1256.

    Li,X.L.(2011):The meshless Galerkin boundary node method for Stokes problems in three dimensions.International Journal for Numerical Methods in Engineering,vol.88,pp.442–472.

    Li,X.L.(2012): Application of the meshless Galerkin boundary node method to potential problems with mixed boundary conditions.Engineering Analysis with Boundary Elements,vol.36,pp.1799–1810.

    Li,X.L.(2014):Implementation of boundary conditions in BIEs-based meshless methods:A dual boundary node method.Engineering Analysis with Boundary Elements,vol.41,pp.139–151.

    Li,X.L.;Li,S.L.(2013):A meshless Galerkin method with moving least square approximations for infinite elastic solids.Chinese Physics B,vol.22,pp.080204.

    Li,X.L.;Zhu,J.L.(2009): A Galerkin boundary node method for twodimensional linear elasticity.CMES:Computer Modeling in Engineering&Sciences,vol.45,pp.1–29.

    Li,X.L.;Zhu,J.L.(2009):A Galerkin boundary node method and its convergence analysis.Journal of Computational and Applied Mathematics,vol.230,pp.314–328.

    Li,X.L.;Zhu,J.L.(2009): A meshless Galerkin method for Stokes problems using boundary integral equations.Computer Method in Applied Mechanics Engineering,vol.198,pp.2874–2885.

    Liew,K.M.;Cheng,Y.;Kitipornchai,S.(2006):Boundary element-free method(BEFM)and its application to two-dimensional elasticity problems.International Journal for Numerical Methods in Engineering,vol.65,pp.1310–1332.

    Liu,G.R.(2009):Mesh Free Methods:Moving Beyond the Finite Element Method.CRC Press,Boca Raton.

    Miao,Y.;He,T.G.;Luo,H.(2012): Dual hybrid boundary node method for solving transient dynamic fracture problems.CMES:Computer Modeling in Engineering&Sciences,vol.85,pp.481–498.

    Mukherjee,S.;Mukherjee,Y.(2005):Boundary Methods:Elements,Contours,and Nodes.CRC Press,Boca Raton.

    Qin,Y.;Cheng,Y.(2008):Combination of the reproducing kernel particle boundary element-free method and the finite element method for elasticity.Chinese Journal of Solid Mechanics,vol.29,pp.205–211.

    Sladek,J.;Stanak,P.;Han,Z.D.(2013):Applications of the MLPG method in engineering&sciences:A review.CMES:Computer Modeling in Engineering&Sciences,vol.92,pp.423–475.

    Stephan,E.P.(2004):Coupling of Boundary Element Methods and Finite Element Methods.Encyclopedia of Computational Mechanics,Edited by E.Stein,R.Borst and T.J.R.Hughes,Volume 1:Fundamentals,pp.375–412.

    Tadeu,A.;Stanak,P.;Sladek,J.(2013):A coupled BEM-MLPG technique for the thermal analysis of non-homogeneous media.CMES:Computer Modeling in Engineering&Sciences,vol.93,pp.489–516.

    Timoshenko,S.P.;Goodier,J.N.(1970):Theory of Elasticity.McGraw-Hill,New York.

    Zhang,J.;Qin,X.;Han,X.;Li,G.(2009):A boundary face method for potential problems in three dimensions.International Journal for Numerical Methods in Engineering,vol.80,pp.320–337.

    Zhang,Z.;Liew,K.M.;Cheng,Y.(2008):Coupling of the improved elementfree Galerkin and boundary element methods for two-dimensional elasticity problems.Engineering Analysis with Boundary Elements,vol.32,pp.100–107.

    Zhu,J.L.;Yuan,Z.Q.(2009):Boundary Element Analysis.Science Press,Beijing.

    永久免费av网站大全| 亚洲欧美精品专区久久| 十分钟在线观看高清视频www | 国产男人的电影天堂91| 久久精品久久精品一区二区三区| 国产精品嫩草影院av在线观看| 一级黄片播放器| 内地一区二区视频在线| 欧美日韩亚洲高清精品| 久久毛片免费看一区二区三区| 女性生殖器流出的白浆| 亚洲精品亚洲一区二区| 亚洲av福利一区| 日韩成人av中文字幕在线观看| 一本久久精品| 性色av一级| av线在线观看网站| 亚洲精品一二三| 岛国毛片在线播放| 久久女婷五月综合色啪小说| 又爽又黄a免费视频| 观看av在线不卡| 成人亚洲精品一区在线观看 | 熟妇人妻不卡中文字幕| 欧美日韩亚洲高清精品| 高清毛片免费看| 乱码一卡2卡4卡精品| 丝瓜视频免费看黄片| 免费在线观看成人毛片| 在线 av 中文字幕| 久久97久久精品| 偷拍熟女少妇极品色| 舔av片在线| 丰满迷人的少妇在线观看| 亚洲国产精品一区三区| 国产精品精品国产色婷婷| 成人毛片a级毛片在线播放| 99视频精品全部免费 在线| 亚洲国产毛片av蜜桃av| 亚洲精品一二三| 国产淫语在线视频| 中文字幕久久专区| 久久精品国产亚洲网站| 99久久综合免费| 久久影院123| 最近2019中文字幕mv第一页| 啦啦啦视频在线资源免费观看| 日韩强制内射视频| 亚洲内射少妇av| a级毛片免费高清观看在线播放| 午夜激情久久久久久久| 国产男女内射视频| 日韩强制内射视频| 一本—道久久a久久精品蜜桃钙片| 国产精品秋霞免费鲁丝片| 男女免费视频国产| av福利片在线观看| 在线看a的网站| 午夜福利高清视频| 日韩av不卡免费在线播放| 少妇高潮的动态图| 大香蕉久久网| 免费看不卡的av| 国产在线视频一区二区| 久久人人爽人人片av| 插阴视频在线观看视频| 国内精品宾馆在线| 久久韩国三级中文字幕| 简卡轻食公司| 国产视频内射| 熟女人妻精品中文字幕| 亚洲成人一二三区av| 97在线人人人人妻| kizo精华| 看十八女毛片水多多多| 国产女主播在线喷水免费视频网站| 哪个播放器可以免费观看大片| 搡女人真爽免费视频火全软件| 国产亚洲欧美精品永久| 男女国产视频网站| 一级毛片我不卡| 国产乱来视频区| 久久精品国产a三级三级三级| 久热这里只有精品99| 国产精品不卡视频一区二区| 全区人妻精品视频| 高清黄色对白视频在线免费看 | 国产欧美亚洲国产| www.av在线官网国产| av福利片在线观看| 国产熟女欧美一区二区| 免费人妻精品一区二区三区视频| 亚洲国产精品专区欧美| 18禁裸乳无遮挡动漫免费视频| 我的女老师完整版在线观看| 十分钟在线观看高清视频www | 激情五月婷婷亚洲| 18禁在线无遮挡免费观看视频| 亚洲av免费高清在线观看| 国产老妇伦熟女老妇高清| 久久精品久久久久久久性| 国产精品蜜桃在线观看| 成年免费大片在线观看| 晚上一个人看的免费电影| 国产人妻一区二区三区在| 国产黄色视频一区二区在线观看| 亚洲精品一区蜜桃| 五月开心婷婷网| 中文字幕av成人在线电影| 少妇人妻久久综合中文| 国产欧美另类精品又又久久亚洲欧美| 卡戴珊不雅视频在线播放| 18禁动态无遮挡网站| 不卡视频在线观看欧美| 精品久久久久久久久亚洲| 激情 狠狠 欧美| 最近的中文字幕免费完整| 成人午夜精彩视频在线观看| 久久精品人妻少妇| 久久久精品94久久精品| 一级黄片播放器| 亚洲国产精品999| 久久99蜜桃精品久久| 观看美女的网站| 亚洲av不卡在线观看| 国产黄片美女视频| 亚洲av.av天堂| 啦啦啦中文免费视频观看日本| av不卡在线播放| 欧美高清性xxxxhd video| 成人综合一区亚洲| 日韩欧美一区视频在线观看 | 成人亚洲欧美一区二区av| 亚洲av中文av极速乱| 国产精品一及| 精品少妇久久久久久888优播| 水蜜桃什么品种好| av专区在线播放| 国产精品.久久久| 22中文网久久字幕| 国产一区二区在线观看日韩| 男女国产视频网站| 国产淫片久久久久久久久| 欧美一级a爱片免费观看看| 大香蕉久久网| 日韩中字成人| 观看美女的网站| 国产精品熟女久久久久浪| 又爽又黄a免费视频| 国产又色又爽无遮挡免| 久久人妻熟女aⅴ| 亚洲欧美日韩无卡精品| 久久久久久伊人网av| 亚洲一区二区三区欧美精品| 一级毛片电影观看| 大片免费播放器 马上看| 国产老妇伦熟女老妇高清| 国产精品久久久久久精品古装| 成人综合一区亚洲| 欧美xxⅹ黑人| 国产黄色免费在线视频| 啦啦啦在线观看免费高清www| 91久久精品国产一区二区成人| 免费看日本二区| 国产精品国产av在线观看| 交换朋友夫妻互换小说| 精品一区在线观看国产| 六月丁香七月| a级毛色黄片| 成人美女网站在线观看视频| 女性生殖器流出的白浆| av播播在线观看一区| 黑人猛操日本美女一级片| 大香蕉97超碰在线| 中文字幕制服av| 亚洲性久久影院| 国产有黄有色有爽视频| 少妇被粗大猛烈的视频| 日本猛色少妇xxxxx猛交久久| av国产精品久久久久影院| 韩国高清视频一区二区三区| 日韩电影二区| 交换朋友夫妻互换小说| 亚洲av成人精品一二三区| 欧美zozozo另类| 亚洲精品456在线播放app| 免费看不卡的av| 寂寞人妻少妇视频99o| 26uuu在线亚洲综合色| 欧美另类一区| av卡一久久| 中文字幕亚洲精品专区| 免费av不卡在线播放| 一本—道久久a久久精品蜜桃钙片| 亚洲国产色片| 国产成人午夜福利电影在线观看| 男女啪啪激烈高潮av片| 亚洲欧美成人综合另类久久久| 亚洲av.av天堂| 亚洲,一卡二卡三卡| 最近的中文字幕免费完整| tube8黄色片| 波野结衣二区三区在线| 日本色播在线视频| 久久午夜福利片| 久热久热在线精品观看| 乱码一卡2卡4卡精品| 国产av码专区亚洲av| 美女国产视频在线观看| 综合色丁香网| 日韩亚洲欧美综合| 国产欧美日韩一区二区三区在线 | 日本猛色少妇xxxxx猛交久久| 国模一区二区三区四区视频| 国产一级毛片在线| 成人一区二区视频在线观看| 九九在线视频观看精品| 婷婷色综合大香蕉| 国产视频首页在线观看| 亚洲综合精品二区| 亚洲av在线观看美女高潮| 赤兔流量卡办理| 国产伦理片在线播放av一区| 成人毛片a级毛片在线播放| 中国三级夫妇交换| 亚洲国产精品一区三区| 最近2019中文字幕mv第一页| 丝袜喷水一区| 成人综合一区亚洲| .国产精品久久| 国产极品天堂在线| 噜噜噜噜噜久久久久久91| 亚洲欧美一区二区三区国产| 欧美97在线视频| 国产有黄有色有爽视频| 又粗又硬又长又爽又黄的视频| 啦啦啦中文免费视频观看日本| 亚洲精品aⅴ在线观看| 成人黄色视频免费在线看| 超碰av人人做人人爽久久| 亚洲精品国产av成人精品| 欧美日韩视频精品一区| 搡老乐熟女国产| 熟女人妻精品中文字幕| 另类亚洲欧美激情| 91午夜精品亚洲一区二区三区| 国产精品女同一区二区软件| 久久久久久久国产电影| 国产精品99久久久久久久久| 欧美区成人在线视频| 国产极品天堂在线| 亚洲色图综合在线观看| 国产v大片淫在线免费观看| 亚洲精品一二三| 男的添女的下面高潮视频| 最黄视频免费看| 亚洲欧美日韩卡通动漫| 高清毛片免费看| 最近中文字幕2019免费版| 亚洲国产精品专区欧美| 国产亚洲午夜精品一区二区久久| 乱系列少妇在线播放| 日韩一区二区视频免费看| 男女啪啪激烈高潮av片| 国产精品三级大全| 国产精品久久久久久久久免| 日韩在线高清观看一区二区三区| 欧美日韩在线观看h| 午夜福利影视在线免费观看| 欧美日本视频| 一区二区三区精品91| 精品一区在线观看国产| 狂野欧美白嫩少妇大欣赏| 久久婷婷青草| 欧美日韩精品成人综合77777| 一区二区三区免费毛片| 日本av免费视频播放| 汤姆久久久久久久影院中文字幕| 亚洲一级一片aⅴ在线观看| 欧美日韩视频高清一区二区三区二| 亚洲欧美清纯卡通| 亚洲av成人精品一区久久| 国内少妇人妻偷人精品xxx网站| 18禁裸乳无遮挡动漫免费视频| 美女cb高潮喷水在线观看| av在线app专区| 国产黄片美女视频| 亚洲一级一片aⅴ在线观看| 国产淫片久久久久久久久| 亚洲人成网站高清观看| 91午夜精品亚洲一区二区三区| 视频中文字幕在线观看| 亚洲人与动物交配视频| 国产精品麻豆人妻色哟哟久久| 中文天堂在线官网| 亚洲色图综合在线观看| 国产深夜福利视频在线观看| 亚洲电影在线观看av| 国产一区亚洲一区在线观看| kizo精华| 亚洲,欧美,日韩| 欧美精品人与动牲交sv欧美| 国产一区二区三区av在线| 国产高清三级在线| 女性生殖器流出的白浆| 日本wwww免费看| 国产成人a∨麻豆精品| 91精品国产九色| 性高湖久久久久久久久免费观看| 高清日韩中文字幕在线| 国产黄色视频一区二区在线观看| 日韩国内少妇激情av| 美女国产视频在线观看| 水蜜桃什么品种好| 久久精品国产a三级三级三级| av福利片在线观看| 亚洲精品色激情综合| 日韩亚洲欧美综合| 久热这里只有精品99| av在线观看视频网站免费| 超碰av人人做人人爽久久| av线在线观看网站| 国产永久视频网站| 成人漫画全彩无遮挡| 中文字幕制服av| 国产黄片美女视频| 亚洲怡红院男人天堂| 中文精品一卡2卡3卡4更新| 一本一本综合久久| 高清视频免费观看一区二区| 精品一区二区免费观看| 啦啦啦啦在线视频资源| av在线蜜桃| 少妇猛男粗大的猛烈进出视频| 国产免费又黄又爽又色| 日韩av在线免费看完整版不卡| 人人妻人人添人人爽欧美一区卜 | 国产精品99久久99久久久不卡 | 伦理电影大哥的女人| 久久久久视频综合| 麻豆精品久久久久久蜜桃| 高清午夜精品一区二区三区| 777米奇影视久久| 免费看日本二区| 寂寞人妻少妇视频99o| 丰满乱子伦码专区| 国产欧美日韩一区二区三区在线 | 亚洲欧美日韩另类电影网站 | 日韩中字成人| 最后的刺客免费高清国语| 大又大粗又爽又黄少妇毛片口| 欧美bdsm另类| 热99国产精品久久久久久7| videos熟女内射| 国产精品一区二区性色av| 欧美一区二区亚洲| 成年av动漫网址| 欧美精品一区二区大全| 久久 成人 亚洲| 夜夜爽夜夜爽视频| 黄片wwwwww| 亚洲国产精品成人久久小说| 国产探花极品一区二区| 伦理电影免费视频| 日韩成人伦理影院| 日本爱情动作片www.在线观看| 人妻一区二区av| 亚洲国产精品一区三区| 伊人久久精品亚洲午夜| 男男h啪啪无遮挡| 欧美激情极品国产一区二区三区 | 亚洲成人av在线免费| 好男人视频免费观看在线| 免费av不卡在线播放| 久久午夜福利片| 看十八女毛片水多多多| 日韩欧美精品免费久久| 美女脱内裤让男人舔精品视频| 国产成人a∨麻豆精品| 成人亚洲精品一区在线观看 | 亚洲在久久综合| 校园人妻丝袜中文字幕| 国产欧美亚洲国产| 欧美xxxx黑人xx丫x性爽| 99精国产麻豆久久婷婷| 精品久久久精品久久久| 在线天堂最新版资源| 精品久久久久久久末码| 亚洲第一区二区三区不卡| 大香蕉97超碰在线| 天天躁夜夜躁狠狠久久av| 国产成人aa在线观看| 午夜日本视频在线| 国产无遮挡羞羞视频在线观看| 亚洲精品日韩av片在线观看| 内地一区二区视频在线| 中国三级夫妇交换| 精品一品国产午夜福利视频| 成人18禁高潮啪啪吃奶动态图 | 亚洲av综合色区一区| 欧美亚洲 丝袜 人妻 在线| 一级黄片播放器| av播播在线观看一区| 天堂俺去俺来也www色官网| 国产精品偷伦视频观看了| 妹子高潮喷水视频| 日韩不卡一区二区三区视频在线| 久久久a久久爽久久v久久| 国产亚洲91精品色在线| 国产欧美日韩精品一区二区| 成人18禁高潮啪啪吃奶动态图 | 午夜精品国产一区二区电影| 日日撸夜夜添| 亚洲丝袜综合中文字幕| 亚洲国产精品一区三区| 亚洲中文av在线| 18禁在线无遮挡免费观看视频| 精品国产露脸久久av麻豆| 天堂8中文在线网| 成人午夜精彩视频在线观看| 在线观看美女被高潮喷水网站| 在线精品无人区一区二区三 | 精品熟女少妇av免费看| 亚洲欧美中文字幕日韩二区| 免费人妻精品一区二区三区视频| 亚洲精品国产av蜜桃| 精品国产三级普通话版| 亚洲av成人精品一区久久| 一级a做视频免费观看| 亚洲欧美成人精品一区二区| av国产精品久久久久影院| 国产精品一区二区在线观看99| 一区二区三区乱码不卡18| 高清黄色对白视频在线免费看 | 国产伦理片在线播放av一区| 卡戴珊不雅视频在线播放| 插逼视频在线观看| 精品一区二区三区视频在线| 亚洲精品自拍成人| 18禁动态无遮挡网站| 色婷婷av一区二区三区视频| 男女无遮挡免费网站观看| 噜噜噜噜噜久久久久久91| 不卡视频在线观看欧美| 一区二区三区免费毛片| 交换朋友夫妻互换小说| a级毛色黄片| 亚洲欧美精品专区久久| 国产91av在线免费观看| 亚洲av.av天堂| 精品视频人人做人人爽| 视频中文字幕在线观看| 又粗又硬又长又爽又黄的视频| 大又大粗又爽又黄少妇毛片口| 97在线视频观看| 国产成人午夜福利电影在线观看| 黄色怎么调成土黄色| 人妻制服诱惑在线中文字幕| 中文字幕精品免费在线观看视频 | 欧美极品一区二区三区四区| 爱豆传媒免费全集在线观看| kizo精华| 美女内射精品一级片tv| 中文天堂在线官网| 国产亚洲一区二区精品| 日本vs欧美在线观看视频 | 天天躁夜夜躁狠狠久久av| 国产无遮挡羞羞视频在线观看| 国产精品秋霞免费鲁丝片| 国产精品麻豆人妻色哟哟久久| 黑人猛操日本美女一级片| 不卡视频在线观看欧美| 美女cb高潮喷水在线观看| 亚洲精品乱码久久久久久按摩| 如何舔出高潮| 爱豆传媒免费全集在线观看| 久久毛片免费看一区二区三区| 久久精品久久精品一区二区三区| 亚洲电影在线观看av| 午夜激情福利司机影院| 欧美日韩视频精品一区| 观看免费一级毛片| 在线观看国产h片| 三级经典国产精品| 日韩亚洲欧美综合| 国产一区二区三区av在线| 国产在线一区二区三区精| 免费久久久久久久精品成人欧美视频 | 新久久久久国产一级毛片| 2018国产大陆天天弄谢| 十八禁网站网址无遮挡 | 久久久a久久爽久久v久久| a级毛片免费高清观看在线播放| 久久鲁丝午夜福利片| 国产免费一区二区三区四区乱码| 久久久亚洲精品成人影院| 久久久久久久大尺度免费视频| 亚洲精品色激情综合| 亚洲精华国产精华液的使用体验| 亚洲aⅴ乱码一区二区在线播放| 不卡视频在线观看欧美| 99久国产av精品国产电影| 免费人妻精品一区二区三区视频| 极品少妇高潮喷水抽搐| 噜噜噜噜噜久久久久久91| 成人免费观看视频高清| 乱系列少妇在线播放| 黄片wwwwww| 夜夜爽夜夜爽视频| 免费观看性生交大片5| 亚洲第一区二区三区不卡| 一级黄片播放器| 99久久精品热视频| 国产伦精品一区二区三区四那| 国产黄片视频在线免费观看| 亚洲av日韩在线播放| 少妇人妻精品综合一区二区| 亚洲成人中文字幕在线播放| 中文在线观看免费www的网站| 黑人高潮一二区| 亚洲性久久影院| 最后的刺客免费高清国语| 亚洲精品亚洲一区二区| 免费黄网站久久成人精品| 视频区图区小说| 午夜免费观看性视频| 亚洲色图综合在线观看| 男女免费视频国产| 特大巨黑吊av在线直播| 精品久久久久久电影网| 18+在线观看网站| 女人十人毛片免费观看3o分钟| 高清黄色对白视频在线免费看 | 精品酒店卫生间| 色婷婷久久久亚洲欧美| 欧美精品一区二区免费开放| tube8黄色片| 激情五月婷婷亚洲| 大陆偷拍与自拍| 国产乱来视频区| 99久久中文字幕三级久久日本| 人人妻人人看人人澡| 在线观看免费高清a一片| 亚洲第一区二区三区不卡| 一级av片app| 99久久精品热视频| 熟女av电影| 亚洲国产最新在线播放| 精品人妻偷拍中文字幕| 免费黄网站久久成人精品| 欧美另类一区| 99精国产麻豆久久婷婷| 韩国av在线不卡| 亚洲综合色惰| 麻豆成人av视频| 在现免费观看毛片| 精品人妻视频免费看| 最近最新中文字幕大全电影3| 亚洲精品色激情综合| 国产精品国产av在线观看| 久久综合国产亚洲精品| 成人亚洲精品一区在线观看 | 国产高清国产精品国产三级 | 亚洲欧美成人综合另类久久久| 美女中出高潮动态图| 深爱激情五月婷婷| 亚洲性久久影院| 大片免费播放器 马上看| 日韩av不卡免费在线播放| 伊人久久国产一区二区| 偷拍熟女少妇极品色| 国产免费福利视频在线观看| 中文字幕制服av| 黑人猛操日本美女一级片| 国产av精品麻豆| 免费看av在线观看网站| 国产亚洲91精品色在线| 看十八女毛片水多多多| 人妻系列 视频| 国产欧美另类精品又又久久亚洲欧美| 久久鲁丝午夜福利片| 欧美精品亚洲一区二区| 亚洲伊人久久精品综合| 国产免费又黄又爽又色| 少妇猛男粗大的猛烈进出视频| 国产黄色免费在线视频| tube8黄色片| 国产av国产精品国产| 亚洲精品亚洲一区二区| 久久久a久久爽久久v久久| 国产黄片视频在线免费观看| 国产永久视频网站| 老熟女久久久| 青青草视频在线视频观看| 边亲边吃奶的免费视频| 内地一区二区视频在线| 国产精品精品国产色婷婷| 寂寞人妻少妇视频99o| 免费黄网站久久成人精品| 成人18禁高潮啪啪吃奶动态图 | 国产精品免费大片| 国产淫语在线视频| 亚洲av欧美aⅴ国产| 三级国产精品片| 久热这里只有精品99| 久久久精品94久久精品| 成人亚洲精品一区在线观看 | 中文字幕久久专区| 一级毛片久久久久久久久女| 99视频精品全部免费 在线| 日韩免费高清中文字幕av| 国产精品福利在线免费观看| 精品亚洲乱码少妇综合久久| a级毛片免费高清观看在线播放| 国产精品一区二区三区四区免费观看|