• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Active Metamaterials for Modulation and Detection

    2014-04-17 06:26:44SameerSonkusaleWangrenXuandSarojRout
    Computers Materials&Continua 2014年3期

    Sameer R.Sonkusale ,Wangren Xu and Saroj Rout

    1 Introduction

    Metamaterials are artificially engineeered materials typically consisting of a periodic array of sub-wavelength metallic inclusions in dielectric host substrate that can be made to exhibit exotic electromagnetic properties not readily available in nature[Veselago(1968)].Metamaterials have been used to demonstrated negative index of refraction[Shelby,Smith and Schultz(2001);Smith,Padilla,Vier,Nemat-Nasser and Schultz(2000)],invisibility cloaks[Schurig,Mock,Justice,Cummer,Pendry,Starr and Smith(2006)],and super lenses[Fang,Lee,Sun and Zhang(2005)].As metamaterial research continues to mature,a concerted effort to create practical devices that utilize exceptional properties of metamaterials will become increasingly important.This include sources,detectors and modulators for communication,imaging,and sensing applications.Of special interest has been the achievements made in realizing metamaterials in theterahertz gap(0.1-10THz)[Padilla,Aronsson,Highstrete,Lee,Taylor and Averitt(2007);Chen,Padilla,Zide,Gossard,Taylor and Averitt(2006)],where usable naturally occurring materials are somewhat rare making this a challenging area to build traditional electronic or photonic devices.Another area of specific interest has been to make detectors or focal plane arrays based on metamaterials that can provide imaging capabilities in the challenging millimeter wave and terahertz region of the electromagnetic spectrum.Research activities from our group have focused on making hybrid metamaterials containing active circuit elements such as transistors.Such transistor/metamaterial hybrids can exhibit some exotic electromagnetic properties not typically possible with conventional metamaterials.Below we discuss two specific examples of applications that explore interactions of active semiconductor devices and circuits with metamaerial resonator structures for exciting functions of modulation and detection.In one application,terahertzTHzmodulator based on embedding of psuedomorphic high electron mobility transistor(pHEMT)within the metamaterial resonator,all implemented monolithically in a commercial gallium arsenide(GaAs)technology is presented.In another application,a detector array based on metamaterial perfect absorber(MPA)for room-temperature detection of gigahertz(GHz)radiation within each sub wavelength metamaterial unit cell is presented.The latter utilizes a hybridization of metamaterial on printed circuit board(PCB)with discrete microwave electronic components.Both applications indicate the promise of integrating electronics or semiconductor devices with metamaterials for new and innovative functions.

    2 Hybrid HEMT/Metamaterial Based Terahertz Modulator

    Most metamaterial demonstrations in the literature are with unit cells that are essentially passive resonators.However real practical applications for modulators and detectors require that metamaterial response can be tuned or change in response to stimuli.Tuning for example can provide frequency and phase modulation,and so far approaches for doing that have relied on photodoping,electronic control[Chen,Padilla,Zide,Gossard,Taylor and Averitt(2006)]and temperature effects[Driscoll,Palit,Qazilbash,Brehm,Keilmann,Chae,Yun,Kim,Cho,Jokerst,Smith and Basov(2008)].In photodoping,the charge carrier concentration in the host dielectric medium is adjusted by high powered optical beams.In temperature responsive metamaterials,novel phase change materials such as vanadium oxide that have temperature dependent insulator to metal transition(or vice versa)is used.However,both of these approaches are not truly scalable.Optical doping needs high powered light sources and bulky optical equipment,while phase change material based on emerging materials are still not commercially viable for large scale manufacturing.We believe that electronic control using solid state semiconductor devices[Chen,Padilla,Zide,Gossard,Taylor and Averitt(2006)]are the only viable alternative owing to the low cost and relatively mature processing afforded by semiconductor manufacturing.Prior demonstrations have included Schottky diodes which are electronically biased in forward or reverse bias for on-off control to achieve amplitude modulation[Chen,Padilla,Zide,Gossard,Taylor and Averitt(2006);Chen,Palit,Tyler,Bingham,Zide,O’Hara,Smith,Gossard,Averitt,Padilla,Jokerst and Taylor(2008);Paul,Imhof,Lagel,Wolff,Heinrich,Hofling,Forchel,Zengerle,Beigang and Rahm(2009)],and controlling the amount of forward bias can achieve fine amplitude[Chen,Padilla,Zide,Gossard,Taylor and Averitt(2006);Chen,Palit,Tyler,Bingham,Zide,O’Hara,Smith,Gossard,Averitt,Padilla,Jokerst and Taylor(2008)]and also phase modulation[Chen,Padilla,Cich,Azad,Averitt and Taylor(2009)].We recently demonstrated a hybrid HEMT/metamaterial device that utilizes monolithic integration of transistors at the metamaterial unit cell level and is able to perform as an intensity modulators at terahertz frequencies with switching speeds up to 10 MHz[Shrekenhamer,Rout,Strikwerda,Bingham,Averitt,Sonkusale and Padilla(2011)].This example is reviewed in the section below in a bit more detail.

    2.1 Design

    A commercial GaAs technology with three metal layers,an enhanced mode pseudomorphic HEMT,and a silicon nitride encapsulating dielectric layer was used to make the modulatorsee Fig.1[Shrekenhamer,Rout,Strikwerda,Bingham,Averitt,Sonkusale and Padilla(2011)].The metamaterial geometry is based on the electric split-ring resonator(ESRR)[Padilla,Aronsson,Highstrete,Lee,Taylor and Averitt(2007);Schurig,Mock and Smith(2006)]shown in Fig.1(a).Each unit cell consists of two single rings butted together with their split gaps at the outside.The line width of the metamaterial is 4μm and the split gap is 3μm.The metamaterial had the dimensions of 42μm wide by 30μm in height.A periodic array of these unit cells as shown in Fig.1(b)was fabricated,with period of 55μm×40μm,and a total size of 2.75×2.6 mm2with 3200 elements total.Metamaterial elements are fabricated on a 100μmthick semi-insulating(SI)GaAs substrate.Please note that the geometry and layout is restricted by the design rules specific to the semiconductor technology that dictate minimum spacing and dimensions for each layer in the technology.This not only puts a fundamental limit on the dimensions but also on the geometry of the resonator chosen.Migrating to newer semiconductor technologies with much finer resolution for sizing and spacing can allow scaling to higher frequencies.

    Figure 1:(Color online)Hybrid HEMT/metamaterial THz modulator.(a)Single unit cell.(b)Schematic of the entire HEMT/metamaterial device(c)Crosssectional at the split gap(d)Band diagram detailing the 2DEG layer in the undoped In-GaAs at the interface with the Schottky layer.Reprinted from[Shrekenhamer,Rout,Strikwerda,Bingham,Averitt,Sonkusale and Padilla(2011)]

    A HEMT lies underneath each of the split gaps of the metamaterial element,(two per unit cell),as shown in cross-section in Fig.1(c).The gate length is 0.5μmand has a width 5μmfor each device.The HEMT consists of pseudomorphic undoped In-GaAs and a lightly doped Schottky layer,of 13 nm thickness forming a heterojunction.A 2DEG is formed in the undoped In-GaAs channel layer as predicted by the band diagram at the interface(Fig.1(d)).Unlike traditional FETs,this channel is formed in an intrinsic(undoped)crystal,resulting in very high mobility(~6000 cm2/V·s)and charge density(~3×1012cm-2)at room temperature,thus enabling fast conduction even at THz frequencies.The source and drain are shorted through the metamaterial as a direct consequence of the metamaterial structure we have selected.

    The same metal layer which is used to form each metamaterial is also used to connect each element together within the same row.These wires run perpendicular to the split gaps;the incident electric field is also aligned in the direction of the split gap.Single bond pad conects to all the transistor along the perimiter to provide DC bias voltage for the drain and source of the HEMT.The gates for all HEMTs are connected in a similar fashion to a single bond pad which provides the DC bias voltage for the gate.

    2.2 Results and Discussion

    Figure 2:(Color online)(a)Absolute transmission of electric field and(b)Differential transmission with respect to zero bias,both as a function of bias voltage.Reprinted from[Shrekenhamer,Rout,Strikwerda,Bingham,Averitt,Sonkusale and Padilla(2011)]

    THz-TDS[Paul,Imhof,Lagel,Wolff,Heinrich,Hofling,Forchel,Zengerle,Beigang and Rahm(2009);Cai,Brener,Lopata,Wynn,Pfeiffer,Stark,Wu,Zhang and Federici(1998)]was used to characterize the device using incident THz electric field(→Ei(t))polarized along the direction of the split gap of the metamaterial.At the resonant frequency of the metamaterial,(0.46 THz),the electric field is concentrated within the split gaps of the metamaterial.In Fig.2(a)we show the transmitted electric field as a function of frequency for differentVGSvalues.ForVGSless than-1.0V,the channel is completely depleted,and transmission shows a resonance at 0.46 THz.When the gate-to-source voltage is increased above-1.0V,the channel starts forming between the split gaps,and the metamaterial resonance begins to diminish.AtVGS=0V,when the channel is completely formed,a low-impedance path at the split gap is created which effectively shorts the metamaterial resonant response.It can be seen in the transmission data(Fig.2(a))that the frequency response shows no resonance atVGS=0V.The differential transmission,defined asD(ω)=T(ω)VGS/T(ω)VGS=0Vis shown in Fig.2 showcasing the same results that clearly show the maximum index of modulation at resonance[Shrekenhamer,Rout,Strikwerda,Bingham,Averitt,Sonkusale and Padilla(2011)].

    Figure 3:(Color online)(a)Time domain data and(b)Spectra for modulation at frequencies of 100 Hz,1 MHz and 10 MHz.Reprinted from[Shrekenhamer,Rout,Strikwerda,Bingham,Averitt,Sonkusale and Padilla(2011)]

    For high speed dynamic modulation,we utilize the same THz-TDS setup but instead of using a standard mechanical chopper,we replace it with the HEMT/metamaterial modulator.The only difference compared to mechanical chopper is that this only allows a narrow band of frequencies about the metamaterial resonance to be modulated.A square-wave bias,alternating between-1.1 V and 0 V,was applied to the gate of the HEMT with respect to the source and drain.The same square wave signal was applied to the reference input of the lock-in amplifier.The time-domain signalVout(t)is plotted in Fig.3(a)for three different modulation frequencies,100 kHz,1 MHz and 10 MHz and fourier transform of this waveform is plotted in Fig.3(b).It can be seen that the peak of the spectrum lies at 0.46 THz indicating modulation of the metamaterial resonance.The modulation amplitude falls off at higher modulating frequencies above 10 MHz.This is attributed to the parasitic nature of the long bond wires used in the chip assembly and,is not a limitation of either the HEMT or metamaterial device[Shrekenhamer,Rout,Strikwerda,Bingham,Averitt,Sonkusale and Padilla(2011)].One can be expected to get modulation close to the maximum frequency of the transistor in a given GaAs technology.

    3 Metamaterial Focal Plane Array Imager

    3.1 Design

    In essence,each metamaterial unit cell functions as an individual antenna coupled detector and,collectively,as a focal plane array.The metamaterial unit cell converts the incident microwave radiation into voltage/current signals that are guided to dedicated microwave receiver chain and finally detected with microwave power detector to produce DC voltage linearly proportional to the microwave signal[Shrekenhamer,Xu,Venkatesh,Schurig,Sonkusale and Padilla(2012)].In another realization[Venkatesh,Shrekenhamer,Xu,Sonkusale,Padilla and Schurig(2013)],the signal is routed to coherent receiver for measuring both intensity and phase.We will focus mostly on intensity measurements using power detectors as described in[Shrekenhamer,Xu,Venkatesh,Schurig,Sonkusale and Padilla(2012)].11 x 11 metamaterial elements and receiver system components are integrated into a single

    four layer printed circuit board(PCB)as shown in Fig.4.All the blocks shown in Fig.4 are contained within each unit cell-consists of the ELC resonator followed by a balun,impedance matching circuit,Low Noise Amplifier(LNA)and a microwave power detector.Beginning from the side of the detector where microwave radiation is incident,the first layer contains the Electrically coupled LC resonator(ELC resonator)based metamaterial array[Schurig,Mock and Smith(2006)],the second layer is made of a ground plane,third layer is a power routing plane,and then finally the backside is a circuit layer.Each metal layer is separated by Rogers 4003 dielectric core with prepreg.Microwave radiation received by the ELC resonator is transferred by a pair of through-holeviasto the circuit layer where the balun is used to transform the balanced signal to unbalanced signal.The unbalanced signal is then fed into an impedance matching circuit which,not only maximizes the signal power transfer from ELC resonator to microwave receiver chain,but also compensates for variantions in the ELC resonator’s resonance frequency due to fabrication tolerances.Finally the signal is amplified by the Low Noise Amplifier(LNA)before being converted to a DC signal by the microwave power detector for intensity imaging[Shrekenhamer,Xu,Venkatesh,Schurig,Sonkusale and Padilla(2012)](or a coherent receiver for combined intensity/phase imaging[Venkatesh,Shrekenhamer,Xu,Sonkusale,Padilla and Schurig(2013)]).

    Figure 4:(Color online)Metamaterial focal plane array architecture.(a)Schematic of the full device with layers shown from top to bottom are:the electrical LC resonator,Rogers dielectric spacer,patterned ground plane,and microwave power receiver circuit.Port 1 and 2 shown(b)Photo of an individual pixel,i.e.an ELC unit cell with dimensions of a=27.3,l=24,w=3.5,and g=4;all in millimeters.(c)Photo of the circuit layer with vias indicated.The vias transport the received signal(port 3)to the microwave power receiver circuit underneath each unit cell where the different highlighted regions are:(I)balun,(II)impedance matching circuit,(III)low noise amplifier,and IV)microwave power detector.Reprinted from[Shrekenhamer,Xu,Venkatesh,Schurig,Sonkusale and Padilla(2012)]

    Figure 5:(Color online)FDTD simulation of the metamaterial detector.(a)Free space re flection(S11 dashed blue curve),transmission(S31 green curve),and reflection coef ficient(S33 red curve).Simulated current densities(b)and electric field magnitude(c)shown directly underneath the ELC(left)and above the ground plane(right)at the simulated design frequency of 2.0 GHz.Reprinted from[Shrekenhamer,Xu,Venkatesh,Schurig,Sonkusale and Padilla(2012)]

    3.2 Results and Discussion

    The design flow uses a combination of finite difference time domain(FDTD)simulation using CST Microwave Studio and circuit simulation using Agilent ADS design environment.Ports are defined as shown in Fig.4.The simulated scattering parameters are shown in Fig.5(a).It demonstrates that a maximum in transmission corresponds with the minima of both reflection coefficients S11and S33at 2.0 GHz.Value of S31=0.986 indicates that over 97%of the incident intensity is transmitted into the detector circuit.In Fig.5(b)shows the surface current density at resonance and Fig.5(c)shows the magnitude of the electric field which shows that the electric field is focused into the ELC split gap(right panel)and theviasare suf ficiently decoupled from the ground plane.

    An important observation from this work was that variations in component values and the geometry can occur in the fabrication process and may alter the ideal electromagnetic response.The measured S33shown as the red curve in Fig.6(a)is at 2.5 GHz which is not the same as the simulated minimum in S33which occurs at 2.0 GHz.Free space measurements of the center pixel were performed within an anechoic chamber with all neighboring unit cells having 50 Ω terminations following their respective balun output connections.The metamaterial array was placed 1.75 m away from the horn antenna to be in the far field of the horn’s radiating field pattern.In Fig.6(a),the green S31curve shows a peak about 2.5 GHz overlapping with the minimum observed in S33as expected.The gold curve in Fig.6(b)displays the measured mutual coupling(MC)between neighboring unit cells parallel,perpendicular and diagnoal to the electric field direction.Values of MC are significantly low,especially considering the proximity of nearest neighbors at a lattice spacing ofλ/4.4(27.3 mm)and with edge separation ofλ/40(3.0 mm).This is a significant result since it indicates that one can pack metamaterial resonator antennas in close geometry without interference between them,and this is quite ideal for multiple input multiple output(MIMO)communication applications.It should be mentioned that polarization measurements were also performed and the results were consistent with expectations that signal polarized along the direction of split gap is necessary to get the responses shown in Fig.6[Shrekenhamer,Xu,Venkatesh,Schurig,Sonkusale and Padilla(2012)].

    In another related work,the power detector was replaced with low-IF coherent receiver chain to perform vector measurements[Venkatesh,Shrekenhamer,Xu,Sonkusale,Padilla and Schurig(2013)].In this demonstration,sources with power outputs typical of mobile/wireless devices(about-24 dBm)could be resolved at a kilometer distance away with sub-degree resolution,essentially outperforming the traditional phased array spaced atλ/2 apart at low SNRs.This is a unique application where metamaterial array has been employed for direction finding based on intensity/phase measurements[Venkatesh,Shrekenhamer,Xu,Sonkusale,Padilla and Schurig(2013)].

    4 Conclusion

    In this article we presented two examples from our research group on hybrid integration of electronic devices and circuits inside metamaterial structures.

    In one application,we demonstrated a HEMT/metamaterial device capable of modulation of THz radiation at frequencies up to 10 MHz,and modulation depths of up to 33%at 0.46 THz with all electronic control using a commercial GaAs technology.We achieved monolithic integration of a total of 2×104active transistors at the metamaterial unit cell level.Thus hybrid HEMT/metamaterial structures are ideal for making modulators for the challenging terahertz spectrum.

    In another application,we demonstrated a metamaterial absorber based focal plane array to operate at 2.5 GHz which showed a very have high pixel sensitivity of-77 dBm in addition to low pixel to pixelcoupling interference below-14 dB,very good frequency selectivity and wide angular performance.The proposed metamaterial absorber configuration has the ability to capture nearly all of the incident electromagnetic energy at design frequencies across the entire electromagnetic spectrum and therefore could be utilized within detector pixels as part of bolometric or semi conducting detectors as well.The sub-wavelength unit cell geometry and narrow resonant spectral bandwidth that is also polarization sensitive makes a case for the possibility of making hyper-or multi-spectral,polarization-sensitive focal plane array imagers.

    We note that both the applications listed here are not restricted to the frequency applied but could be scaled to other frequencies,even much higher closer to the optical spectrum,on account of continuous scaling of semiconductor technology on which they will be implemented.

    Acknowledgement:The modulator work was done in collaboration with Boston College(Dr.Willie Padilla,Dr.David Shrekenhamer)and the detector work was also done in collaboration with University of Utah(Dr.David Schurig,Suresh Venkatesh)through the funding from National Science Foundation(NSF)grants ECCS-1002340 and ECCS-1002152 and Office of Naval Research grants N00014-09-1-1075.

    Cai,Y.;Brener,I.;Lopata,J.;Wynn,J.;Pfeiffer,L.;Stark,J.B.;Wu,Q.;Zhang,X.C.;Federici,J.F.(1998):Coherent terahertz radiation detection:Direct comparison between free-space electro-optic sampling and antenna detection.Applied Physics Letters,vol.73,no.4,pp.444-446.

    Chen,H.T.;Padilla,W.J.;Cich,M.J.;Azad,A.K.;Averitt,R.D.;Taylor,A.J.(2009): A metamaterial solid-state terahertz phase modulator.Nature Photonics,vol.3,no.3,pp.148-151.

    Chen,H.T.;Padilla,W.J.;Zide,J.M.O.;Gossard,A.C.;Taylor,A.J.;Averitt,R.D.(2006):Active terahertz metamaterial devices.Nature,vol.444,no.7119,pp.597-600.

    Chen,H.T.;Palit,S.;Tyler,T.;Bingham,C.M.;Zide,J.M.O.;O’Hara,J.F.;Smith,D.R.;Gossard,A.C.;Averitt,R.D.;Padilla,W.J.;Jokerst,N.M.;Taylor,A.J.(2008): Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves.Applied Physics Letters,vol.93,no.9.

    Driscoll,T.;Palit,S.;Qazilbash,M.M.;Brehm,M.;Keilmann,F.;Chae,B.G.;Yun,S.J.;Kim,H.T.;Cho,S.Y.;Jokerst,N.M.;Smith,D.R.;Basov,D.N.(2008):Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide.Applied Physics Letters,vol.93,no.2.

    Fang,N.;Lee,H.;Sun,C.;Zhang,X.(2005): Sub-diffraction-limited optical imaging with a silver superlens.Science,vol.308,no.5721,pp.534-537.

    Hao,J.M.;Wang,J.;Liu,X.L.;Padilla,W.J.;Zhou,L.;Qiu,M.(2010):High performance optical absorber based on a plasmonic metamaterial.Applied Physics Letters,vol.96,no.25.

    Landy,N.I.;Sajuyigbe,S.;Mock,J.J.;Smith,D.R.;Padilla,W.J.(2008):Perfect metamaterial absorber.Physical Review Letters,vol.100,no.20.

    Padilla,W.J.;Aronsson,M.T.;Highstrete,C.;Lee,M.;Taylor,A.J.;Averitt,R.D.(2007): Electrically resonant terahertz metamaterials:Theoretical and experimental investigations.Physical Review B,vol.75,no.4.

    Paul,O.;Imhof,C.;Lagel,B.;Wolff,S.;Heinrich,J.;Hofling,S.;Forchel,A.;Zengerle,R.;Beigang,R.;Rahm,M.(2009): Polarization-independent active metamaterial for high-frequency terahertz modulation.Optics Express,vol.17,no.2,pp.819-827.

    Schurig,D.;Mock,J.J.;Justice,B.J.;Cummer,S.A.;Pendry,J.B.;Starr,A.F.;Smith,D.R.(2006): Metamaterial electromagnetic cloak at microwave frequencies.Science,vol.314,no.5801,pp.977-980.

    Schurig,D.;Mock,J.J.;Smith,D.R.(2006):Electric-field-coupled resonators for negative permittivity metamaterials.Applied Physics Letters,vol.88,no.4.

    Shelby,R.A.;Smith,D.R.;Schultz,S.(2001):Experimental verification of a negative index of refraction.Science,vol.292,no.5514,pp.77-79.

    Shrekenhamer,D.;Rout,S.;Strikwerda,A.C.;Bingham,C.;Averitt,R.D.;Sonkusale,S.;Padilla,W.J.(2011): High speed terahertz modulation from metamaterials with embedded high electron mobility transistors.Optics Express,vol.19,no.10,pp.9968-9975.

    Shrekenhamer,D.;Xu,W.R.;Venkatesh,S.;Schurig,D.;Sonkusale,S.;Padilla,W.J.(2012):Experimental realization of a metamaterial detector focal plane array.Physical Review Letters,vol.109,no.17.

    Smith,D.R.;Padilla,W.J.;Vier,D.C.;Nemat-Nasser,S.C.;Schultz,S.(2000): Composite medium with simultaneously negative permeability and permittivity.Physical Review Letters,vol.84,no.18,pp.4184-4187.

    Tao,H.;Landy,N.I.;Bingham,C.M.;Zhang,X.;Averitt,R.D.;Padilla,W.J.(2008):A metamaterial absorber for the terahertz regime:Design,fabrication and characterization.Optics Express,vol.16,no.10,pp.7181-7188.

    Venkatesh,S.;Shrekenhamer,D.;Xu,W.R.;Sonkusale,S.;Padilla,W.;Schurig,D.(2013): Interferometric direction finding with a metamaterial detector.Applied Physics Letters,vol.103,no.25.

    Veselago,V.G.(1968):Electrodynamics of substances with simultaneously negative values of sigma and mu.Soviet Physics Uspekhi USSR,vol.10,no.4,pp.509-514.

    麻豆成人午夜福利视频| 校园人妻丝袜中文字幕| 自拍偷自拍亚洲精品老妇| 看十八女毛片水多多多| 久久久久九九精品影院| 乱人视频在线观看| 三级经典国产精品| 亚洲电影在线观看av| 精品久久久久久久人妻蜜臀av| 亚洲丝袜综合中文字幕| 最近手机中文字幕大全| 观看美女的网站| 亚洲激情五月婷婷啪啪| 成人毛片60女人毛片免费| 91久久精品电影网| 黄色日韩在线| 一级黄色大片毛片| 看片在线看免费视频| 国产91av在线免费观看| 国产精品国产三级国产专区5o | 99久久精品一区二区三区| 国产精品电影一区二区三区| 亚洲一区高清亚洲精品| 美女xxoo啪啪120秒动态图| 观看美女的网站| 一个人观看的视频www高清免费观看| 欧美xxxx黑人xx丫x性爽| 色综合亚洲欧美另类图片| 3wmmmm亚洲av在线观看| 国产伦理片在线播放av一区| 国产精品乱码一区二三区的特点| 日本黄色片子视频| 日日摸夜夜添夜夜爱| 视频中文字幕在线观看| 麻豆国产97在线/欧美| 精品免费久久久久久久清纯| 亚洲av熟女| 欧美色视频一区免费| 国产中年淑女户外野战色| 久久久久久久国产电影| 亚洲va在线va天堂va国产| 中文欧美无线码| 久久久成人免费电影| 久久久亚洲精品成人影院| 国产av在哪里看| 成年版毛片免费区| 亚洲成人av在线免费| 亚洲精华国产精华液的使用体验| 亚洲在线观看片| 51国产日韩欧美| 在线免费观看不下载黄p国产| 久久精品久久久久久久性| 免费观看人在逋| 精品欧美国产一区二区三| 三级国产精品片| 观看免费一级毛片| 国产成人精品一,二区| 97超碰精品成人国产| 韩国高清视频一区二区三区| 欧美高清性xxxxhd video| 丝袜喷水一区| 亚洲av不卡在线观看| 色视频www国产| 乱系列少妇在线播放| 成人二区视频| 最近视频中文字幕2019在线8| 91在线精品国自产拍蜜月| 国产男人的电影天堂91| 亚洲欧洲日产国产| 亚洲国产精品成人综合色| 在线免费十八禁| 99热这里只有是精品在线观看| 一边亲一边摸免费视频| 亚洲国产欧美人成| 淫秽高清视频在线观看| av免费在线看不卡| 在线观看美女被高潮喷水网站| 午夜福利在线观看吧| 一区二区三区免费毛片| 国产真实乱freesex| 国产精品一区www在线观看| 男人的好看免费观看在线视频| 亚洲一区高清亚洲精品| 久久精品国产99精品国产亚洲性色| 直男gayav资源| av专区在线播放| 日韩国内少妇激情av| 麻豆久久精品国产亚洲av| 亚洲精品一区蜜桃| 老女人水多毛片| 国产色爽女视频免费观看| 国产亚洲一区二区精品| 欧美成人免费av一区二区三区| 秋霞伦理黄片| 国产伦在线观看视频一区| 国产中年淑女户外野战色| 如何舔出高潮| 高清毛片免费看| 免费一级毛片在线播放高清视频| 成人午夜精彩视频在线观看| 成人午夜精彩视频在线观看| 亚洲三级黄色毛片| 国产在线男女| 日韩国内少妇激情av| 国产精品1区2区在线观看.| 国产精品一区二区性色av| 欧美一区二区精品小视频在线| 3wmmmm亚洲av在线观看| 欧美精品一区二区大全| 日本午夜av视频| 国内少妇人妻偷人精品xxx网站| 草草在线视频免费看| 国产三级在线视频| 搡女人真爽免费视频火全软件| 一区二区三区高清视频在线| 国产一区二区三区av在线| 小说图片视频综合网站| 精品人妻视频免费看| 国产 一区精品| 3wmmmm亚洲av在线观看| 久久久成人免费电影| 欧美日韩精品成人综合77777| 日本wwww免费看| 亚洲精品色激情综合| 中文字幕熟女人妻在线| 亚洲欧美日韩高清专用| 免费黄色在线免费观看| 女人被狂操c到高潮| 亚洲丝袜综合中文字幕| 国产精品乱码一区二三区的特点| 神马国产精品三级电影在线观看| 亚洲精品成人久久久久久| 深夜a级毛片| 日韩大片免费观看网站 | 亚洲精品色激情综合| 搡老妇女老女人老熟妇| 天天躁日日操中文字幕| 国产单亲对白刺激| 亚洲精品456在线播放app| 日韩欧美国产在线观看| av线在线观看网站| 如何舔出高潮| 久久久久网色| 久久久国产成人精品二区| 免费黄网站久久成人精品| 亚洲人成网站在线观看播放| 全区人妻精品视频| 亚洲精品久久久久久婷婷小说 | 26uuu在线亚洲综合色| 边亲边吃奶的免费视频| 久久精品91蜜桃| 亚洲国产精品国产精品| 青春草视频在线免费观看| 欧美日本视频| 国语自产精品视频在线第100页| 久久久久久九九精品二区国产| 日产精品乱码卡一卡2卡三| 国产精品一及| 久久婷婷人人爽人人干人人爱| 观看美女的网站| 国产黄片视频在线免费观看| 一级毛片我不卡| 级片在线观看| 亚洲av中文字字幕乱码综合| 黄色一级大片看看| 日本免费一区二区三区高清不卡| 永久网站在线| 国内少妇人妻偷人精品xxx网站| 亚洲成色77777| 亚洲精品成人久久久久久| 神马国产精品三级电影在线观看| 热99在线观看视频| 日韩人妻高清精品专区| 亚洲国产欧洲综合997久久,| av又黄又爽大尺度在线免费看 | 美女高潮的动态| 99久久成人亚洲精品观看| 日韩欧美在线乱码| 99久久人妻综合| 九草在线视频观看| av在线观看视频网站免费| 久久国产乱子免费精品| 免费观看人在逋| 免费观看性生交大片5| 亚洲国产色片| 国产单亲对白刺激| 亚洲性久久影院| 国产成人精品久久久久久| 国产 一区精品| 日本wwww免费看| 乱人视频在线观看| 亚洲av熟女| 国产精品蜜桃在线观看| 又爽又黄a免费视频| 少妇的逼水好多| 精品国产露脸久久av麻豆 | 国语自产精品视频在线第100页| 午夜福利在线在线| 中文欧美无线码| 男女边吃奶边做爰视频| 久久精品久久精品一区二区三区| 69人妻影院| 又爽又黄无遮挡网站| av线在线观看网站| 波多野结衣巨乳人妻| 免费人成在线观看视频色| av天堂中文字幕网| 日本色播在线视频| 麻豆久久精品国产亚洲av| 国产高清视频在线观看网站| 国产一区亚洲一区在线观看| 女人十人毛片免费观看3o分钟| 有码 亚洲区| 少妇猛男粗大的猛烈进出视频 | 国产精品99久久久久久久久| 国产精品福利在线免费观看| 男女国产视频网站| 国产亚洲最大av| 男人和女人高潮做爰伦理| 乱码一卡2卡4卡精品| 亚洲欧美成人精品一区二区| 国产爱豆传媒在线观看| 久久亚洲精品不卡| 男女国产视频网站| 国产精品av视频在线免费观看| 婷婷六月久久综合丁香| av免费观看日本| 最近中文字幕高清免费大全6| 日本欧美国产在线视频| 久久久久久久亚洲中文字幕| 天堂中文最新版在线下载 | 久久精品夜色国产| 啦啦啦观看免费观看视频高清| 少妇的逼水好多| 国产亚洲5aaaaa淫片| 日韩av不卡免费在线播放| 国产国拍精品亚洲av在线观看| 亚洲国产精品成人久久小说| 少妇裸体淫交视频免费看高清| 男人和女人高潮做爰伦理| 日本欧美国产在线视频| 国产探花在线观看一区二区| 伦精品一区二区三区| 日日啪夜夜撸| 在线免费观看的www视频| 两个人视频免费观看高清| 国产麻豆成人av免费视频| 麻豆成人午夜福利视频| 天堂av国产一区二区熟女人妻| 少妇的逼水好多| 国产午夜精品久久久久久一区二区三区| 国产高清视频在线观看网站| 我要看日韩黄色一级片| 久久久久精品久久久久真实原创| 国产精品久久视频播放| 狂野欧美激情性xxxx在线观看| 2021少妇久久久久久久久久久| 女的被弄到高潮叫床怎么办| 伦精品一区二区三区| 少妇高潮的动态图| 日本五十路高清| 日韩精品有码人妻一区| 亚洲精品影视一区二区三区av| 毛片女人毛片| 午夜免费男女啪啪视频观看| 蜜臀久久99精品久久宅男| 精品国产一区二区三区久久久樱花 | 1000部很黄的大片| 长腿黑丝高跟| 亚洲va在线va天堂va国产| 国产 一区 欧美 日韩| 国产免费男女视频| 亚洲精品久久久久久婷婷小说 | 51国产日韩欧美| 免费观看精品视频网站| 精品酒店卫生间| 最近最新中文字幕免费大全7| 久久久久九九精品影院| 国产亚洲av嫩草精品影院| 日韩一区二区视频免费看| 国产精品人妻久久久久久| 国产一区二区三区av在线| 国产三级在线视频| 成人三级黄色视频| 91精品伊人久久大香线蕉| 欧美成人午夜免费资源| 国产高清三级在线| 亚洲精品日韩在线中文字幕| 国产不卡一卡二| or卡值多少钱| 建设人人有责人人尽责人人享有的 | 人人妻人人澡欧美一区二区| 亚州av有码| 三级毛片av免费| 久久久久免费精品人妻一区二区| 欧美日韩精品成人综合77777| 青青草视频在线视频观看| 亚洲图色成人| 国产毛片a区久久久久| 最近最新中文字幕免费大全7| 九色成人免费人妻av| 建设人人有责人人尽责人人享有的 | 亚洲在久久综合| 亚洲欧美成人综合另类久久久 | 欧美激情国产日韩精品一区| 91狼人影院| 精品久久久久久电影网 | 又爽又黄a免费视频| .国产精品久久| 男女下面进入的视频免费午夜| 禁无遮挡网站| 亚洲无线观看免费| 哪个播放器可以免费观看大片| 两个人视频免费观看高清| 国产91av在线免费观看| 小说图片视频综合网站| 99久久中文字幕三级久久日本| 免费观看人在逋| 热99re8久久精品国产| 黄色日韩在线| 有码 亚洲区| 蜜桃亚洲精品一区二区三区| 免费av不卡在线播放| 久久久久久国产a免费观看| 久久久国产成人精品二区| 高清在线视频一区二区三区 | 菩萨蛮人人尽说江南好唐韦庄 | 亚洲人成网站高清观看| 免费观看在线日韩| 国产私拍福利视频在线观看| 久久久久网色| 日韩亚洲欧美综合| 不卡视频在线观看欧美| 国产三级在线视频| 久久久久久久久久黄片| 国产亚洲一区二区精品| 国语自产精品视频在线第100页| av在线观看视频网站免费| 国模一区二区三区四区视频| 国产又黄又爽又无遮挡在线| 天天躁夜夜躁狠狠久久av| 成人特级av手机在线观看| 非洲黑人性xxxx精品又粗又长| 成年版毛片免费区| 久久久亚洲精品成人影院| 成人午夜高清在线视频| 99久久人妻综合| 亚洲精品日韩在线中文字幕| 99久久精品热视频| 午夜激情欧美在线| 国产激情偷乱视频一区二区| 午夜a级毛片| 亚洲高清免费不卡视频| 免费在线观看成人毛片| 欧美日韩综合久久久久久| av又黄又爽大尺度在线免费看 | 一卡2卡三卡四卡精品乱码亚洲| 精品酒店卫生间| 欧美一区二区国产精品久久精品| av女优亚洲男人天堂| 日韩,欧美,国产一区二区三区 | 成年免费大片在线观看| 亚洲第一区二区三区不卡| 国产国拍精品亚洲av在线观看| 国产精品一区www在线观看| 女人被狂操c到高潮| 国产免费福利视频在线观看| 校园人妻丝袜中文字幕| 久久精品夜色国产| 免费无遮挡裸体视频| 久久精品影院6| 免费观看性生交大片5| 成人欧美大片| 亚洲美女视频黄频| 亚洲欧洲日产国产| 丝袜喷水一区| 亚洲乱码一区二区免费版| 一夜夜www| 极品教师在线视频| 精品人妻偷拍中文字幕| 国产高清有码在线观看视频| 丝袜喷水一区| av播播在线观看一区| 亚洲国产欧美人成| 女人被狂操c到高潮| 日日摸夜夜添夜夜添av毛片| 日韩大片免费观看网站 | 一个人观看的视频www高清免费观看| 99热这里只有是精品50| 日韩国内少妇激情av| 日本色播在线视频| 国产精品久久视频播放| 国产亚洲精品av在线| 我的女老师完整版在线观看| 99久久精品热视频| 亚洲国产最新在线播放| kizo精华| 国产午夜精品久久久久久一区二区三区| 精品欧美国产一区二区三| 内射极品少妇av片p| 久久这里只有精品中国| 熟女人妻精品中文字幕| 成人亚洲欧美一区二区av| 亚洲一级一片aⅴ在线观看| 啦啦啦啦在线视频资源| 伦理电影大哥的女人| 国产精品一及| 午夜免费激情av| 欧美高清成人免费视频www| 国产极品天堂在线| 日韩强制内射视频| 高清在线视频一区二区三区 | 亚洲精品乱久久久久久| 久久久国产成人精品二区| 亚洲国产高清在线一区二区三| 两个人视频免费观看高清| 国产午夜精品一二区理论片| 男人舔女人下体高潮全视频| 亚洲自偷自拍三级| 国产久久久一区二区三区| 日本五十路高清| 丝袜美腿在线中文| 亚洲精华国产精华液的使用体验| 日日撸夜夜添| 一区二区三区四区激情视频| 午夜免费男女啪啪视频观看| 国产精品人妻久久久影院| 一区二区三区乱码不卡18| 国产在线男女| 国产男人的电影天堂91| 中文字幕精品亚洲无线码一区| 国产高清不卡午夜福利| 在线免费观看的www视频| 久久久久久久国产电影| 精品少妇黑人巨大在线播放 | 99热这里只有精品一区| 91午夜精品亚洲一区二区三区| 又粗又硬又长又爽又黄的视频| 亚洲天堂国产精品一区在线| 精华霜和精华液先用哪个| av视频在线观看入口| 尤物成人国产欧美一区二区三区| 看非洲黑人一级黄片| 日日干狠狠操夜夜爽| 小蜜桃在线观看免费完整版高清| av又黄又爽大尺度在线免费看 | 免费观看的影片在线观看| 不卡视频在线观看欧美| 国产视频首页在线观看| 久久人人爽人人片av| 在线观看av片永久免费下载| 视频中文字幕在线观看| 国产乱人视频| av在线播放精品| 亚洲欧美精品综合久久99| 日韩人妻高清精品专区| 日本欧美国产在线视频| 中文字幕久久专区| 看十八女毛片水多多多| 观看美女的网站| 久久亚洲国产成人精品v| av国产免费在线观看| 少妇的逼水好多| 长腿黑丝高跟| 美女高潮的动态| 亚洲色图av天堂| 在线观看美女被高潮喷水网站| 国产精品电影一区二区三区| 九九久久精品国产亚洲av麻豆| 亚洲欧美中文字幕日韩二区| 久久人人爽人人片av| 又粗又爽又猛毛片免费看| 麻豆成人午夜福利视频| 三级国产精品欧美在线观看| 久久国内精品自在自线图片| 欧美日韩一区二区视频在线观看视频在线 | 国产极品天堂在线| 午夜精品在线福利| 夜夜看夜夜爽夜夜摸| 一区二区三区乱码不卡18| 免费av不卡在线播放| 日韩在线高清观看一区二区三区| 久久久久久久午夜电影| 秋霞在线观看毛片| 亚洲国产高清在线一区二区三| 一区二区三区乱码不卡18| 国产高清不卡午夜福利| 成年女人永久免费观看视频| 大又大粗又爽又黄少妇毛片口| 夫妻性生交免费视频一级片| 色播亚洲综合网| 黄色一级大片看看| 亚洲精品亚洲一区二区| 亚洲国产精品成人久久小说| 欧美区成人在线视频| 亚洲欧美日韩卡通动漫| 免费看光身美女| 精品久久久久久久久av| 中文字幕免费在线视频6| 欧美日韩精品成人综合77777| 久久人人爽人人片av| 2022亚洲国产成人精品| 免费黄色在线免费观看| 亚洲精品亚洲一区二区| 日日干狠狠操夜夜爽| 国产精品国产高清国产av| 亚洲欧美日韩卡通动漫| 欧美激情久久久久久爽电影| 两个人视频免费观看高清| 成人欧美大片| a级毛片免费高清观看在线播放| 精品久久久久久久久久久久久| 五月伊人婷婷丁香| 国产精品久久电影中文字幕| 国产午夜精品久久久久久一区二区三区| 建设人人有责人人尽责人人享有的 | 一级毛片aaaaaa免费看小| 有码 亚洲区| 九九爱精品视频在线观看| 亚洲av成人精品一二三区| 免费黄网站久久成人精品| 网址你懂的国产日韩在线| 精品久久久久久久末码| 人人妻人人澡人人爽人人夜夜 | 国产三级在线视频| 中文字幕精品亚洲无线码一区| 只有这里有精品99| 亚洲欧美精品综合久久99| 久久精品久久久久久噜噜老黄 | 日本wwww免费看| 级片在线观看| 亚洲精品乱码久久久久久按摩| 一级黄片播放器| 欧美激情久久久久久爽电影| 免费搜索国产男女视频| a级一级毛片免费在线观看| 亚洲精品国产成人久久av| 亚洲性久久影院| 国产黄色小视频在线观看| 日韩,欧美,国产一区二区三区 | 亚洲av二区三区四区| 国产精品久久视频播放| 精品不卡国产一区二区三区| 亚洲av熟女| 国产精品一区二区在线观看99 | 美女大奶头视频| 免费在线观看成人毛片| 日本免费在线观看一区| 在现免费观看毛片| 一区二区三区高清视频在线| 婷婷六月久久综合丁香| 国产色爽女视频免费观看| 久久99蜜桃精品久久| 女人被狂操c到高潮| 搡女人真爽免费视频火全软件| 国产精品一二三区在线看| 午夜福利网站1000一区二区三区| 国产黄色视频一区二区在线观看 | 亚洲人与动物交配视频| 国产极品天堂在线| 欧美成人精品欧美一级黄| 最新中文字幕久久久久| 国产大屁股一区二区在线视频| 国产av不卡久久| 看片在线看免费视频| 亚洲18禁久久av| 小蜜桃在线观看免费完整版高清| 超碰av人人做人人爽久久| 日韩成人伦理影院| 嫩草影院新地址| 午夜激情福利司机影院| 精品人妻视频免费看| 九九爱精品视频在线观看| av.在线天堂| 午夜激情福利司机影院| 国产精品福利在线免费观看| 蜜桃久久精品国产亚洲av| av免费在线看不卡| 成人一区二区视频在线观看| 淫秽高清视频在线观看| 日韩,欧美,国产一区二区三区 | 熟女电影av网| 成人性生交大片免费视频hd| 蜜臀久久99精品久久宅男| 国产91av在线免费观看| 免费不卡的大黄色大毛片视频在线观看 | 在线免费十八禁| 又粗又爽又猛毛片免费看| 欧美xxxx性猛交bbbb| 婷婷色综合大香蕉| 中文在线观看免费www的网站| 亚洲国产欧美在线一区| 日韩欧美在线乱码| 丝袜美腿在线中文| 人妻夜夜爽99麻豆av| 美女高潮的动态| 亚洲av男天堂| 美女被艹到高潮喷水动态| 我要搜黄色片| 国语自产精品视频在线第100页| 1024手机看黄色片| 久久99蜜桃精品久久| 亚洲国产精品国产精品| 国产一区二区亚洲精品在线观看| 国产伦在线观看视频一区| 久久午夜福利片| 国产精品综合久久久久久久免费| 久久久国产成人精品二区| 国产精品国产三级国产av玫瑰| 成人欧美大片| 亚洲av熟女| 三级国产精品欧美在线观看| 婷婷色av中文字幕| 黑人高潮一二区| 国产精品99久久久久久久久|