• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Polarization Independent Dual-band Metamaterial Based Radar Absorbing Structure(RAS)for Millimeter Wave Applications

    2014-04-17 06:26:36ShivNarayanLathaandJha
    Computers Materials&Continua 2014年3期

    Shiv Narayan,Latha S. and R M Jha

    1 Introduction

    The radar absorbing materials(RAM)and structures(RAS)are widely used in aerospace sectors to reduce the RCS of the aircraft,electromagnetic shielding of high reflection surfaces and metal surfaces etc.The stealth technique is the most typical application of electromagnetic(EM)wave absorption technology.Using this technique,the aircraft and warships can evade detection by reducing their radar cross-section(RCS).The conventional EM radar absorbers were designed based on either lossy materials such as Dallenbach layer[Hatakeyama and Inui(1984)]or resistive sheet separated by dielectric spacers such as Salisbury screen and Jaumann absorber[Fante and McCormack(1988);Knott and Lunden(1995)].These absorbers are thicker and absorb EM wave satisfactorily over narrow range of frequency or at single frequency.Moreover,the absorbers based on lossy materials such as magnetically loaded dielectric,is difficult to analyze at microwave frequencies.

    Recently,multi-band radar communication systems are used to detect and track the aircraft and warships.This leads to the high demand of multi-band EM radar absorbers with reasonable bandwidth in aerospace sectors.This can only be accomplished by metamaterial(MTM)based radar absorbing structures.Since the permittivity and permeability of metamaterial structures are controlled independently by varying the unit cell dimensions of its electric resonant and magnetic resonant components[Narayan et al.(2012;Choudhury et al.(2012)].The metamaterial based structures can be impedance-matched to free-space to achieve perfect EM absorption[Lee and Lee(2012)].The metamaterial based multi-band radar absorbers are designed in two ways;one is metamaterial layer with multi-resonant unit cells backed by metal sheet and another type of MTM-RAS is designed by cascading of lossy DPS layers and metamaterial layers such as ENG,MNG,and DNG etc.Although first method facilitates the design of very thin multi-band radar absorbers,such absorbers exhibit very narrow bandwidth at the resonances.For instance,some metamaterial based multi-band thin radar absorbers were realized by Shen et al.(2011),Zhu et al.(2010),and Singh et al.(2011)with metal backing plate in microwave and millimetre wave frequency regimes,exhibit narrow bandwidth at the resonances.Moreover,the metal backed absorbers may not be useful for stealth applications because it enhances the RCS of the structure outside the band due to the metal backing plate.

    Later method is a better option to design multi-band radar absorber with reasonable bandwidth for stealth applications since it does not use metal backing plate.In view of this,Oraizi and Abdolali(2008)presented the design and analysis of wideband metamaterial RAS in microwave frequency region.Further,Narayan et al.(2013)presented the EM analysis of metamaterial based single-band RAS designed by cascaded lossy DPS and metamaterial layers without metal backing plate,for millimetre wave stealth applications.

    In the present paper,a metamaterial based radar absorbing structure has been proposed for dual-band characteristics in millimeter wave frequency regime.The proposed structure consists of cascaded MNG(mu-negative)and DPS(double positive)layers.The EM performance analysis of this structure is carried out based on transmission line transfer matrix(TLTM)method for both TE and TM polarizations.The proposed metamaterial-RAS shows excellent absorption(>90%)over the frequency range of 111-131 GHz at first resonance and from 164.5-185 GHz at second resonance without metal backing plate.In addition,it shows very low power reflection(<6%)corresponding to both resonant frequencies.

    2 Theoretical Considerations

    The side view of a six-layered metamaterial based RAS is shown in Figure 1,where the EM wave is intended to incident on DPS layer at incidence angleθinc.According to TLTM method,a multilayered metamaterial structure can be represented as multiple sections of transmission line.The characteristic impedance and propagation constant associated to each section depends on the incidence angle,frequency,and polarization of the incidence wave.

    Figure 1:Side view of dual-band MTM-RAS structure

    In TLTM method,the transfer matrix of each layer is determined by cascading the wave amplitude matrix of the layer and discontinuity matrix between the consecutive layers.The transfer matrix of entire structure is obtained by cascading the transfer matrix of individual layer.

    Finally,the reflection and transmission coefficients of the entire structure are determined with the help of transfer matrix of the structure for different incident angles and different polarizations.

    The propagation constant(γlz)oflthsection of the transmission line for both TE and TM polarization can be expressed by Oraizi and Afsahi(2009)

    whereμlandεlrepresent the permeability and the permittivity of thelthlayer respectively.ωis the angular frequency.θlrepresents the incidence angle at thelthlayer.

    By using the Snell’s law forlthand(l+1)thlayer,the incidence angle at each layer are related by

    The intrinsic impedance of thelthlayer is determined by

    The transfer matrix of a multilayered metamaterial-RAS structure can be expressed as

    whereNis the number of layers.The wave amplitude transmission matrix[L](l+1)and discontinuity transfer matrix[I](l+1)lbetween two consecutive layers can be computed using the expressions given in[Oraizi and Afsahi(2009)].

    The transmission coefficient(t)and reflection coefficient(r)of the proposed structure are related by

    The power reflectionR,and power transmissionT,of the proposed structure can be calculated by

    The proposed metamaterial-RAS consists of cascaded lossy DPS layers and MNG layers.The complex permittivity of the lossy dielectric layers(DPS)is computed by using the dispersion relation,given by Chenet al.(2004)

    whereε′is the real part of the complex permittivity.σand tanδrepresent the conductivity and loss tangent of the dielectric material,respectively.Whereas the MNG(mu-negative)layer consists ofsquare split ring resonators(SSRRs)and its relative permeability is determined by Lorentz and Resonance model[Pendryet al.(1999)]as

    wherefmoandfmpare the magnetic resonant frequency and magnetic plasma frequency of the square SRR,respectively.

    3 EM Design of Dual-band Metamaterial RAS

    Figure 2:Schematic of dual-resonant MTM-RAS structure

    In the present work,a six-layered metamaterial-RAS structure is considered(Fig.2),which consists of cascaded DPS and MNG layers.Both MNG layers of the proposed MTM-RAS are identical in terms of thickness and dielectric properties,and each MNG layer consists of square shaped split ring resonator withεr=1.15.The design parameters of square SRR are optimized to be periodicity,p=2.0 mm,side length of the square,a=1.4 mm,separation between the rings,d=0.034899μm,and thickness of the ring,w=0.09 mm.The proposed MTM-RAS has four lossy DPS layers,where DPS layers 1 and 2 are identical in terms of thickness and dielectric properties.

    The thickness of DPS layer 3 and 4 is considered to beλ/4 andλ/2,respectively that act as the resistive sheet for the proposed MTM-RAS structure.The details of the layers of proposed metamaterial-RAS with optimized thicknesses are given in Table 1.

    Figure 3:Schematic of a unit cell of square split ring resonator(SSRR)

    Figure 4:Lumped equivalent circuit model of square SRR

    The schematic of a unit cell of square split ring resonator is shown in Figure 3.It consists of two concentric square shaped rings with gap in between them on opposite side of each ring.Here,arepresents the side length of the outer square ring,wdenotes the width of the square loop,anddis the distance between the rings.When magnetic field is applied perpendicular to the plane of the ring,the ring begins to conduct and leads to current flow.The current flowing through the rings will enable it to acts as an inductor and the dielectric gap(d)between the rings will lead to mutual capacitance[Vidyalakshmi and Raghavan(2010)].Hence the equivalent circuit of the SSRR will be a parallelLCresonant circuit(Fig.4).The magnetic resonance of square SRR can be determined by equivalent lumpedLCresonant circuit(Fig.4).The resonant frequency ofLCresonant circuit is calculated by

    Table 1:Designed details of layers of dual-band metamaterial-RAS structure

    where,Csrepresents the equivalent capacitance andLis the effective inductance due to both square rings.

    The magnetic plasma frequency of the structure is given as

    whereF=4(a/p)2is the fractional volume occupied by the unit cell.Hereprepresents the periodicity of SSRR unit cell.

    The expressions for effective inductance ofLCresonant circuit is given by Vidyalak shmi and Raghavan(2010)

    where,ρis the filling factor of inductance and is given as

    The effective capacitance ofLCresonant circuit is expressed by

    where,Cpulrepresents the capacitance per unit length between the rings and is given by

    andK(k)denotes thecomplete elliptical integralof the first kind.

    Using the above expressions,the magnetic resonance frequency and plasma resonance frequency of the square SRR can be determined.

    The effective permeability of square SRR is computed using equation(10).The frequency response of effective permeability of SRR is shown in Figure 5.It is observed that the proposed SRR resonates at 20 GHz and beyond this frequency,it exhibits negative permeability.The magnetic resonant frequency and magnetic plasma frequency of the square split ring resonator are computed by equations(11)and(12),respectively.Here,the square split ring resonator is designed for the magnetic resonant frequencyf0m=20 GHz,magnetic plasma frequencyfmp=28.22 GHz,and magnetic damping factor Γm=0.45473 GHz.

    The optimized thickness of each layer of the proposed metamaterial-RAS is given in Table 1.The total thickness of the proposed MTM-RAS is found to be 14.625 mm at the operating wavelength(λ)of 14.9 mm.In order to achieve dual-resonant characteristics,the thickness of the DPS layer 3 and 4 are considered to be 7.5 mm(λ/4)and 3.725 mm(λ/2),respectively that acts as the resistive layer.The dualresonant characteristics are obtained by the optimization of thicknesses of MNG layers and DPS layers.

    4 EM Performance Analysis

    In the present paper,the EM performance analysis of metamaterial based RAS for dual-band characteristics has been carried out for both TE and TM polarizations based on TLTM method.The reflection characteristics of proposed metamaterial-RAS are investigated at normal as well higher incidence angles(30°and 45°)for both TE and TM polarizations as shown in Figure 6 and 7.It is observed that the proposed MTM-RAS exhibits dual-band characteristics at centre frequencies 120 GHz and 175 GHz.It shows less than 6%power reflection over the frequency range of 112.5-130 GHz at first resonance and less than 5%power reflection over the frequency range of 166-184 GHz at second resonance for both polarizations.Further,the absorption characteristics are studied at different incident angles(0°,30°,and 45°)for TE and TM polarizations(Figures 8 and 9).It is observed that the proposed metamaterial-RAS exhibits dual-resonant absorption at frequencies 120 GHz and 175 GHz with excellent power absorption for both polarizations.Moreover,it absorbs more than 90%power of incidence wave over the frequency range of 111-131 GHz at first resonance and from 164.5-185 GHz at second resonancew.r.t.incident angles 0°,30°,and 45°for TE and TM polarizations.

    The transmission characteristics of the proposed structure are also studied at different incident angles(0°,30°,and 45°)for TE and TM polarizations as shown in Figures 10 and 11.It is observed that the power transmission through the MTMRAS is extremely low(<1.6%)over the frequency of interest corresponding to first and second resonant frequencies.Thus the proposed MTM-RAS exhibitsdual-band characteristics in millimeter wave frequency regime with wide bandwidth and excellent absorption at the resonances.

    Figure 6:Power reflection characteristics of dual-band MTM-RAS for TE polarization at different incident angles(0°,30°,and 45°)

    Figure 7:Power reflection characteristics of dual-band MTM-RAS for TM polarization at different incident angles(0°,30°,and 45°)

    Figure 8:Power absorption characteristics of dual-band MTM-RAS for TE polarization at different incident angles

    Figure 9:Power absorption characteristics of dual-band MTM-RAS for TM polarization at different incident angles

    Figure 10:Power transmission characteristics of dual-band MTM-RAS for TE polarization at different incident angles

    Figure 11:Power transmission characteristics of dual-band MTM-RAS for TM polarization at different incident angles

    5 Conclusions

    The EM analysis of a polarization independent dual-band metamaterial based radar absorbing structure(RAS)has been carried out in this paper using transmission line transfer matrix method.The proposed metamaterial-based RAS showed very low reflection at both resonant frequencies and excellent absorption(>90%)over the frequency range of 111-131 GHz at first resonance and from 164.5-185 GHz at second resonance for TE and TM polarizations without metal backing plate.It also showed very low(<1.6%)transmission over the frequency of interest for both TE and TM polarizations.Thus the proposed metamaterial-RAS find potential applications in millimeter wave frequency regime such as(i)RCS reduction of airborne platforms,(ii)Energy absorption for imaging,and chemical and biological sensing,(iii)EMI shielding in multi-band wireless communication systems to control multi-band EM radiation.

    Chen,L.F.;Ong,C.K.;Neo,C.P.;Vardan,V.V.;Vardan,V.K.(2004):Microwave Electronics:Measurement and Material Characterization.John Wiley&Sons,UK,ISBN:0-470-84492-2.

    Choudhury,B.;Bisoyi,S.;Jha,R.M.(2012):Emerging trends in soft computing techniques for metamaterial design and optimization.Computers,Materials&Continua,vol.31,pp.201-228.

    Fante,R.L.;McCormack,M.T.(1988):Reflection properties of Salisbury screen.IEEE Transactions on Antennas and Propagation,vol.36,pp.1443-1454.

    Hatakeyama,K.;Inui,T.(1984):Electromagnetic wave absorber using ferrite absorbing material dispersed with short metal fibers.IEEE Transactions on Magnetics,vol.MAG-20,pp.1261-1263.

    Knott,E.F.;Lunden,C.D.(1995):The two-sheet capacitive Jaumann absorber.IEEE Transactions on Antennas and Propagation,vol.43,pp.1339-1343.

    Lee,H.-M.;Lee,H.-S.(2012):A dual-band metamaterial absorber based with resonant-magnetic structures.Progress In Electromagnetics Research Letters,vol.33,pp.1-12.

    Narayan,S.;Latha,S.;Jha,R.M.(2013):EM analysis of metamaterial based radar absorbing structure(RAS)for millimetre wave applications.Computers,Materials&Continua,vol.34,no.2,pp.131-142.

    Narayan,S.;Shamala,J.B.;Nair,R.U.;Jha,R.M.(2012):Electromagnetic performance analysis of novel multiband metamaterial FSS for millimeter wave radome applications.Computers,Materials&Continua,vol.31,pp.1-16.

    Oraizi,H.;Abdolali,A.(2008):Design and optimization of planar multilayer antireflection metamaterial coatings at Ku band under circularly polarized oblique plane wave incidence.Progress In Electromagnetics Research C,vol.3,pp.1-18.

    Oraizi,H.;Afsahi,M.(2009):Design of metamaterial multilayer structure as frequency selective surfaces,”Progress In Electromagnetics Research C,vol.6,pp.115-126.

    Pendry,J.B.;Holden,A.J.;Robbins,D.J.;Stewart,W.J.(1999):Magnetism from conductors,and enhanced non-linear phenomena.IEEE Transactions on Microwave Theory and Techniques,vol.47,pp.2075-2084.

    Shen,X.;Cui,T.J.;Zhao,J.;Feng,H.Ma;Jiang,W.X.;Li,H.(2011):Polarization-independentwide-angle triple-band metamaterialabsorber.OpticsExpress,vol.199,pp.9401-9407.

    Singh,P.K.;Korolev,K.A.;Afsar,M.N.;Sonkusale,S.(2011):Single and dual-band 77/95/110 GHz metamaterial absorbers on flexible polyimide substrate.Applied Physics Letters,vol.99,pp.264101-1-264101-4.

    Vidyalakshmi,M.R.;Raghavan,S.(2010):Comparison of optimization techniques for square split ring resonator.International Journal of Microwave and Optical Technology,vol.5,pp.280-286.

    Zhu,B.;Huang,C.;Feng,Y.;Zhao,J.;Jiang,T.(2010):Dual-band switchable metamaterial electromagnetic absorber.Progress In Electromagnetics Research B,vol.24,pp.121-129.

    午夜激情福利司机影院| 99久久人妻综合| 国产日韩欧美在线精品| 波野结衣二区三区在线| 日产精品乱码卡一卡2卡三| 国产精品av视频在线免费观看| 舔av片在线| 能在线免费看毛片的网站| 成人二区视频| 亚洲精品一二三| 国产片特级美女逼逼视频| 一级av片app| 国产成人精品一,二区| 亚洲av二区三区四区| 国产午夜精品久久久久久一区二区三区| 国产亚洲91精品色在线| 国产在视频线精品| 中文字幕制服av| h视频一区二区三区| 精品国产露脸久久av麻豆| 亚洲激情五月婷婷啪啪| 精品一区在线观看国产| 狂野欧美白嫩少妇大欣赏| 一级爰片在线观看| 亚洲欧洲国产日韩| av在线观看视频网站免费| 精品午夜福利在线看| 六月丁香七月| 久久久久网色| 精品人妻一区二区三区麻豆| 国产高清不卡午夜福利| 各种免费的搞黄视频| 18禁在线无遮挡免费观看视频| 免费看日本二区| 亚洲国产精品999| 国产免费一级a男人的天堂| 久久久久久久久大av| 久久精品久久精品一区二区三区| 干丝袜人妻中文字幕| 少妇的逼水好多| 1000部很黄的大片| 又粗又硬又长又爽又黄的视频| 亚洲高清免费不卡视频| 精品99又大又爽又粗少妇毛片| 国产 一区 欧美 日韩| 午夜精品国产一区二区电影| 乱系列少妇在线播放| 青春草亚洲视频在线观看| 国产精品人妻久久久久久| 国产爽快片一区二区三区| 亚洲精品国产av成人精品| 色哟哟·www| 精品久久久久久久久av| 国产精品一区二区在线不卡| 久久久久久久精品精品| 一区二区三区四区激情视频| 成人无遮挡网站| 夜夜骑夜夜射夜夜干| 日韩亚洲欧美综合| 久久久久精品性色| 午夜激情福利司机影院| 晚上一个人看的免费电影| 久久久久视频综合| 三级经典国产精品| 赤兔流量卡办理| 人妻一区二区av| 国产在线免费精品| 高清午夜精品一区二区三区| 在线观看av片永久免费下载| 亚洲一区二区三区欧美精品| 婷婷色综合大香蕉| 99热国产这里只有精品6| 99久久中文字幕三级久久日本| 久久久成人免费电影| 国产男人的电影天堂91| 一级二级三级毛片免费看| 久久久久网色| 亚洲性久久影院| 日本色播在线视频| 亚洲国产最新在线播放| 夜夜爽夜夜爽视频| 三级国产精品欧美在线观看| 噜噜噜噜噜久久久久久91| 亚洲欧美一区二区三区国产| 精品少妇黑人巨大在线播放| 亚洲真实伦在线观看| 亚洲国产精品一区三区| 中文字幕亚洲精品专区| 黑丝袜美女国产一区| 国产精品国产三级国产av玫瑰| 大片免费播放器 马上看| 九九爱精品视频在线观看| 日本黄色日本黄色录像| av国产免费在线观看| 校园人妻丝袜中文字幕| 男人狂女人下面高潮的视频| 免费大片黄手机在线观看| 少妇被粗大猛烈的视频| 亚洲va在线va天堂va国产| 99热这里只有是精品50| 在线看a的网站| 高清av免费在线| 一本一本综合久久| 欧美日本视频| av视频免费观看在线观看| 欧美最新免费一区二区三区| www.色视频.com| av国产久精品久网站免费入址| 久久久久性生活片| 精品视频人人做人人爽| 亚洲精品乱码久久久久久按摩| 国产视频首页在线观看| 久久99热6这里只有精品| 国产精品99久久久久久久久| 美女国产视频在线观看| 日韩 亚洲 欧美在线| 欧美老熟妇乱子伦牲交| av播播在线观看一区| 亚洲精品久久午夜乱码| 乱码一卡2卡4卡精品| 亚洲电影在线观看av| 国产亚洲91精品色在线| 欧美xxxx性猛交bbbb| 午夜免费男女啪啪视频观看| 日韩伦理黄色片| 欧美成人a在线观看| 尤物成人国产欧美一区二区三区| 永久网站在线| 一级二级三级毛片免费看| 啦啦啦啦在线视频资源| 国产男女超爽视频在线观看| 亚洲国产欧美人成| 极品教师在线视频| 成年美女黄网站色视频大全免费 | 一级毛片久久久久久久久女| 亚洲精品一区蜜桃| av网站免费在线观看视频| 噜噜噜噜噜久久久久久91| 麻豆乱淫一区二区| 国产精品一区二区在线观看99| 一本色道久久久久久精品综合| 亚洲精品日本国产第一区| 免费看不卡的av| 少妇人妻一区二区三区视频| 日韩欧美精品免费久久| 久久精品熟女亚洲av麻豆精品| 亚洲av国产av综合av卡| av卡一久久| 99热这里只有是精品50| 日本色播在线视频| 国产片特级美女逼逼视频| 国产成人午夜福利电影在线观看| 3wmmmm亚洲av在线观看| 五月天丁香电影| 又黄又爽又刺激的免费视频.| 中文天堂在线官网| 久久 成人 亚洲| videos熟女内射| av在线蜜桃| 久久影院123| 狠狠精品人妻久久久久久综合| 久久久久久久久久人人人人人人| 免费av中文字幕在线| 美女高潮的动态| 国产精品一区二区三区四区免费观看| 18禁裸乳无遮挡动漫免费视频| 国产老妇伦熟女老妇高清| 亚洲真实伦在线观看| 国产精品精品国产色婷婷| 91精品国产九色| 99精国产麻豆久久婷婷| 国产精品偷伦视频观看了| 国产一区亚洲一区在线观看| 成人二区视频| 日本黄大片高清| 91久久精品国产一区二区三区| 日韩欧美精品免费久久| 又黄又爽又刺激的免费视频.| 91久久精品电影网| 啦啦啦视频在线资源免费观看| 伊人久久国产一区二区| 国内少妇人妻偷人精品xxx网站| 视频中文字幕在线观看| 精品人妻一区二区三区麻豆| 国产黄频视频在线观看| 久久 成人 亚洲| 国产精品麻豆人妻色哟哟久久| 日韩av在线免费看完整版不卡| 色视频在线一区二区三区| 亚洲av在线观看美女高潮| 夜夜看夜夜爽夜夜摸| 黑人猛操日本美女一级片| 欧美成人精品欧美一级黄| 波野结衣二区三区在线| 美女xxoo啪啪120秒动态图| 香蕉精品网在线| 国产av精品麻豆| 一级a做视频免费观看| 国产亚洲一区二区精品| 国产高清不卡午夜福利| 噜噜噜噜噜久久久久久91| 纯流量卡能插随身wifi吗| 老司机影院毛片| 国产国拍精品亚洲av在线观看| 啦啦啦啦在线视频资源| 不卡视频在线观看欧美| 国产真实伦视频高清在线观看| 大片免费播放器 马上看| 国产欧美日韩精品一区二区| 亚洲国产av新网站| 99热这里只有是精品在线观看| 久久久久久久久久人人人人人人| 午夜免费鲁丝| 久久婷婷青草| 国产成人91sexporn| 免费黄色在线免费观看| 久久国产精品大桥未久av | 在线 av 中文字幕| 久久精品熟女亚洲av麻豆精品| 日韩,欧美,国产一区二区三区| 日韩一本色道免费dvd| 我的女老师完整版在线观看| 亚洲欧美中文字幕日韩二区| 欧美最新免费一区二区三区| 91久久精品国产一区二区三区| 超碰97精品在线观看| 精品国产一区二区三区久久久樱花 | 少妇人妻 视频| 热99国产精品久久久久久7| 中国美白少妇内射xxxbb| 久久久久久伊人网av| 99热全是精品| 亚洲欧美一区二区三区黑人 | 人妻系列 视频| 美女脱内裤让男人舔精品视频| 日韩强制内射视频| 免费少妇av软件| 欧美日韩在线观看h| 婷婷色综合www| 亚洲性久久影院| av又黄又爽大尺度在线免费看| 国产精品久久久久久精品古装| 欧美xxⅹ黑人| 久久6这里有精品| 久久久精品免费免费高清| 亚洲国产av新网站| 欧美 日韩 精品 国产| 美女脱内裤让男人舔精品视频| 美女xxoo啪啪120秒动态图| videos熟女内射| 欧美日韩在线观看h| 2021少妇久久久久久久久久久| 亚洲无线观看免费| 精品久久国产蜜桃| 少妇精品久久久久久久| 视频区图区小说| 午夜激情福利司机影院| 国产女主播在线喷水免费视频网站| 亚洲aⅴ乱码一区二区在线播放| 精品久久久噜噜| 国产一区二区在线观看日韩| 在线免费观看不下载黄p国产| 国产精品一区二区在线观看99| 成人影院久久| 联通29元200g的流量卡| 国产精品秋霞免费鲁丝片| 国产 精品1| 成人免费观看视频高清| 深爱激情五月婷婷| 少妇的逼水好多| 中国三级夫妇交换| 国产91av在线免费观看| 亚洲真实伦在线观看| 六月丁香七月| kizo精华| 国产精品三级大全| tube8黄色片| 一区在线观看完整版| 国产精品一区www在线观看| 看十八女毛片水多多多| 91久久精品国产一区二区三区| 中文字幕人妻熟人妻熟丝袜美| 汤姆久久久久久久影院中文字幕| 久久久色成人| 亚洲色图av天堂| 91久久精品国产一区二区三区| 国产 一区 欧美 日韩| 3wmmmm亚洲av在线观看| 国产高清国产精品国产三级 | 国产精品一及| 女的被弄到高潮叫床怎么办| 街头女战士在线观看网站| 在线 av 中文字幕| 成年美女黄网站色视频大全免费 | a级毛片免费高清观看在线播放| av黄色大香蕉| 少妇人妻 视频| 欧美丝袜亚洲另类| 国产永久视频网站| av女优亚洲男人天堂| 国产黄片美女视频| 校园人妻丝袜中文字幕| 亚洲性久久影院| 国产精品欧美亚洲77777| 久久精品国产a三级三级三级| 只有这里有精品99| 少妇熟女欧美另类| 制服丝袜香蕉在线| 美女内射精品一级片tv| 成人免费观看视频高清| 国精品久久久久久国模美| 国产又色又爽无遮挡免| 亚洲av福利一区| 中文字幕亚洲精品专区| 日本与韩国留学比较| 久久久久网色| 日本黄大片高清| 欧美xxxx黑人xx丫x性爽| 伦精品一区二区三区| 欧美国产精品一级二级三级 | 日本黄大片高清| 国模一区二区三区四区视频| h日本视频在线播放| 在线观看美女被高潮喷水网站| 久久久精品免费免费高清| 日韩大片免费观看网站| 老女人水多毛片| 精品国产三级普通话版| 九九爱精品视频在线观看| 一区在线观看完整版| 人妻系列 视频| 纵有疾风起免费观看全集完整版| 亚洲精品日本国产第一区| 欧美最新免费一区二区三区| 最近最新中文字幕大全电影3| 亚洲色图av天堂| 又大又黄又爽视频免费| 啦啦啦视频在线资源免费观看| 久久精品国产鲁丝片午夜精品| 国产男女超爽视频在线观看| 男女下面进入的视频免费午夜| 一级毛片我不卡| 涩涩av久久男人的天堂| h日本视频在线播放| 婷婷色综合大香蕉| 美女xxoo啪啪120秒动态图| av在线app专区| 只有这里有精品99| 中文字幕精品免费在线观看视频 | 亚洲中文av在线| 精品久久久久久电影网| 麻豆成人午夜福利视频| 欧美激情国产日韩精品一区| 久久精品人妻少妇| 久久久国产一区二区| 国产视频内射| 女性生殖器流出的白浆| 久久久久久伊人网av| 男人爽女人下面视频在线观看| 日韩在线高清观看一区二区三区| 26uuu在线亚洲综合色| 啦啦啦中文免费视频观看日本| 欧美成人精品欧美一级黄| 两个人的视频大全免费| 97在线视频观看| 99久久人妻综合| 国产熟女欧美一区二区| 国内精品宾馆在线| 人妻一区二区av| 久久精品久久久久久噜噜老黄| 精品久久久久久久末码| 国产色爽女视频免费观看| 永久免费av网站大全| 夫妻午夜视频| 干丝袜人妻中文字幕| 国产精品.久久久| 亚洲熟女精品中文字幕| 久久国产亚洲av麻豆专区| 免费人成在线观看视频色| 婷婷色综合大香蕉| 精品人妻熟女av久视频| 黄色日韩在线| 伦理电影免费视频| 伊人久久国产一区二区| 久久99蜜桃精品久久| 最后的刺客免费高清国语| 亚洲精华国产精华液的使用体验| 亚洲国产精品专区欧美| 三级国产精品片| 一级毛片黄色毛片免费观看视频| 久久综合国产亚洲精品| tube8黄色片| 日本色播在线视频| 久久久久精品性色| 黄色日韩在线| 成人18禁高潮啪啪吃奶动态图 | 精品熟女少妇av免费看| 国产精品免费大片| 国产精品麻豆人妻色哟哟久久| 97超视频在线观看视频| 在线观看一区二区三区激情| 少妇的逼好多水| 中文字幕久久专区| 有码 亚洲区| 青春草视频在线免费观看| 亚洲国产欧美在线一区| 精品久久久噜噜| 免费久久久久久久精品成人欧美视频 | 国产一区二区三区综合在线观看 | 99视频精品全部免费 在线| 亚洲综合精品二区| 边亲边吃奶的免费视频| 久久99热6这里只有精品| 91aial.com中文字幕在线观看| 美女高潮的动态| 亚洲天堂av无毛| av一本久久久久| 一级爰片在线观看| 大片电影免费在线观看免费| 日韩视频在线欧美| 夫妻午夜视频| 亚洲性久久影院| 国产精品免费大片| 日韩成人伦理影院| 亚洲欧美日韩卡通动漫| 99精国产麻豆久久婷婷| 男人爽女人下面视频在线观看| 精品人妻偷拍中文字幕| 啦啦啦啦在线视频资源| 日本wwww免费看| 免费黄频网站在线观看国产| 亚洲内射少妇av| 久热这里只有精品99| 国产视频首页在线观看| 亚洲欧美日韩东京热| 欧美日韩视频高清一区二区三区二| 高清视频免费观看一区二区| 国精品久久久久久国模美| .国产精品久久| 一本久久精品| 成人毛片60女人毛片免费| 色婷婷久久久亚洲欧美| 汤姆久久久久久久影院中文字幕| 日韩一区二区三区影片| 婷婷色综合大香蕉| 国产亚洲av片在线观看秒播厂| 午夜激情久久久久久久| 日韩成人伦理影院| 高清不卡的av网站| 国产有黄有色有爽视频| 国产精品一区www在线观看| 欧美亚洲 丝袜 人妻 在线| 免费观看av网站的网址| 超碰av人人做人人爽久久| 日韩电影二区| 丰满人妻一区二区三区视频av| 纯流量卡能插随身wifi吗| 亚洲av日韩在线播放| 一本色道久久久久久精品综合| 亚洲精品国产成人久久av| 国语对白做爰xxxⅹ性视频网站| 另类亚洲欧美激情| 身体一侧抽搐| 日本vs欧美在线观看视频 | 成人漫画全彩无遮挡| 国产精品国产av在线观看| 一区二区av电影网| 中文字幕亚洲精品专区| av福利片在线观看| 一级a做视频免费观看| 老女人水多毛片| 亚洲激情五月婷婷啪啪| 国产亚洲精品久久久com| 亚洲人成网站在线观看播放| 色婷婷av一区二区三区视频| 国内精品宾馆在线| 成年女人在线观看亚洲视频| 一本—道久久a久久精品蜜桃钙片| 久久人人爽人人片av| 男的添女的下面高潮视频| 亚洲熟女精品中文字幕| 国产在视频线精品| 九草在线视频观看| 日韩av免费高清视频| 在线亚洲精品国产二区图片欧美 | 国产高清国产精品国产三级 | 一个人看视频在线观看www免费| 18禁裸乳无遮挡动漫免费视频| 另类亚洲欧美激情| 在线观看免费高清a一片| 免费大片黄手机在线观看| av不卡在线播放| 午夜福利在线观看免费完整高清在| 午夜激情福利司机影院| 男女边摸边吃奶| 特大巨黑吊av在线直播| 18禁裸乳无遮挡动漫免费视频| 免费黄频网站在线观看国产| 国产乱人视频| 麻豆精品久久久久久蜜桃| 国产极品天堂在线| 国产在线一区二区三区精| www.色视频.com| 国产av一区二区精品久久 | 色视频www国产| 国产乱人视频| 国产久久久一区二区三区| 啦啦啦在线观看免费高清www| 亚洲国产毛片av蜜桃av| 中文精品一卡2卡3卡4更新| 高清视频免费观看一区二区| 噜噜噜噜噜久久久久久91| 亚洲经典国产精华液单| 一本久久精品| 亚洲精品aⅴ在线观看| 国产一级毛片在线| 少妇丰满av| 精品视频人人做人人爽| 校园人妻丝袜中文字幕| 日韩成人伦理影院| 一本久久精品| 国产高潮美女av| 91精品国产九色| 亚洲欧美日韩无卡精品| 国产 一区 欧美 日韩| 久久影院123| 十八禁网站网址无遮挡 | 熟女人妻精品中文字幕| 26uuu在线亚洲综合色| 欧美高清性xxxxhd video| 多毛熟女@视频| 亚洲av中文字字幕乱码综合| 男男h啪啪无遮挡| 国产免费福利视频在线观看| 亚洲欧美中文字幕日韩二区| 少妇丰满av| 免费黄网站久久成人精品| 精品久久国产蜜桃| 国产精品人妻久久久久久| 欧美日韩国产mv在线观看视频 | 中文乱码字字幕精品一区二区三区| 制服丝袜香蕉在线| 久热久热在线精品观看| 亚洲怡红院男人天堂| 成人午夜精彩视频在线观看| 激情 狠狠 欧美| 国产av码专区亚洲av| 午夜福利影视在线免费观看| 久久99蜜桃精品久久| 啦啦啦啦在线视频资源| 日韩三级伦理在线观看| 大又大粗又爽又黄少妇毛片口| 精品少妇久久久久久888优播| 一个人看视频在线观看www免费| 一本一本综合久久| 男女啪啪激烈高潮av片| 国产乱人偷精品视频| 精品一区二区免费观看| 久久亚洲国产成人精品v| 综合色丁香网| 1000部很黄的大片| 99热6这里只有精品| 高清日韩中文字幕在线| 最近最新中文字幕大全电影3| 在线观看美女被高潮喷水网站| 永久网站在线| 久久人人爽人人片av| 亚洲一级一片aⅴ在线观看| 欧美人与善性xxx| 一二三四中文在线观看免费高清| 午夜视频国产福利| 人人妻人人添人人爽欧美一区卜 | 99九九线精品视频在线观看视频| 久久久欧美国产精品| 亚洲综合精品二区| 免费观看av网站的网址| 18禁动态无遮挡网站| 国产精品欧美亚洲77777| 91精品一卡2卡3卡4卡| 美女cb高潮喷水在线观看| av在线蜜桃| 亚洲不卡免费看| 国产成人免费观看mmmm| 国产探花极品一区二区| 免费观看性生交大片5| 天天躁夜夜躁狠狠久久av| 国产精品国产三级国产专区5o| 国产一区亚洲一区在线观看| 在线播放无遮挡| 在现免费观看毛片| 日韩欧美 国产精品| 国产深夜福利视频在线观看| 久久久久人妻精品一区果冻| 一个人看视频在线观看www免费| a 毛片基地| 在线观看免费日韩欧美大片 | 国产综合精华液| 大话2 男鬼变身卡| 国产精品一区www在线观看| 99热网站在线观看| 国产日韩欧美在线精品| 男男h啪啪无遮挡| 天堂中文最新版在线下载| 成年av动漫网址| 日韩精品有码人妻一区| 亚洲国产精品999| 亚洲国产色片| av国产免费在线观看| 国产亚洲av片在线观看秒播厂| 91在线精品国自产拍蜜月| 亚洲一区二区三区欧美精品| av女优亚洲男人天堂| 亚洲av.av天堂| 久久久久国产网址| 99久久精品国产国产毛片|