• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Thermo-elastic Stresses in a Functional Graded Material under Thermal Loading,Pure Bending and Thermo-mechanical Coup ling

    2014-04-16 11:06:42PengchengNi
    Computers Materials&Continua 2014年17期

    Pengcheng Ni

    1 Introduction

    Functionally graded materials(FGMs),as one kind of the functionally materials,are formed of two or more constituent phases with a continuously variable composition.FGMs shows many excellent merits in engineering applications such as the reduction of the in-plane stresses and stress in tensity factors of a composite,and improved thermal properties,residual stress and the fracture toughness[Aboudi,Pindera,and Arnold(1994);Chakraborty,Gopalakrishnan and Reddy(2003);Sarkar,Datta and Nicholson(1997);Zimmerman and Lutz(1999)].Due to this interest,a number of researches on both theoretical and experimental work dealing with various aspects of FGM have been published in recent years including mechanics,manufacturing,applications and the thermal properties[Bishay and Atluri(2013);Birman and Byrd(2007);Dong,El-Gizawy,Juhany and Atluri(2014);Dong,El-Gizawy,Juhany and Atluri(2014);El-Hadek and Tippur(2003);Huang,Yao and Wang(2011);Liu,Dui and Yang(2013);Sun,Hong and Yuan(2014);Wu,He and Li(2002);Yang,Gao and Chen(2010)].

    The designation and fabrication of the FGMs to achieve unique microstructures have already been launched[Miyamoto,Kaysser,Rabin,Kawasaki and Ford(1999)],and many analytical investigations have been conducted on the behaviors of FGM materials under thermal or mechanical loadings.As for the research on FGM beams,Librescu et al.[Librescu,Oh and Song(2005)]studied the behavior of thin walled beams made of FGM operating at high temperatures,in which the vibration and instability analysis along with the effects of volume fraction and temperature gradients were considered.The averaging technique of composite was utilized in[Liu,Dui and Yang(2013)],the effective stresses of each phase in a FGM beam under thermal loadings were calculated to judge the plasticity of the whole system,and the stress distributions of the whole material were obtained.[Yang,Chen,Xiang and Jia(2008)]studied both the free and forced vibrations of an FGM beam with variable thickness under thermally induced initial stresses based on the Timoshenko beam theory.Based on the nonlinear first-order shear deformation beam theory and the physical neutral surface concept,both the static and dynamic behaviors of FGM beams subjected to uniform in-plane thermal loading were derived by[Ma and Lee(2011)].The thermo-elastic stresses in a three layered composite beam system with FGM layer were researched by[Nirmala,Upadhyay,Prucz and Lyons(2006)].As for the research on the FMG plates,[Zhang and Zhou(2008)]presented a theoretical analysis to the FGM thin plates based on the physical neutral surface,in which the classical nonlinear lam inated plate theory and the concept of physical neutral surface were employed to formulate the basic equations of the FGM thin plate.The elastic analysis for a thick cylinder made of FGMs was carried out by[Chen and Lin(2008)],and stress distributions along the radial direction were studied.The analytical solutions for the rotation problem of an inhomogeneous hollow cylinder with variable thickness under plane strain assumption was developed by[Zenkour(2010)],and for different types of the hollow cylinders,the analytical solutions of the elastic properties are given.Numerical investigations have also been carried out to study the thermo-elastoplastic behaviors of metal-ceramic FGMs by utilizing the method of finite element(FE)techniques[Giannakopoulos,Suresh,Finot and Olsson(1995);Finot and Suresh(1996);Weissenbek,Pettermann and Suresh(1997)].

    It is worth mention that there is seldom work focus on the analytical solutions of the FGM plates subjected to the thermo-mechanical coupling.It has been reported by[Ekhlakov,Khay,Zhang,Sladek,Sladek and Gao(2012)]that the research on thermo-mechanical behaviors of FGMs subjected to thermo-mechanical coupling is important.Therefore,there is a strong need for an accurate analytical formulation to predict the thermo-mechanical behaviors of FGMs under different loadings such as thermal loading,pure bending and thermo-mechanical coupling.In order to get the theoretical solution,the averaging technique of composites are used to demonstrate the thermo-elastic behaviors of a three-layered FGM system under thermal loading,pure bending and thermo-mechanical coupling,respectively.When the temperature gradient and the bending moment vanish,the results can be degenerated to Liu’s work[Liu,Dui and Yang(2013)].Besides,this is one of the two parts work,this paper is focus on the thermo-elastic behaviors of the FGM system under thermal mechanical coupling,and the plastic work will be show in the next job.

    2 Theoretical solutions for the FGMs under thermal loading

    The coordinate axes and dimensions of the three-layered plate system can be illustrated in Fig.1.The upper layer is the metallic phase,the lower layer is the ceramic layer and the middle layer of the system is the FGMs.Here we assumed that the interfaces of the FG-layers atz=-aandz=+aare continuous and be perfectly bonded at all times.

    Figure 1:(a)Three-layered structural model and(b)coordinate axes and dimensions of the three-layered plate system.

    In order to get the theoretical solution,a power functionV(z)which represents the volume fraction of the metallic phase is assumed to be the compositional gradation function of the FGM layer with a parameter‘m’.Hence,for a simple example,the following function ofV(z)can be considered as

    And for different values of the parameter‘m’,different graded distributions can be obtained.According to(1),for the boundary condition at the layers’interfaces,exist that,

    According to the small strain kinematics,the total strain of the thermo-elastic phase of the system can be composed of the elastic strain,,and the thermal component,,as

    For the three layers system,under equal biaxial stress condition,exist that

    Then the stress tensor and the strain tensor can be described as

    When the total strain of the system can be considered as a function of the out-of plane coordinate,z,here we can define thatε0tis the strain at the m id-plane of the FGM layer atz=0,and it can be shown that the small strain compatibility equations lead to a linear relation between the total strain and curvature(K0t),and the subscript‘0t’represent the result of the system under thermal loading.

    Under plane stress conditions,the only non-zero stress componentσ(z)of the system can be given by

    whereE(z),a(z)andυrepresent the different Young’s modulus,the coefficient of thermal expansion and the Poisson’s ratio through the thickness of the threelayered system,respectively.Assumed that the number 1 represents the ceramic phase and the number 2 represents the metallic phase.Then for the ceramic phase,exist thatE(z)=E1,a(z)=a1,υ=υ1,and for the metallic phase,exist thatE(z)=E2,a(z)=a2,υ=υ2.In order to get the analytical solutions,here we assumed thatυ1=υ2.Assume that?T(z)=T0-T(z)represents temperature distributions through the thickness of the system,and if we assume a steady state distribution of temperature,T(z)satis fies the difference principle,and assumed that the different temperatures in the multilayer system as

    whereThe expressions forε0tandK0tcan be derived by the boundary condition

    Leads

    Substitute function(9)into(11),the follow ing expressions can be obtained by

    Results to

    where

    where

    And substituted(15-17)into(14),results can be got as

    For any application of the FGM system,the stress distribution of this model with different gradation parameter“m”can be obtained by using the general expressions of(9),(13)and(18)with the given material parameters.When the temperature distributions through the thickness of the system are assumed to be homogeneous,the work can be degenerate to Liu’s work(2013).

    3 Theoretical solutions for the FGMs under pure bending

    This part is focus on the analytical solutions for the three layered system under pure bending.Assumed that the system is under isothermal environment with no thermal loading(?T(z)=0).According to(6),the stress componentσ(z)can be expressed by

    whereε0b,K0bhave the same physical significance as(6),while the subscript‘0b’represent the corresponding values of the system under pure bending.Then in the similar way,the stress distribution of the system under pure bending can be expressed by

    Due to the pure bending,the externally applied force is zero while the bending moment is not,then the expressions forε0bandK0bcan be derived by

    which lead to

    Substituted Eq.(20)into Eq.(22),

    where

    and whereH(z)can be expressed as

    And substituted(25)into(24),the solutions can be got as

    As a simple example for cases of different variations ofV(z)with different‘m’,results of stress distributions of the system under pure bending can be obtained by(20,23,26)with the given material parameters.

    4 Theoretical solutions for the FGMs under thermo-mechanical coup ling

    For the case of the system under thermo-mechanical coupling,with the different min-plane strainε0cand the laminate curvatureK0c,the similar non-zero stress componentσ(z)can be given by

    The subscript‘0c’represents the corresponding values of the system under pure bending.The homogeneous temperature distribution in the multilayer system is the same as Eq.(8).Then the stress distribution of the system under varying temperature and the bending loads can be expressed as

    Because the bending load is not zero,so the expressions forε0candK0ccan be derived by

    which lead to

    Substitute Eq.(28)into Eq.(30),these can be integrated to produce

    where

    and

    And substituted(33-35)into(26),the solutions can be got as

    Then for cases of different variations ofV(z)with different‘m’,results of stress distributions for the system under thermo-mechanical coupling can be obtained by(28,31,36)with the given material parameters.

    5 Numerical results

    In order to get the thermo-mechanical behaviors of the system,as a simple example,the system can be treated as a FGM thin plate made up of Ni-FGM-AL2O3layers,the upper layer is the isotropic elastic Ni,the lower layer is the isotropic AL2O3.In order to get the theoretical solutions,the FGM layer is assumed to be in the FGM layer with linear and quadratic and square variation ofV(z)by substitutingm=1,2 and 0.5 into(18,26,36),respectively.For different cases of the system under thermal loading,pure bending and thermo-mechanical coupling,numerical results can be obtained by(9),(13),(18),(20),(23),(28),and(28),(31),(36).Here we assumed that all layers are isotropic elastic material,free of damage and having the temperature independent properties in Table 1[Giannakopoulos,Suresh,Finot and Olsson(1995);Weissenbek,Pettermann and Suresh(1997)].

    Table 1:Properties for the metallic(Ni)and ceramic(AL2O3)phases[Giannakopoulos,Suresh,Finot and Olsson(1995);Weissenbek,Pettermann and Suresh(1997)].

    Figure 2:Analytical thermo-elastic stress distributions of the system with m=0.5,1,2 at

    Fig.2 shows the stress distributions through the thickness of the three-layered system under the pure thermal loading.The initial temperature is isotherm during the whole system with T0=T1=200°C,and the finial state is T1=60°Cand T0=200°C.The temperature gradient between the upper side and the lower side of the system can be determined by the different composition pro files withm=1,2 and 0.5,respectively.As seen in Fig.2,the case withm=2 shows a higher value of the stress in the Ni and FGM layer and a lower value of the stress in the AL2O3layer than the other cases.So one can choose a smaller value of‘m’to lower the thermo-elastic stress of the FGM and metal layers,and choose a higher value of‘m’to lower the thermo-elastic stress of the AL2O3layer.The results withm=1 from T1=180°Cto T1=60°Ccan be shown in Fig.3.As seen in Fig.3,with the increasing thermal loadings,the stress distribution of the system shows a higher value.

    Figure 3:Analytical thermo-elastic stress distributions of the system with m=1 under different T1.

    Fig.4 shows the stress distributions through the thickness of the three-layered system under different bending moment at uniform temperature circumstance withm=1.As seen in Fig.4,the stress shows a higher value with the increasing bending moment.The stress distributions through the thickness of the three-layered system under pure bending withM=300 for the different composition pro files atm=1,2 and 0.5 can be shown in Fig.5.It shows that there is little effect by the gradient function on the stress distribution of the FGM system under pure bending.

    Figure 4:Analytical thermo-elastic stress distributions of the system with m=1 under different M.

    Figure 5:Analytical thermo-elastic stress distributions of the system with m=0.5,1,2 under M=300N·M.

    Figure6:Analytical thermo-elastic stress distributions of the system under different bending moment with m=1 at T0=200°C,T1=60°C.

    Figure 7:Analytical thermo-elastic stress distributions of the system with m=0.5,1,2 under M=1000N·M at T0=200°C,T1=60°C.

    Fig.6 shows the stress distributions through the thickness of the system under different bending moments at T0=200°Cand T1=60°C.As seen in Fig.6,there is a higher stress with the increasing bending moment.The stress distributions through the thickness of the three-layered system with constant bending momentM=1000 and at T0=200°Cand T1=60°Cfor the different composition pro files withm=1,2 and 0.5 can be shown in Fig.7.Results of the system under the same bending momentM=1000 withm=1,T0=200°Cand different T1can be shown in Fig.8.When the temperature gradient and the bending moment vanish,this model can be degenerated to Liu’s model,and the stress distribution for the system withm=1 can be obtained in Fig.9.The dot curve is Liu’s work and the solid one is the present result.As shown in Fig.9,they agree very well with each other.

    Figure 8:Analytical thermo-elastic stress distributions of the system with m=1,M=1000 N·Munder different temperature distribution T1.

    6 Conclusions

    The analytical solutions on the thermo-elastic stress solutions for FGMs under thermal loading,pure bending and thermo-mechanical coupling are studied in this work,respectively.The proposed relations for the stress distributions within a generic metal-FGM-ceramic system can predict accurately complex stress distributions induced by thermal loading,pure bending and thermo-mechanical coupling,respectively.By choosing the different appropriate FGM compositional gradation with linear,quadratic and square variations,the stress distribution within the sys-tem can be controlled so that undesirable stresses at critical locations are minimized or avoided.The analytical thermo-elastic solutions presented here may be accounted for in many potential FGM composites design and can provide a simple,yet accurate tool for the prediction of thermally induced stresses in an FGM layer sandwiched between two homogeneous materials.

    Figure 9:Analytical thermo-elastic stress distributions of the system with m=0.5,1,2 at?T=200°C.

    Acknowledgement:This work is supported by National Natural Science Foundation of China and Civil Aviation Administration of China jointly funded project(Grant#U1233106),the Fundamental Research Funds for the Central Universities funded project of Civil Aviation University of China(Grant#3122014C015).

    Aboudi,J.;Pindera,M.J.;Arnold,S.M.(1994):Elastic response of metal matrix composites with tailored micro structures to thermal gradients.Int.J.Solids.Struct.,vol.31,pp.1393-428.

    Birman.V.;Byrd,L.W.(2007):Modeling and Analysis of Functionally Graded Materials and Structures.Appl.Mech.Rev.,vol.60,no.5,pp.195-216.

    Bishay,P.L.;Atluri,S.N.(2013):2D and 3D Multi physics Voronoi Cells,Based on Radial Basis Functions,for Direct Mesoscale Numerical Simulation(DMNS)of the Sw itching Phenomena in Ferroelectric Polycrystalline Materials.CMC:Computers Materials and Continua,vol.33,no.1,pp.19-62.

    Chakraborty,A.;Gopalak rishnan,S.;Reddy,J.N.(2003):A new beam finite element for the analysis of functionally graded materials.Int.J.Mech.Sci.,vol.45,pp.519-39.

    Chen,Y.Z.;Lin.X.Y.(2008):Elastic analysis for thick cylinders and spherical pressure vessels made of functionally graded materials.Comput.Mater.Sci.,vol.44,pp.581-588.

    Dong,L.;El-Gizawy,A.S.;Juhany,K.A.;Atluri,S.N.(2014):A Simple Locking-Alleviated 4-Node Mixed-Collocation Finite Element with Over-Integration,for Homogeneous or Functionally-Graded or Thick-Section Laminated Composite Beams.CMC:Computers Materials and Continua,vol.40,no.1,pp.49-76.

    Dong,L.;El-Gizawy,A.S.;Juhany,K.A.;Atluri,S.N.(2014):A Simple Locking-Alleviated 3D 8-Node Mixed-Collocation C0 Finite Element with Over-Integration,for Functionally-Graded and Laminated Thick-Section Plates and Shells,with&without Z-Pins.CMC:Computers Materials and Continua,vol.41,no.3,pp.163-192.

    Ekhlakov,A.;Khay,O.;Zhang,C.;Sladek,J.;Sladek,V.;Gao,X.W.(2012):Thermoelastic crack analysis in functionally graded materials and structures by a BEM.Fatigue&Fracture of Engineering Materials&Structures,vol.35,no.8,pp.742-766.

    El-Hadek,M.;Tippur,H.V.(2003):Dynamic Fracture Parameters and Constraint Effects in Functionally Graded Syntactic Epoxy Foams.International Journal of Solids Structures,vol.40,pp.1885-1906.

    Finot,M.;Suresh,S.(1996):Small and large deformation of thick and thin 3lm multi-layers:effects of layer geometry,plasticity and compositional gradients.J.Mech.Phys.Solids.,vol.44,no.5,pp.683-721.

    Giannakopou los,A.E.;Suresh,S.;Finot,M.;O lsson,M.(1995):Elastoplastic analysis of thermal cycling:layered materials with compositional gradients.Acta Metall.Mater.,vol.43,no.4,pp.1335-1354.

    Huang,L.X.;Yao,Q.;Wang,L.(2011):An Inverse Analysis A lgorithm of Material Parameters for Functional Graded Materials.Advanced materials research,vol.243-249,pp.6011-17.

    Librescu,L.;Oh,S.Y.;Song,O.(2005):Thin-walled beams made of functionally graded materials and operating in a high temperature environment:vibration and stability.J Therm.Stresses,vol.28,pp.649-712.

    Liu,B.F.;Dui,G.S.;Yang,S.Y.(2013):On the transformation behavior of functionally graded SMA composites subjected to thermal loading.Eur.J.Mech.A-Solid.,vol.40,pp.39-147.

    Ma,L.S.;Lee,D.W.(2011):A further discussion of nonlinear mechanical behavior for FGM beams under in-plane thermal loading.Comp.Struct.,vol.92,no.2,pp.831-842.

    Miyamoto,Y.;Kaysser,W.A.;Rabin,B.H.;Kawasaki,A.;Ford,R.G.(1999):Functionally Graded Materials:Design,Processing and Applications.Kluwer Academic Publishers,Dordrecht.

    Nirmala,K.;Upadhyay,P.C.;Prucz,J.;Lyons,D.(2006):Thermo-elastic Stresses in Composite Beams with Functionally Graded Layer.J.Reinforced plastics and composites,vol.25,no.12,pp.1241-1254.

    Sarkar,P.;Datta,S.;Nicholson,P.S.(1997):Functionally Graded Ceramic/Ceramic and Metal/Ceramic Composites by Electrophoretic Deposition,Composites Part B,vol.28B,pp.49-56.

    Sun,K.H.;Hong,K.;Yuan,L.(2014):Inversion of Functional Graded Materials Elastic Properties from Ultrasonic Lamb Wave Phase Velocity Data Using Genetic Algorithm.J.Nondestruct Eva,vol.33,no.1 pp.34-42.

    Weissenbek,E.;Pettermann,H.E.;Suresh,S.(1997):Elasto-plastic deformation of compositionally graded metal-ceramwsic composites.Acta Mater.,vol.45,no.8,pp.3401-3417.

    Wu,C.C.;He,P.X.;Li,Z.(2002):Extension of J integral to dynamic fracture of functional graded material and numerical analysis.Comp.&Strut.,vol.80,no.5-6,pp.411-416.

    Yang,Q.Q.;Gao,C.F.;Chen,W.T.(2010):Stress analysis of a functional graded material plate with a circular hole.Arch.Appl.Mech.,vol.80,no.8,pp.895-907.

    Yang,J.;Chen,Y.;Xiang,Y.;Jia,X.L.(2008):Free and forced vibration of cracked inhomogeneous beams under an axial force and a moving load.J.Sound.Vib.,vol.312,no.1-2,pp.166-181.

    Zenkour,A.M.(2010):Rotating variable thickness inhomogeneous cylinders:part I-analytical elastic solutions.Applied Mathematics,vol.1,pp.481-488.

    Zhang,D.G.;Zhou,Y.H.(2008):A theoretical analysis of FGM thin plates based on physical neutral surface.Comput.Mater.Sci.,vol.44,pp.716-720.

    Zimmerman,R.W.;Lutz,M.P.(1999):Thermal stress and effective thermal expansion in a uniform ly heated functionally graded cylinder.J.Therm.Stress,vol.22,pp.177-88.

    久久午夜福利片| 国产亚洲av片在线观看秒播厂 | 波多野结衣高清作品| 一个人免费在线观看电影| 好男人在线观看高清免费视频| 国产亚洲欧美98| 精品久久久久久久久久免费视频| 免费观看精品视频网站| 日本黄色视频三级网站网址| 欧美精品国产亚洲| 男插女下体视频免费在线播放| 麻豆av噜噜一区二区三区| 精品久久久久久久久久久久久| 色5月婷婷丁香| 中文字幕av成人在线电影| 精品午夜福利在线看| 久久6这里有精品| 亚洲一区高清亚洲精品| 在线播放无遮挡| ponron亚洲| 美女国产视频在线观看| av卡一久久| 亚洲成a人片在线一区二区| 看片在线看免费视频| 成人特级黄色片久久久久久久| 国产蜜桃级精品一区二区三区| 69av精品久久久久久| 亚洲人与动物交配视频| 免费av观看视频| 欧美+亚洲+日韩+国产| 有码 亚洲区| 精品欧美国产一区二区三| 老师上课跳d突然被开到最大视频| 国产精品.久久久| 18禁黄网站禁片免费观看直播| 深爱激情五月婷婷| 如何舔出高潮| 伦理电影大哥的女人| 18禁黄网站禁片免费观看直播| 国产精品女同一区二区软件| 校园春色视频在线观看| 老熟妇乱子伦视频在线观看| 草草在线视频免费看| 日韩成人av中文字幕在线观看| 日韩一区二区三区影片| 在线播放无遮挡| 日韩人妻高清精品专区| 国产av不卡久久| 久久国内精品自在自线图片| 成人美女网站在线观看视频| 欧美一区二区精品小视频在线| 又粗又硬又长又爽又黄的视频 | 欧美激情久久久久久爽电影| 婷婷色综合大香蕉| 少妇裸体淫交视频免费看高清| 麻豆精品久久久久久蜜桃| 中文字幕av在线有码专区| 日本免费一区二区三区高清不卡| 国产精品精品国产色婷婷| 麻豆乱淫一区二区| 日韩国内少妇激情av| 亚洲自拍偷在线| 青春草亚洲视频在线观看| 精品一区二区三区视频在线| 国产精品不卡视频一区二区| 婷婷色综合大香蕉| 一级毛片我不卡| 天堂影院成人在线观看| 成人毛片60女人毛片免费| 亚洲18禁久久av| 久久午夜亚洲精品久久| 看黄色毛片网站| 日本五十路高清| 美女xxoo啪啪120秒动态图| 秋霞在线观看毛片| 黄色配什么色好看| av免费在线看不卡| 国产真实乱freesex| 国产欧美日韩精品一区二区| 国产精品久久久久久精品电影小说 | 啦啦啦啦在线视频资源| 国产免费男女视频| 免费av毛片视频| 高清毛片免费观看视频网站| 国产伦精品一区二区三区四那| 国产精品综合久久久久久久免费| 超碰av人人做人人爽久久| 免费看av在线观看网站| 国产毛片a区久久久久| 亚洲欧美成人综合另类久久久 | 亚洲国产精品国产精品| 日本黄大片高清| 一边亲一边摸免费视频| 狂野欧美白嫩少妇大欣赏| 午夜免费男女啪啪视频观看| 久久人人精品亚洲av| 亚洲七黄色美女视频| 国产91av在线免费观看| 亚洲第一区二区三区不卡| 国产男人的电影天堂91| 国产精品一二三区在线看| 熟妇人妻久久中文字幕3abv| 免费观看a级毛片全部| 我要搜黄色片| 久99久视频精品免费| 女的被弄到高潮叫床怎么办| 国产精品人妻久久久久久| 久久99精品国语久久久| av卡一久久| 观看免费一级毛片| 蜜臀久久99精品久久宅男| 久久综合国产亚洲精品| 尤物成人国产欧美一区二区三区| 国内少妇人妻偷人精品xxx网站| 久久久久久久午夜电影| 女的被弄到高潮叫床怎么办| 亚洲成人av在线免费| 97超视频在线观看视频| 日韩一区二区三区影片| 国产高清不卡午夜福利| 国产一区二区亚洲精品在线观看| 国产日本99.免费观看| 国产探花极品一区二区| 91麻豆精品激情在线观看国产| 亚洲av免费高清在线观看| 国产精品电影一区二区三区| 日韩中字成人| 男人和女人高潮做爰伦理| 美女被艹到高潮喷水动态| 神马国产精品三级电影在线观看| 99久久无色码亚洲精品果冻| 国产精品野战在线观看| 少妇被粗大猛烈的视频| 男人和女人高潮做爰伦理| 午夜视频国产福利| 日韩欧美精品v在线| 一个人观看的视频www高清免费观看| 日韩欧美国产在线观看| 亚洲精品日韩在线中文字幕 | 日本成人三级电影网站| 亚洲精品国产成人久久av| 国产精品久久久久久久久免| 欧美日韩一区二区视频在线观看视频在线 | 久久国内精品自在自线图片| 91狼人影院| 少妇丰满av| 午夜免费激情av| 亚洲丝袜综合中文字幕| 2021天堂中文幕一二区在线观| 日日摸夜夜添夜夜爱| 午夜久久久久精精品| 高清午夜精品一区二区三区 | 国产精品乱码一区二三区的特点| 长腿黑丝高跟| 一卡2卡三卡四卡精品乱码亚洲| 女同久久另类99精品国产91| 乱人视频在线观看| 国产精品永久免费网站| 午夜福利在线在线| 国产精品久久久久久av不卡| 成人综合一区亚洲| 18禁黄网站禁片免费观看直播| 一本久久精品| 亚洲在久久综合| av免费在线看不卡| 成人鲁丝片一二三区免费| 网址你懂的国产日韩在线| 精品午夜福利在线看| 夜夜夜夜夜久久久久| 国产精品一区二区在线观看99 | 成人毛片a级毛片在线播放| 成人漫画全彩无遮挡| 欧洲精品卡2卡3卡4卡5卡区| 12—13女人毛片做爰片一| 深爱激情五月婷婷| av在线老鸭窝| www日本黄色视频网| 精品久久久久久久末码| 亚洲无线观看免费| 国产精品一区二区三区四区久久| 免费在线观看成人毛片| 夜夜看夜夜爽夜夜摸| 国产一区二区三区在线臀色熟女| 国产久久久一区二区三区| 亚洲一区二区三区色噜噜| av在线天堂中文字幕| 亚洲不卡免费看| 天堂中文最新版在线下载 | 欧美最黄视频在线播放免费| 亚洲欧美成人综合另类久久久 | 小蜜桃在线观看免费完整版高清| 丰满的人妻完整版| 久久精品国产99精品国产亚洲性色| 精品不卡国产一区二区三区| 亚洲最大成人av| 亚洲人成网站在线播| 麻豆久久精品国产亚洲av| 欧美一区二区亚洲| 国产在视频线在精品| 大型黄色视频在线免费观看| 午夜免费激情av| 日韩成人伦理影院| 亚洲av免费在线观看| 国产亚洲欧美98| 国产亚洲精品久久久久久毛片| 激情 狠狠 欧美| 久久精品国产亚洲av天美| 国产高潮美女av| 91在线精品国自产拍蜜月| 精品久久久噜噜| 国产极品天堂在线| 最后的刺客免费高清国语| 18+在线观看网站| 男女做爰动态图高潮gif福利片| 亚洲成人久久爱视频| 色综合色国产| 亚洲内射少妇av| 听说在线观看完整版免费高清| 久久精品国产亚洲av天美| 日本免费一区二区三区高清不卡| 高清毛片免费观看视频网站| 少妇高潮的动态图| av在线天堂中文字幕| 十八禁国产超污无遮挡网站| 欧美bdsm另类| 久久99热6这里只有精品| 夜夜看夜夜爽夜夜摸| 少妇裸体淫交视频免费看高清| 亚洲av成人精品一区久久| 亚洲国产精品sss在线观看| 最近手机中文字幕大全| 欧美激情久久久久久爽电影| 欧美性猛交╳xxx乱大交人| 国产亚洲av片在线观看秒播厂 | 久久久国产成人精品二区| 人人妻人人澡人人爽人人夜夜 | 国产精品人妻久久久久久| 欧美日韩在线观看h| 禁无遮挡网站| 一个人看视频在线观看www免费| 亚洲熟妇中文字幕五十中出| 99久久人妻综合| 亚洲av中文av极速乱| 一边摸一边抽搐一进一小说| 国产精品一区二区三区四区免费观看| 国产黄a三级三级三级人| 一卡2卡三卡四卡精品乱码亚洲| 国内少妇人妻偷人精品xxx网站| 性插视频无遮挡在线免费观看| 欧美变态另类bdsm刘玥| 国产高清视频在线观看网站| 亚洲国产精品国产精品| 26uuu在线亚洲综合色| 欧美xxxx性猛交bbbb| .国产精品久久| 久久久精品欧美日韩精品| 国产在视频线在精品| 亚洲自拍偷在线| 国产精品久久久久久精品电影小说 | 永久网站在线| 久久6这里有精品| 午夜免费男女啪啪视频观看| 国产高清视频在线观看网站| 成年免费大片在线观看| 亚洲国产精品合色在线| avwww免费| 三级毛片av免费| 91精品一卡2卡3卡4卡| 欧美又色又爽又黄视频| 亚洲国产色片| 国产在线男女| 午夜a级毛片| 日韩一区二区三区影片| 91午夜精品亚洲一区二区三区| 一边摸一边抽搐一进一小说| www.av在线官网国产| or卡值多少钱| 亚洲人成网站在线观看播放| 久久精品影院6| 久久精品国产亚洲av天美| 久久人人精品亚洲av| 简卡轻食公司| 欧美日韩一区二区视频在线观看视频在线 | 国产69精品久久久久777片| 午夜福利在线观看免费完整高清在 | 看片在线看免费视频| 国产精品,欧美在线| 99久国产av精品| 99国产极品粉嫩在线观看| 好男人在线观看高清免费视频| 变态另类成人亚洲欧美熟女| 男女视频在线观看网站免费| 看免费成人av毛片| 日韩成人av中文字幕在线观看| 亚洲av中文字字幕乱码综合| 又粗又硬又长又爽又黄的视频 | 看非洲黑人一级黄片| 麻豆乱淫一区二区| 日日啪夜夜撸| 51国产日韩欧美| 久久精品91蜜桃| 免费人成视频x8x8入口观看| 色综合色国产| 卡戴珊不雅视频在线播放| 日日摸夜夜添夜夜添av毛片| a级毛片a级免费在线| 亚洲在线观看片| 日韩欧美一区二区三区在线观看| 直男gayav资源| 免费观看a级毛片全部| 欧美色欧美亚洲另类二区| 日韩欧美 国产精品| 午夜老司机福利剧场| 婷婷亚洲欧美| 久久韩国三级中文字幕| 伦理电影大哥的女人| 一夜夜www| 国产成人午夜福利电影在线观看| 色综合站精品国产| 99久久精品一区二区三区| 国产精品国产三级国产av玫瑰| 亚洲国产精品久久男人天堂| 国内揄拍国产精品人妻在线| 中文字幕制服av| 村上凉子中文字幕在线| 免费在线观看成人毛片| av在线观看视频网站免费| 国产精品久久久久久精品电影小说 | 波多野结衣高清无吗| 在现免费观看毛片| 国产熟女欧美一区二区| 亚洲精品国产av成人精品| 国语自产精品视频在线第100页| 黄色视频,在线免费观看| 可以在线观看毛片的网站| 97超视频在线观看视频| 国产日韩欧美在线精品| 亚洲av成人av| 青春草视频在线免费观看| 日韩欧美三级三区| 亚洲欧美日韩高清在线视频| 国产黄a三级三级三级人| 亚洲三级黄色毛片| 国产成人福利小说| 午夜视频国产福利| 中国国产av一级| a级一级毛片免费在线观看| 哪里可以看免费的av片| 天堂av国产一区二区熟女人妻| 国产高清视频在线观看网站| 免费人成在线观看视频色| 亚洲自偷自拍三级| 成人一区二区视频在线观看| 国产精品三级大全| 小蜜桃在线观看免费完整版高清| 亚洲最大成人av| 亚洲人成网站在线观看播放| 乱人视频在线观看| 搞女人的毛片| 91在线精品国自产拍蜜月| 国产探花极品一区二区| 丝袜美腿在线中文| 亚洲av二区三区四区| 夜夜爽天天搞| 日本成人三级电影网站| 久久国内精品自在自线图片| 1000部很黄的大片| 午夜爱爱视频在线播放| 神马国产精品三级电影在线观看| 美女高潮的动态| 免费看a级黄色片| 久久99热6这里只有精品| 国产av在哪里看| 国产精品一二三区在线看| 亚洲真实伦在线观看| 青春草国产在线视频 | 亚洲国产精品成人久久小说 | 成熟少妇高潮喷水视频| 国产伦精品一区二区三区视频9| 成人亚洲精品av一区二区| 国产一区二区在线观看日韩| 在线免费观看的www视频| 精品久久久久久久久久久久久| 亚洲综合色惰| 99热这里只有是精品50| 床上黄色一级片| 久久这里有精品视频免费| 久久精品综合一区二区三区| 国产成人午夜福利电影在线观看| 免费看美女性在线毛片视频| 成人高潮视频无遮挡免费网站| 亚洲av第一区精品v没综合| 免费看光身美女| 狠狠狠狠99中文字幕| 国产伦一二天堂av在线观看| 日本免费a在线| 少妇熟女aⅴ在线视频| 亚洲七黄色美女视频| 老熟妇乱子伦视频在线观看| 亚洲va在线va天堂va国产| 夜夜看夜夜爽夜夜摸| 国内精品宾馆在线| 国内少妇人妻偷人精品xxx网站| 国产麻豆成人av免费视频| 久久久午夜欧美精品| 色视频www国产| 亚洲成人精品中文字幕电影| 久久精品久久久久久久性| 黄片无遮挡物在线观看| 国产精品久久久久久久久免| 日韩欧美一区二区三区在线观看| 国产日韩欧美在线精品| a级毛片免费高清观看在线播放| 久久久欧美国产精品| 成人漫画全彩无遮挡| 久久精品国产亚洲av涩爱 | 亚洲欧美精品自产自拍| 狂野欧美白嫩少妇大欣赏| 国产亚洲5aaaaa淫片| 国产精品伦人一区二区| 久久久成人免费电影| 国产精品麻豆人妻色哟哟久久 | 我的女老师完整版在线观看| 免费人成在线观看视频色| 久久久久久大精品| 一个人看视频在线观看www免费| 丝袜美腿在线中文| 日本黄色视频三级网站网址| 国产黄色视频一区二区在线观看 | 成人漫画全彩无遮挡| 国产精品乱码一区二三区的特点| 精品99又大又爽又粗少妇毛片| 国产精品福利在线免费观看| 人妻久久中文字幕网| 免费av毛片视频| 黄色欧美视频在线观看| 舔av片在线| 看免费成人av毛片| 男人的好看免费观看在线视频| 国产成人精品久久久久久| 1024手机看黄色片| av天堂在线播放| 蜜桃亚洲精品一区二区三区| 亚洲av.av天堂| 啦啦啦观看免费观看视频高清| 色哟哟·www| 久久亚洲国产成人精品v| 精品免费久久久久久久清纯| 九九在线视频观看精品| 日韩 亚洲 欧美在线| 亚洲成人精品中文字幕电影| 在线播放国产精品三级| 国产黄a三级三级三级人| 尾随美女入室| 男女视频在线观看网站免费| 国产精品一区二区性色av| 国产中年淑女户外野战色| 五月伊人婷婷丁香| 一本精品99久久精品77| 麻豆国产97在线/欧美| 中国美白少妇内射xxxbb| 69人妻影院| 国产高清不卡午夜福利| 亚洲成人久久爱视频| 亚洲国产精品sss在线观看| 国内久久婷婷六月综合欲色啪| 亚州av有码| 国产在线男女| 69av精品久久久久久| 国产精品久久久久久久电影| 狂野欧美白嫩少妇大欣赏| 日本色播在线视频| 国产综合懂色| 中文字幕熟女人妻在线| 99久久九九国产精品国产免费| 免费观看的影片在线观看| 亚洲激情五月婷婷啪啪| 国产91av在线免费观看| 又粗又硬又长又爽又黄的视频 | 亚洲欧洲日产国产| 久久鲁丝午夜福利片| 能在线免费看毛片的网站| 国产免费一级a男人的天堂| 青春草国产在线视频 | 久久草成人影院| 国产私拍福利视频在线观看| 在线国产一区二区在线| 卡戴珊不雅视频在线播放| 亚洲中文字幕一区二区三区有码在线看| 少妇人妻精品综合一区二区 | 国产69精品久久久久777片| 日韩制服骚丝袜av| 免费一级毛片在线播放高清视频| 日本av手机在线免费观看| 一级黄色大片毛片| 可以在线观看的亚洲视频| 五月伊人婷婷丁香| 日韩视频在线欧美| 日本爱情动作片www.在线观看| 国产亚洲精品久久久久久毛片| 亚洲人与动物交配视频| 国内揄拍国产精品人妻在线| 美女被艹到高潮喷水动态| av在线播放精品| 亚洲第一区二区三区不卡| 国产视频内射| 美女国产视频在线观看| 免费av观看视频| 18禁在线无遮挡免费观看视频| 男的添女的下面高潮视频| 久久草成人影院| 亚洲精品色激情综合| 国产伦在线观看视频一区| 一边摸一边抽搐一进一小说| 国产精品久久久久久亚洲av鲁大| 日本在线视频免费播放| 亚洲内射少妇av| 人妻制服诱惑在线中文字幕| 国内精品宾馆在线| 91av网一区二区| 久久久精品大字幕| 69人妻影院| 精品一区二区三区人妻视频| 99久国产av精品| 亚洲av成人av| 欧美激情久久久久久爽电影| 国产真实乱freesex| 国产一区二区在线观看日韩| 啦啦啦韩国在线观看视频| 狠狠狠狠99中文字幕| 国产精品一区二区性色av| 国产一级毛片在线| 国产精品人妻久久久影院| 精品少妇黑人巨大在线播放 | 成人一区二区视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 日韩欧美 国产精品| 欧美另类亚洲清纯唯美| 国产成人福利小说| 国产黄片美女视频| 禁无遮挡网站| 男女啪啪激烈高潮av片| 特大巨黑吊av在线直播| 九色成人免费人妻av| 99久久九九国产精品国产免费| 简卡轻食公司| 婷婷六月久久综合丁香| 18+在线观看网站| 能在线免费看毛片的网站| 久久99精品国语久久久| 男女那种视频在线观看| 亚洲七黄色美女视频| 边亲边吃奶的免费视频| 亚洲不卡免费看| or卡值多少钱| 亚洲电影在线观看av| 91精品国产九色| 床上黄色一级片| 国产精品.久久久| 久久精品夜色国产| 国产精品一及| 精品少妇黑人巨大在线播放 | 午夜视频国产福利| 亚洲精品久久国产高清桃花| 中文欧美无线码| 直男gayav资源| 一级二级三级毛片免费看| 久久精品91蜜桃| 晚上一个人看的免费电影| 有码 亚洲区| 夫妻性生交免费视频一级片| 秋霞在线观看毛片| 亚州av有码| 国产毛片a区久久久久| 国产麻豆成人av免费视频| 亚洲av男天堂| 熟妇人妻久久中文字幕3abv| 久久久国产成人免费| 亚洲美女视频黄频| 国产伦理片在线播放av一区 | 在线观看66精品国产| 日本黄色片子视频| 国产国拍精品亚洲av在线观看| 欧美激情久久久久久爽电影| 少妇人妻精品综合一区二区 | 亚洲国产精品久久男人天堂| 青春草亚洲视频在线观看| 亚洲欧美精品自产自拍| 成年av动漫网址| 我要看日韩黄色一级片| 成年女人看的毛片在线观看| 99久国产av精品| 欧美性猛交黑人性爽| 成人特级黄色片久久久久久久| 亚洲欧美精品综合久久99| 亚洲欧洲日产国产| 人体艺术视频欧美日本| 国产老妇伦熟女老妇高清| 久久精品久久久久久噜噜老黄 | 久久99蜜桃精品久久| 亚洲av成人精品一区久久| 免费搜索国产男女视频| 日产精品乱码卡一卡2卡三| 天堂网av新在线| 久久韩国三级中文字幕| 自拍偷自拍亚洲精品老妇| 国产成人精品一,二区 | 国产女主播在线喷水免费视频网站 | av卡一久久| 亚洲乱码一区二区免费版| 亚洲人成网站高清观看| 夜夜爽天天搞| 中文欧美无线码| a级一级毛片免费在线观看| 男插女下体视频免费在线播放|