• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Prediction of Fracture Parameters of High Strength and Ultra-High Strength Concrete Beams using Minimax Probability Machine Regression and Extreme Learning Machine

    2014-04-16 11:06:39
    Computers Materials&Continua 2014年17期

    1 Introduction

    A highly developed infrastructure is an important part of any country’s grow th and prosperity.It is important to study Reinforced Concrete Structures(RCS)to analyze and develop better methods and materials which are more resilient and durable.These Reinforced Concrete Structures have suffered many failures due to the combined effect of de-icing,alternate expansion and contraction,freeze-thaw cycles,creep and shrinkage failures,heavy live load impacts and harsh,aggressive environments.Consequently civil engineers today are facing immense problems when it comes to preserving,maintaining and retro fitting these structures.Traditionally normal strength concrete(NSC)was used for building structures.Thus to build complicated infrastructure edifices such as high rise buildings and long span cable stayed bridges,among other humungous development projects,it became necessary to develop High Strength Concrete(HSC)with compressive strength of 50 MPa or higher.The easiest way to achieve such high compressive strength was to decrease the water-cement ratio.The use of appropriate additives and admixtures was encouraged to develop such high strengths along with other characteristics.Thus HSC is considered as green high performance concrete(GHPC).Nowadays ultra-high strength concrete(UHSC)is also used,with axial compression of above 140 MPa.Ultra-High Performance Concrete(UHPC)is a high-strength,ductile material formulated by combining Portland Cement,silica fume,quartz flour, fine silica sand,high-range water reducer,water,and steel or organic fibers.The material provides compressive strengths up to 29,000 pounds per square inch(psi)and flexural strengths up to 7,000 psi This was successfully developed by Richard and Cheyrezy(1994,1995),Mingzhe et al.(2010).

    Concrete being a quasi-brittle materials exhibit a nonlinear region before the peak of the stress-strain relationship and substantial post-peak strain softening.Linear elastic fracture mechanics cannot be applied directly to the quasi-brittle materials[Bazant,2000].Due to high heterogeneity nature in concrete,cracks follow the weakest matrix links in the material.They lead their way through the weak bonds,voids,mortar and get arrested on encountering a hard aggregate,forming crack face bridges.Micro cracking,crack bridging and aggregate interlocking are a few of many specific mechanisms that absorb energy during fracture process.These mechanisms contribute to the tendency of the main crack to follow a tortuous path[Bazant(2000);Barenblatt(1959);Dugdale(1960)].This tortuous nature of the crack causes difficulty in computing the fracture energy.Therefore,modeling the exact nature of the fracture surface poses a new challenge to the researchers.In these days,most theoretical works in fracture mechanics are based on the fundamental assumption that cracks have smooth surfaces.This assumption is helpful to use analytical models in the field of fracture mechanics.

    Over the past few years,researchers have used different statistical modelling methods such as Artificial Neural Network,Support Vector Regression,Multivariate Adaptive Regression Splines and Relevance Vector Machine for prediction of fracture characteristics of concrete.Yuvarajet al.(2013)used Support vector regression(2013),Artificial Neural Network(2012)and Multivariate Adaptive Regression Splines(2013)to predict the fracture characteristics of concrete beams.Though the performance of ANN is acceptable,its results are hard to interpret.Support vector machines do not directly provide probability estimates and in the case of MARS,parameter confidence intervals and other checks on the model cannot be calculated directly,unlike linear regression models.

    This article examines the applicability of Minimax Probability Machine Regression(MPMR)and Extreme Learning Machine(ELM)for prediction of fracture energy and ultimate load.MPMR is a new model based on Minimax Probability Machine Classification(MPMC).There are several applications of MPMR in different domains[Utkin et al.(2012);Takeda et al.(2013);Yang and Ju(2014)].ELM is developed based on the concept of single hidden layer forward network[Huang et al.(2006)].Researchers have successfully applied ELM for solving different problems in engineering[Jiang et al.(2012);Li et al.(2013);Du et al.(2014)].

    2 Minimax Probability Machine Regression

    This section will serve the details of MPMR.It is developed by constructing dichotomy classifier[Strohmann and Grudic(2002)].The relation between input(x)and output(y)is given below.

    Where N is the number of datasets,K(xi,x)is kernel function,βiand b is the output of MPMR.In this,beam dimensions,fck,split tensile strength,notch depth and Young’s modulus have been used as inputs of the MPMR.The output of MPMR is fracture energy(GF)and ultimate load(Pmax).

    The total datasets will be divided into the following two classes.

    The classification boundary between uiand viis regression surface.

    For developing MPMR,the dataset have been divided into the following two groups:

    Training Dataset:This is adopted to develop the MPMR model.This article uses 61 dataset as training dataset.

    Testing Dataset:This is used to verify the developed MPMR.The remaining 26 dataset has been used as testing dataset.

    The dataset is normalized between 0 and 1.Radial basis function has been adopted as kernel function.The program of MPMR has been constructed by using MATLAB.

    3 Extreme Learning Machine

    The basic concept of ELM has been taken from single hidden layer forward network(SLFN)[Huang et al.(2012)].In SLFN,the relation between input(x)and output(y)is given below:

    Where L is the number of hidden layers,g denotes the non-linear activation function andβiis weight.

    The above equation(4)can be written in the following way.

    Where

    The value ofβis determined from the following equation

    where H-1is the Moore-Penrose generalized inverse of hidden layer output matrix.ELM employs the same training dataset,testing dataset and normalization technique as used by the MPMR model.Radial basis function has been used as activation function for developing the ELM model.The program of ELM has been constructed by using MATLAB.

    4 Development of MPMR&ELM Models

    Out of the 87 data sets which are available,61 datasets(Table 1)are used to train the models and 26 datasets(Table 2)are used to test the accuracy of the models.Tables1 and 2show the training and testing data-sets respectively.The data was normalized between 0 and 1 before being used in the model as follow ing:

    The assessment of the model is done on the basis of coefficient of regression value R which is calculated using the formula:

    whereEaiandEpiare the actual and predicted values,respectively,andare mean of actual and predicted E values.For an effective and good model the R value should be close to one.Also while comparing the models the values of R is compared and the model with R value closer to one and higher than the other is considered better and used.

    5 Results and discussion

    The present study uses Coefficient of Correlation(R)to asses the performance of the developed MPMR&ELM.For a good model,the value of R should be close to one.For developing MPMR,the design values ofσandεhave been determined by trial and error approach.The developed MPMR gives best performance at P1=0.15 andε=0.07 for prediction of Pmax.Figure 1 depicts the performance of MPMR for prediction of Pmax.It is observed from figure 1 and Table 3 that the value of R is close to 1 for training as well as testing datasets.For prediction of GF,the design values of P1 andεare 0.07&0.05 respectively.Figure 2 illustrates the performance of MPMR for prediction of GF.As shown in figure 2 and Table 3,the value of R is close to one for training as well as testing datasets.So,the developed proves his ability for prediction of Pmaxand GF.

    The performance of ELM depends on the number of hidden nodes.The design number of hidden nodes is determined by trail and error approach.For prediction of Pmax,the developed ELM gives best performance for 10 hidden nodes.Figure 3 depicts the performance of ELM for prediction of Pmax.The developed ELM gives best performance at 9 hidden nodes For prediction of GF.Figure 4 illustrates the performance of ELM for prediction of GF.As shown in figures 3 and 4 and Table 3,the value of R is close to one.

    Table 1:Training data-sets.

    S.No L A a0(mm)(cm2)(mm)w/c f ck(MPa)(MPa)(GPa)σt E P max(KN)G F (N/m)31 500 50 20 0.33 87.71 15.38 37.89 4.99 4266.5 32 500 50 20 0.33 87.71 15.38 37.89 5.07 3828.57 33 500 50 30 0.33 87.71 15.38 37.89 3.80 3579.89 34 500 50 30 0.33 87.71 15.38 37.89 3.79 3865.2 35 500 50 40 0.33 87.71 15.38 37.89 2.99 3970.95 36 500 50 40 0.33 87.71 15.38 37.89 3.08 3406.67 37 250 25 4 0.23 122.52 20.65 42.987 9.99 10349.24 38 250 25 5 0.23 122.52 20.65 42.987 10.01 10376.22 39 250 25 10 0.23 122.52 20.65 42.987 7.81 8308.49 40 250 25 9 0.23 122.52 20.65 42.987 7.43 7900 41 250 25 15 0.23 122.52 20.65 42.987 6.20 6925.54 42 250 25 15 0.23 122.52 20.65 42.987 5.99 6694.51 43 250 25 20 0.23 122.52 20.65 42.987 4.07 4386.6 44 250 25 19 0.23 122.52 20.65 42.987 3.99 4306.29 45 250 25 20 0.23 122.52 20.65 42.987 4.18 4511.36 46 400 40 9 0.23 122.52 20.65 42.987 14.23 11557.07 47 400 40 8 0.23 122.52 20.65 42.987 13.98 11354.02 48 400 40 16 0.23 122.52 20.65 42.987 10.85 8888.75 49 400 40 15 0.23 122.52 20.65 42.987 10.62 8700.84 50 400 40 25 0.23 122.52 20.65 42.987 7.58 7145.19 51 400 40 24 0.23 122.52 20.65 42.987 7.61 7171.63 52 400 40 32 0.23 122.52 20.65 42.987 5.56 5021.25 53 400 40 31 0.23 122.52 20.65 42.987 5.60 5058.14 54 650 65 13 0.23 122.52 20.65 42.987 19.49 12052.38 55 650 65 12 0.23 122.52 20.65 42.987 19.31 11944.13 56 650 65 25 0.23 122.52 20.65 42.987 13.37 8076 57 650 65 25 0.23 122.52 20.65 42.987 13.51 8892.69 58 650 65 39 0.23 122.52 20.65 42.987 10.12 6965.9 59 650 65 39 0.23 122.52 20.65 42.987 10.30 7085.13 60 650 65 52 0.23 122.52 20.65 42.987 7.46 5919.23 61 650 65 52 0.23 122.52 20.65 42.987 7.69 6109.05

    Table 2:Testing data-sets.

    Table 3:Values of R for training and testing.

    Figure 1:Comparison of predicted ultimate load-MPMR.

    Figure 2:Comparison of predicted fracture energy-MPMR.

    Figure 3:Comparison of predicted ultimate load-EML.

    Figure 4:Comparison of predicted fracture energy-EML.

    6 Conclusions

    This study describes two alternative methods based of MPMR and ELM for prediction of facture energy and ultimate load.The methodology of MPMR and ELM has been described.Two types of dataset have been utilized to construct the MPMR and ELM models.The performance of MPMR and ELM is encouraging.Researchers can use the developed models as quick tools for prediction of facture energy and ultimate load.The developed models can be employed to solve different problems in structural engineering.

    An,M.;Yu,Z.;Sun,M.;Zheng,S.;Liang,L.(2010):Fatigue properties of RPC under cyclic loads of single-stage and multi-level amplitude.J.Wuhan Univ.Technol.,pp.167-73.

    Bazant,Z.P.(2000):Size effect.Int.J.Solid Struct.,vol.3,pp.69-80.

    Barenblatt,G.I.(1959):The formation of equilibrium cracks during brittle fracture:general ideas and hypotheses,axially symmetric cracks.Appl.Math.Mech.,vol.23,pp.622-36.

    Dugdale,D.S.(1960):Yielding of steel sheets containing slits.J.Mech.Phys.Solids,vol.8,pp.100-4.

    Du,S.;Zhang,J.;Deng,Z.;Li,J.(2014):A novel deformation prediction model for mine slope surface using meteorological factors based on kernel extreme learning machine.International Journal of Engineering Research in Africa,vol.12,pp.67-81.

    Huang,G.B.;Zhu,Q.Y.;Siew,C.K.(2006):Extreme learning machine:theory and applications.Neuro computing,vol.70,no.1,pp.489-501.

    Jiang,C.;Deng,M.;Hayakawa,Y.(2012):Operator-based parallel compensation control for hysteresis using ELM-based PI model.International Journal of Advanced Mechatronic Systems,vol.4,no.5-6,pp.280-286.

    Li,Y.;Ng,P.H.F.;Shiu,S.C.K.(2013):Extreme learning machine for determining signed efficiency measure from data.International Journal of Uncertainty,Fuzziness and Know lege-Based Systems,vol.21,no.2,pp.131-142.

    Richard,P.;Cheyrezy,M.H.(1994):Reactive powder concretes with high ductility and 200-800 MPa compressive strength.ACI SP144-24,vol.144,pp.507-18.

    Richard,P.;Cheyrezy,M.H.(1995):Composition of reactive powder concretes.Cem Concr Res,vol.25,no.7,pp.1501-11.

    Strohmann,T.R.;Grudic,G.Z.(2002):A Formulation for minimax probabil-ity machine regression.In Advances in Neural Information Processing Systems(NIPS),pp.769-776.

    Takeda,A.;Mitsugi,H.;Kanamori,T.(2013):Aunified classification model based on robust optimization.Neural Computation,vol.25,no.3,pp.759-804.

    Utkin,L.V.;Zhuk,Y.A.;Selikhovkin,I.A.(2012):A classification model based on incomplete information on features in the form of their average values.Scientific and Technical Information Processing,vol.39,no.6,pp.336-344.

    Yang,L.;Ju,R.(2014):A DC programming approach for feature selection in the Minimax Probability Machine.International Journal of Computational Intelligence Systems,vol.7,no.1,pp.12-24.

    Yuvaraj,P.;M urthy,A.R.;Iyer,N.R.;Sekar,S.K.;Samui,P.(2013):Support Vector Regression based Models to Predict Fracture Characteristics of High Strength and Ultra High Strength Concrete Beams.Engineering Fracture Mechanics,vol.98,pp.29-43.

    Yuvaraj,P.;Murthy,A.R.;Iyer,N.R.;Sekar,S.K.;Samui,P.(2012):Application of Artifical Neural Network to predict fracture characteristicsn of high strength and ultra high strength concrete beams.2nd International Conference on Advances in Mechanical,Manufacturing and Building Sciences(ICAMB),pp.1129-1136.

    Yuvaraj,P.;Murthy,A.R.;Iyer,N.R.;Samui,P.;Sekar,S.K.(2013):Multivariate Adaptive Regression Splines Model to Predict Fracture Characteristics of High Strength and Ultra High Strength Concrete Beams.CMC:Computers,Materials&Continua,vol.36,no.1,pp.73-97.

    91字幕亚洲| 男女床上黄色一级片免费看| 最近中文字幕高清免费大全6 | 成年人黄色毛片网站| 最新在线观看一区二区三区| 少妇的逼水好多| 黄色配什么色好看| 91av网一区二区| 久久久久久久午夜电影| 亚洲 国产 在线| 日本免费一区二区三区高清不卡| 国产高清视频在线观看网站| 亚洲性夜色夜夜综合| 琪琪午夜伦伦电影理论片6080| 99国产综合亚洲精品| 国产精品,欧美在线| 国产探花极品一区二区| 国产精品嫩草影院av在线观看 | 蜜桃亚洲精品一区二区三区| 好看av亚洲va欧美ⅴa在| 亚洲,欧美,日韩| 国产成人a区在线观看| 成人三级黄色视频| 日韩欧美一区二区三区在线观看| 成人一区二区视频在线观看| 色综合欧美亚洲国产小说| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 日本黄色片子视频| 国产中年淑女户外野战色| 中文字幕精品亚洲无线码一区| 免费在线观看亚洲国产| 蜜桃亚洲精品一区二区三区| 日韩欧美在线二视频| 真实男女啪啪啪动态图| 亚洲av成人精品一区久久| 欧美最黄视频在线播放免费| 午夜免费男女啪啪视频观看 | 欧美成狂野欧美在线观看| 婷婷六月久久综合丁香| 亚洲av第一区精品v没综合| 国产中年淑女户外野战色| 啦啦啦观看免费观看视频高清| 婷婷精品国产亚洲av| 久久国产乱子伦精品免费另类| 淫秽高清视频在线观看| 日韩 亚洲 欧美在线| 脱女人内裤的视频| 91久久精品国产一区二区成人| 可以在线观看的亚洲视频| 日本一本二区三区精品| 悠悠久久av| 在线免费观看的www视频| 中亚洲国语对白在线视频| 国产v大片淫在线免费观看| netflix在线观看网站| 国内少妇人妻偷人精品xxx网站| 97超视频在线观看视频| 精品欧美国产一区二区三| 亚洲人成网站在线播| 国产免费男女视频| 日韩欧美精品v在线| 亚洲av电影在线进入| 成人性生交大片免费视频hd| 观看免费一级毛片| av在线蜜桃| 日韩欧美三级三区| 精品一区二区三区视频在线| 国产在线精品亚洲第一网站| 欧美色欧美亚洲另类二区| 国产精品一区二区性色av| 一进一出抽搐gif免费好疼| 国产精品久久久久久精品电影| 最近中文字幕高清免费大全6 | 成熟少妇高潮喷水视频| 国产黄片美女视频| 国产精品久久久久久精品电影| 亚洲黑人精品在线| 亚洲avbb在线观看| 中文字幕久久专区| 99久久无色码亚洲精品果冻| bbb黄色大片| 国产精品电影一区二区三区| 国产午夜精品久久久久久一区二区三区 | 老司机午夜福利在线观看视频| 在线播放无遮挡| 久久久久亚洲av毛片大全| 综合色av麻豆| 成人鲁丝片一二三区免费| 欧美日韩国产亚洲二区| 亚洲欧美日韩无卡精品| 日本 欧美在线| 99久久成人亚洲精品观看| 亚洲精品一卡2卡三卡4卡5卡| 在线观看一区二区三区| 岛国在线免费视频观看| 久久伊人香网站| 免费av不卡在线播放| 婷婷六月久久综合丁香| 久久久国产成人免费| 高潮久久久久久久久久久不卡| 999久久久精品免费观看国产| 精品午夜福利在线看| 一级黄色大片毛片| 亚洲中文字幕日韩| 少妇高潮的动态图| 久久精品国产亚洲av涩爱 | 欧美黄色淫秽网站| 国产精品永久免费网站| av专区在线播放| 人妻丰满熟妇av一区二区三区| 欧美潮喷喷水| 国产欧美日韩精品一区二区| 欧美激情久久久久久爽电影| 嫩草影视91久久| 精品人妻1区二区| 久久亚洲精品不卡| 亚洲七黄色美女视频| 老司机福利观看| 国产精品1区2区在线观看.| 亚洲美女视频黄频| 精品人妻熟女av久视频| 亚洲一区二区三区不卡视频| 国产成年人精品一区二区| 国产一区二区亚洲精品在线观看| 国产精品亚洲av一区麻豆| 成人高潮视频无遮挡免费网站| av欧美777| 在线观看午夜福利视频| 十八禁国产超污无遮挡网站| 每晚都被弄得嗷嗷叫到高潮| 午夜亚洲福利在线播放| 日本撒尿小便嘘嘘汇集6| 别揉我奶头~嗯~啊~动态视频| 精品免费久久久久久久清纯| 青草久久国产| 成人性生交大片免费视频hd| 中文字幕人妻熟人妻熟丝袜美| 好看av亚洲va欧美ⅴa在| 精品国产亚洲在线| 亚洲国产精品999在线| АⅤ资源中文在线天堂| 69av精品久久久久久| 日韩成人在线观看一区二区三区| 国产又黄又爽又无遮挡在线| 亚洲va日本ⅴa欧美va伊人久久| 91午夜精品亚洲一区二区三区 | 国内毛片毛片毛片毛片毛片| 亚洲不卡免费看| .国产精品久久| 一本久久中文字幕| 婷婷丁香在线五月| 国产一级毛片七仙女欲春2| 精品乱码久久久久久99久播| 最新在线观看一区二区三区| 精品一区二区三区视频在线观看免费| 国内毛片毛片毛片毛片毛片| 观看免费一级毛片| 日韩成人在线观看一区二区三区| 成年人黄色毛片网站| 午夜日韩欧美国产| 精品久久久久久,| 久久午夜福利片| 国产免费一级a男人的天堂| 亚洲自偷自拍三级| 色综合欧美亚洲国产小说| 国产精品亚洲一级av第二区| 琪琪午夜伦伦电影理论片6080| 97超级碰碰碰精品色视频在线观看| 亚洲最大成人中文| 2021天堂中文幕一二区在线观| 亚洲美女黄片视频| 成人三级黄色视频| 久久久久久久久久黄片| 成年女人永久免费观看视频| 久久亚洲真实| 美女高潮的动态| 国产综合懂色| 一级黄色大片毛片| 亚洲精品成人久久久久久| 超碰av人人做人人爽久久| 欧美性猛交╳xxx乱大交人| 亚洲成av人片免费观看| 99久国产av精品| 中文字幕高清在线视频| 国产精品不卡视频一区二区 | 午夜免费激情av| 窝窝影院91人妻| 97人妻精品一区二区三区麻豆| 亚洲国产精品成人综合色| 精品人妻1区二区| 我要搜黄色片| 国产又黄又爽又无遮挡在线| 美女免费视频网站| 久久久国产成人免费| 搞女人的毛片| 亚洲av成人av| 日本三级黄在线观看| 国产免费一级a男人的天堂| 少妇裸体淫交视频免费看高清| 亚洲精品乱码久久久v下载方式| 一区二区三区激情视频| 中文字幕熟女人妻在线| 国产综合懂色| eeuss影院久久| 国产亚洲av嫩草精品影院| 免费一级毛片在线播放高清视频| 国产主播在线观看一区二区| 国产精品嫩草影院av在线观看 | 国产高清视频在线观看网站| 午夜精品在线福利| 欧美日韩瑟瑟在线播放| 深夜精品福利| 午夜福利成人在线免费观看| 又粗又爽又猛毛片免费看| 岛国在线免费视频观看| 脱女人内裤的视频| 色综合亚洲欧美另类图片| 一级作爱视频免费观看| 欧美日韩瑟瑟在线播放| 我要看日韩黄色一级片| 啦啦啦韩国在线观看视频| 少妇人妻一区二区三区视频| 成年人黄色毛片网站| 国内久久婷婷六月综合欲色啪| 精品久久久久久成人av| 国产精品影院久久| 午夜精品在线福利| 757午夜福利合集在线观看| 男女床上黄色一级片免费看| 日韩欧美在线二视频| ponron亚洲| 丝袜美腿在线中文| 天堂影院成人在线观看| 在线观看av片永久免费下载| 俺也久久电影网| 91九色精品人成在线观看| 他把我摸到了高潮在线观看| 日本黄色片子视频| 好男人电影高清在线观看| 欧美激情在线99| 免费一级毛片在线播放高清视频| 精品一区二区免费观看| 精品日产1卡2卡| 九九在线视频观看精品| 亚洲七黄色美女视频| 国产精品久久久久久亚洲av鲁大| 久久久精品欧美日韩精品| 亚洲第一电影网av| 亚洲精品成人久久久久久| 久久久国产成人免费| 老熟妇乱子伦视频在线观看| 波多野结衣高清作品| 色av中文字幕| 国产乱人视频| www.www免费av| 欧美乱色亚洲激情| 欧美日韩中文字幕国产精品一区二区三区| 国产 一区 欧美 日韩| 日本五十路高清| 高清毛片免费观看视频网站| 黄片小视频在线播放| 午夜激情欧美在线| 欧美日韩黄片免| 欧美zozozo另类| 日日摸夜夜添夜夜添小说| 中文字幕人成人乱码亚洲影| 欧美黄色淫秽网站| 国产精品影院久久| 国产人妻一区二区三区在| 婷婷精品国产亚洲av| 欧美性感艳星| a级一级毛片免费在线观看| 国产欧美日韩一区二区三| 国产单亲对白刺激| 在线播放国产精品三级| 亚洲av成人不卡在线观看播放网| 好男人在线观看高清免费视频| 免费看光身美女| 丰满乱子伦码专区| 亚洲欧美日韩高清在线视频| 丰满的人妻完整版| 人妻久久中文字幕网| 亚洲专区中文字幕在线| 麻豆成人午夜福利视频| 哪里可以看免费的av片| 久久久久性生活片| 白带黄色成豆腐渣| 丰满人妻一区二区三区视频av| 欧美三级亚洲精品| 日本免费一区二区三区高清不卡| 女生性感内裤真人,穿戴方法视频| 一级作爱视频免费观看| 国产精品人妻久久久久久| 日本与韩国留学比较| 天美传媒精品一区二区| 亚洲avbb在线观看| 国产精品乱码一区二三区的特点| 欧美在线黄色| 精品久久久久久久末码| 午夜久久久久精精品| 国产一区二区三区视频了| 亚洲国产欧美人成| 色视频www国产| 亚洲国产精品合色在线| 日韩中字成人| 男人狂女人下面高潮的视频| 国产午夜精品久久久久久一区二区三区 | 少妇的逼水好多| 国产成年人精品一区二区| 久久伊人香网站| 3wmmmm亚洲av在线观看| 久久精品国产99精品国产亚洲性色| 99久久久亚洲精品蜜臀av| 精品人妻1区二区| 欧美又色又爽又黄视频| 日韩亚洲欧美综合| 成年女人看的毛片在线观看| 俺也久久电影网| 国产白丝娇喘喷水9色精品| 久久久精品欧美日韩精品| 欧美潮喷喷水| 国产精品三级大全| 看免费av毛片| 久久人人爽人人爽人人片va | 国产真实伦视频高清在线观看 | 在线国产一区二区在线| 精品无人区乱码1区二区| 三级男女做爰猛烈吃奶摸视频| 国内毛片毛片毛片毛片毛片| 欧美日韩国产亚洲二区| 我要搜黄色片| 国产探花极品一区二区| а√天堂www在线а√下载| 国产熟女xx| 欧美一区二区国产精品久久精品| 国产精品野战在线观看| 丰满乱子伦码专区| 在线国产一区二区在线| 乱人视频在线观看| 一本综合久久免费| 天美传媒精品一区二区| 亚洲最大成人中文| 超碰av人人做人人爽久久| 婷婷六月久久综合丁香| 亚洲精品乱码久久久v下载方式| www日本黄色视频网| 一级av片app| 亚洲真实伦在线观看| 午夜激情福利司机影院| 亚洲精品一区av在线观看| 中文字幕精品亚洲无线码一区| 久久久久久九九精品二区国产| 好男人在线观看高清免费视频| 成人特级黄色片久久久久久久| 性插视频无遮挡在线免费观看| 99久久九九国产精品国产免费| 综合色av麻豆| 男人和女人高潮做爰伦理| 一区二区三区激情视频| 精品欧美国产一区二区三| 全区人妻精品视频| 桃红色精品国产亚洲av| 不卡一级毛片| 国产真实乱freesex| 国产精品一区二区性色av| 青草久久国产| 成人av一区二区三区在线看| 最近在线观看免费完整版| 日韩欧美免费精品| 又爽又黄a免费视频| 搡女人真爽免费视频火全软件 | 免费大片18禁| 欧美激情国产日韩精品一区| 亚洲欧美日韩卡通动漫| 婷婷精品国产亚洲av| 老鸭窝网址在线观看| 一个人看的www免费观看视频| 一区二区三区四区激情视频 | 国产亚洲精品久久久com| 成人特级黄色片久久久久久久| 国产精品99久久久久久久久| 2021天堂中文幕一二区在线观| 99热这里只有是精品在线观看 | 精品99又大又爽又粗少妇毛片 | 欧美成人a在线观看| 成人国产综合亚洲| 国模一区二区三区四区视频| 日本黄色视频三级网站网址| 精品一区二区三区视频在线| 91字幕亚洲| 非洲黑人性xxxx精品又粗又长| 国产精品久久久久久亚洲av鲁大| 成年免费大片在线观看| 久久久久久九九精品二区国产| 麻豆国产97在线/欧美| 久99久视频精品免费| 1000部很黄的大片| 美女 人体艺术 gogo| 婷婷精品国产亚洲av在线| 国产精品美女特级片免费视频播放器| 亚洲精品在线观看二区| 亚洲欧美激情综合另类| 精华霜和精华液先用哪个| 国产亚洲欧美98| 亚洲欧美清纯卡通| 一本综合久久免费| 免费人成视频x8x8入口观看| 一级黄色大片毛片| 欧美色视频一区免费| 一进一出抽搐gif免费好疼| 18禁黄网站禁片午夜丰满| 日韩欧美国产一区二区入口| 一级av片app| 少妇丰满av| 直男gayav资源| 亚洲,欧美精品.| 免费观看精品视频网站| 露出奶头的视频| 91狼人影院| 亚洲七黄色美女视频| 免费无遮挡裸体视频| 97热精品久久久久久| 在线天堂最新版资源| 欧美日韩瑟瑟在线播放| 两个人视频免费观看高清| 国产黄片美女视频| 久久午夜亚洲精品久久| 亚洲精品亚洲一区二区| 国产精品伦人一区二区| 国内揄拍国产精品人妻在线| 亚洲第一电影网av| 亚州av有码| 欧美一级a爱片免费观看看| 色哟哟·www| 人人妻人人看人人澡| 亚洲av一区综合| 在线十欧美十亚洲十日本专区| 九九热线精品视视频播放| 亚洲天堂国产精品一区在线| 88av欧美| 国产伦精品一区二区三区四那| 国产精品自产拍在线观看55亚洲| 黄色配什么色好看| x7x7x7水蜜桃| 久久国产精品人妻蜜桃| 亚洲精品色激情综合| 免费观看精品视频网站| 淫秽高清视频在线观看| 欧美激情国产日韩精品一区| 夜夜爽天天搞| 亚洲电影在线观看av| 真人一进一出gif抽搐免费| 嫩草影视91久久| 性欧美人与动物交配| 在线观看一区二区三区| 99热这里只有是精品50| 丰满乱子伦码专区| 在线十欧美十亚洲十日本专区| 国产精品久久视频播放| 国产高潮美女av| 亚洲欧美激情综合另类| 国内揄拍国产精品人妻在线| 成人美女网站在线观看视频| 久久久精品欧美日韩精品| 精品久久国产蜜桃| 天堂av国产一区二区熟女人妻| 免费看美女性在线毛片视频| 亚洲专区国产一区二区| 毛片女人毛片| 久久欧美精品欧美久久欧美| 老司机福利观看| 美女黄网站色视频| 日韩欧美在线乱码| 成人午夜高清在线视频| 中文亚洲av片在线观看爽| 精品熟女少妇八av免费久了| 亚洲成人精品中文字幕电影| 久久精品国产亚洲av天美| 国产高清视频在线观看网站| 国产熟女xx| 日本 欧美在线| 1000部很黄的大片| 久久精品国产99精品国产亚洲性色| 久久婷婷人人爽人人干人人爱| 亚洲三级黄色毛片| 超碰av人人做人人爽久久| 波野结衣二区三区在线| 国产精品美女特级片免费视频播放器| 五月伊人婷婷丁香| 又黄又爽又刺激的免费视频.| 国产精品三级大全| 757午夜福利合集在线观看| 亚洲欧美清纯卡通| av中文乱码字幕在线| 欧美高清性xxxxhd video| 波多野结衣高清作品| 搡老熟女国产l中国老女人| 女生性感内裤真人,穿戴方法视频| 老司机午夜十八禁免费视频| 久久这里只有精品中国| 国产探花在线观看一区二区| 免费观看人在逋| 国产亚洲精品久久久久久毛片| 成人性生交大片免费视频hd| av国产免费在线观看| 十八禁国产超污无遮挡网站| 最近视频中文字幕2019在线8| 网址你懂的国产日韩在线| 在现免费观看毛片| 亚洲乱码一区二区免费版| 亚洲国产精品久久男人天堂| 女生性感内裤真人,穿戴方法视频| 亚洲va日本ⅴa欧美va伊人久久| 久久久久九九精品影院| 男人舔奶头视频| 亚洲美女搞黄在线观看 | 亚洲成人中文字幕在线播放| 亚洲在线自拍视频| 日本免费a在线| 亚洲狠狠婷婷综合久久图片| 成人永久免费在线观看视频| 久久久久九九精品影院| 亚洲精品一区av在线观看| 黄色丝袜av网址大全| 国产精品一区二区三区四区久久| 色5月婷婷丁香| 18美女黄网站色大片免费观看| 久久热精品热| 欧美极品一区二区三区四区| 亚洲av成人av| 亚洲最大成人中文| 麻豆成人午夜福利视频| 精品久久久久久久久亚洲 | 亚洲第一区二区三区不卡| 国产中年淑女户外野战色| 国产伦精品一区二区三区视频9| 中文字幕久久专区| 欧美激情在线99| 悠悠久久av| 人妻久久中文字幕网| 国产av不卡久久| 欧美精品啪啪一区二区三区| 最近在线观看免费完整版| 亚洲成人中文字幕在线播放| 亚洲三级黄色毛片| 亚洲欧美日韩卡通动漫| 国产高清视频在线播放一区| 亚洲avbb在线观看| 欧美性猛交黑人性爽| 精品福利观看| bbb黄色大片| 国产精品av视频在线免费观看| 精品久久久久久久人妻蜜臀av| 一区二区三区四区激情视频 | 成人av在线播放网站| 亚洲国产精品sss在线观看| 九色国产91popny在线| 午夜福利免费观看在线| 小说图片视频综合网站| 无人区码免费观看不卡| 亚洲自拍偷在线| 校园春色视频在线观看| 亚洲18禁久久av| 日韩国内少妇激情av| 婷婷色综合大香蕉| 性欧美人与动物交配| 欧美在线黄色| 午夜福利成人在线免费观看| 丁香六月欧美| 日本精品一区二区三区蜜桃| 一区二区三区免费毛片| 国产精品亚洲美女久久久| 91在线精品国自产拍蜜月| 国产乱人伦免费视频| 十八禁人妻一区二区| 一区二区三区高清视频在线| 美女高潮的动态| 他把我摸到了高潮在线观看| 窝窝影院91人妻| 性色av乱码一区二区三区2| 三级男女做爰猛烈吃奶摸视频| 真人一进一出gif抽搐免费| 亚洲精品在线观看二区| 校园春色视频在线观看| 精品乱码久久久久久99久播| 国产av麻豆久久久久久久| 嫩草影院新地址| 亚洲人成网站在线播放欧美日韩| 欧美乱妇无乱码| 亚洲精品一区av在线观看| 欧洲精品卡2卡3卡4卡5卡区| 久久精品影院6| 好看av亚洲va欧美ⅴa在| 亚洲欧美日韩卡通动漫| 99视频精品全部免费 在线| 亚洲国产色片| 日韩成人在线观看一区二区三区| 99久久成人亚洲精品观看| 麻豆国产97在线/欧美| 天天一区二区日本电影三级| 淫秽高清视频在线观看| 一本一本综合久久| 波多野结衣高清无吗| 精品午夜福利视频在线观看一区| 3wmmmm亚洲av在线观看| 九色国产91popny在线| 综合色av麻豆| 国内精品一区二区在线观看| 精品久久久久久久末码| 国产午夜福利久久久久久| bbb黄色大片| 精品人妻1区二区| 亚洲av不卡在线观看| 日韩欧美一区二区三区在线观看| 成人美女网站在线观看视频|