• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Size-Dependent Flexural Dynamics of Ribs-Connected Polymeric Micropanels

    2014-04-16 10:48:03
    Computers Materials&Continua 2014年11期

    1Faculty of Engineering,Computing and Science,Swinburne University of Technology(Sarawak Campus),Jalan Simpang Tiga,Kuching 93350,Sarawak,Malaysia.

    2Corresponding author.Tel:+6082260656;E-mail:kbmustapha@Swinburne.edu.my

    1 Introduction

    Microelectromechanical and nanoelectromechanical systems(MEMs and NEMS)occupy preeminent functional roles within the landscape of next generation devices.Often endowed with micro-sized structures,MEM s and NEMs have found unal-loyed advantage in portable field accelerometers,electrical filters,hydrophones,high-Q oscillators and inertia sensors[Nguyen(1995);Yazdi,Ayazi and Najafi(1998);Kun and Nguyen(1999);Mattila,Kiiham?ki,Lamminm?ki,Jaakkola,Rantakari,Oja,Sepp?,Kattelus and Tittonen(2002)].A number of reasons shape the adoption of micro-systems across different emerging scientific fields:(i)prodigious capacity for fast response;(ii)ultra-high resonating frequency;and(iii)a high sensitivity to changes in stimulus.

    The complexity of most microsystems depends on the intended functional purpose and operational requirements.In a simple form,a microsystem comprises cantilever arrays along with some other functional embodiment.In a more complex form,however,it may be composed of structural elements with different geometrical parameters for different functional purposes[Boisen,Dohn,Keller,Schmid and Tenje(2011)].Among the unique set of structural elements routinely employed in MEM s is the two-dimensional plate-like micro-scale structures(e.g.thin film,micro-scale panels,and orthotropic micron metallic web[Benkhelifa,Farnsworth,Tiwari and Bandi(2010)].These micro-structural elements have excellent magnetic,optical,mechanical and electrical properties that make them resourceful in Specific applications like thermal sealing and energy harvesting[Sakhaee-Pour,Ahmadian and Vafai(2008);Liu,Tu and Chung(2012);Manzaneque,Ruiz,Hernando-Garcia,Ababneh,Seidel and Sanchez-Rojas(2012)]Since the optimal design of MEMs and NEMs impels the understanding of their response under disparate mechanical loadings,the analyses of their constituent micro-structural elements has gained attention in the past few years[Younis(2011)].During the operational life of MEMs,some factors compromise the exhibition of their intended performance[Ardito,Baldasarre,Corigliano,De Masi,Frangi and Magagnin(2013)].Frequently,such factors are closely related to the interrelationship between the mechanical parameters of the underlying materials and the geometric parameters of the system’s architecture.This interplay imposes a strict constrain on the predictability of MEMs’mechanical responses.

    Several studies relating to the prediction of MEMs’response have revealed the demands for the refinement of the mathematical models of the constituent elements of these miniature devices[Peddieson,Buchanan and M cNitt(2003);Reddy(2011);Mustapha(2014)].This is because,at small length scale,the vexing contribution of size-effect to the response of the structures starts to set in.Initial studies on the modeling of micro-scale structures through the framework of computational mechanics,employed the classical continuum theory(CCT).However,the underlying assumptions of the CCT do not account for the contribution of the latent sizedependency that manifests in micro and nano-scale structures[Fleck and Hutchinson(1993);Georgiadis and Velgaki(2003);Liew,Wong,He,Tan and Meguid(2004);Uchic,Dimiduk,Florando and Nix(2004);Volkert and Lilleodden 2006;Mahdavi,Farshidianfar,Tahani,Mahdavi and Dalir(2008);Chiroiu,Munteanu and Delsanto(2010)].It is this de ficiency of the CCT that has ignited the adoption of a number of enriched microstructure-dependent elasticity theories with higher-order constitutive laws[Farokhi,Ghayeshand Amabili(2013)].The models derived from these higher-order theories contain additional material constants,along with the well-known Lamé constants,to address the quantification of the phenomenological size-Specific property.

    Evidently,attempt on the theoretical modeling of micro structured materials stretches back to the work of the Cosserat brothers[Cosserat E.and F(1909);Chiroiu,Munteanu and Gliozzi(2010)].Consolidating on the work of the Cosserat brothers,a select list of advanced continuum theories that have emerged to be of relevant to the modeling of micro structured materials include the Eringen’s nonlocal elasticity theory[Eringen(1972);Eringen and Edelen(1972);Fotouhi,Firouz-Abadi and Haddadpour(2013)],the strain gradient theory[Aifantis(1992);Tang,Shen and Atluri(2003);Papacharalampopoulos,Karlis,Charalambopoulos and Polyzos(2010)],the couple stress theory[Toupin(1962);Yang,Chong,Lam and Tong(2002)]and the m icropolar elasticity[Toupin(1962);Xie and Long(2006);Marin,Agarwal and Othman(2014)].A concise summary of the distinction between these theories is well-stated in Aifantis[Aifantis(2011)].Meanwhile,a well-founded challenge with the new higher-order models is the dif ficulty associated with the determination of the microstructure-dependent material constants introduced by these theories[Lam,Yang,Chong,Wang and Tong(2003)].Consequently,models of the structural elements with fewer length scale parameters offer both experimental benefit and mathematical convenience.The Modified couple stress theory(MCST),which is adopted in the current study,is one such higher-order elasticity theories.With the MCST,the characterization of size-effect is done with just one material length scale parameter[Yang,Chong,Lam and Tong(2002);Papargyri-Beskou,Tsepoura,Polyzos and Beskos(2003)].The MCST has already set off a burst of research activities in the theoretical prediction of the deformational response of micro-scale structural elements.Initial application of the MCST focused on the analyses of micro-scale beams,rods and micro-scale pipes[Anthoine(2000);Park and Gao(2006);Güven(2011);Reddy(2011);Mustapha and Zhong(2012);Mustapha and Zhong(2012);Akg?z and Civalek(2013);Wang,Liu,Ni and Wu(2013)].However,a limited number of recent studies have also extended the work to the analyses of micro-scale plates[Yin,Qian,Wang and Xia(2010);Jomehzadeh,Nooriand Saidi(2011);Akg?zand Civalek(2013);Gao,Huangand Reddy(2013)]An experimental validation of the MCST is recently presented in Romanoff and Reddy(2014).

    Draw ing on the strength of the MCST,the present study investigates the size dependent flexural vibration of a rib-connected system of micro-panels.The system under investigation is part of an on-going design of a polymeric vibration isolation pad for electronic communicating systems.For the derivation,each micro-panel is treated as a micro-scale plate with an internal material length scale.The stiffness of the ribs between the micro-panel is derived by treating the ribs as a collection of clamped-clamped elastic beams.A hybrid numerical experiment based on the Rayleigh method of eigenvalue extraction and an applied statistical method of design of experiment(DOE)is adopted for parametric analysis of the derived model.The adopted hybrid approach helps to illuminate the pattern of the resonant frequency shifts under varying influences of the stiffness of the ribs.The effects of the material length scale of the micro-panel,the Poisson’s ratio and the rotary inertia are also assessed.The ensuing part of the paper proceeds with the presentation of the derivation of the size-dependent elastodynamics governing equation of the system in section 2.The solution procedure for the free vibration study is detailed in section 3.Reduced special cases of the derived model are highlighted in section 4.In section 5,numerical results and the discussion of the influence of the model’s parameters on the frequency shift of the system are presented.Basic conclusions from the analysis are given in section 6.

    2 Variational Formulation

    2.1 The higher-order elasticity theory

    The system being considered is the elastically connected micro-panels shown in Fig.1.In what follows,the equations governing the flexural vibration of each micro-panel are derived from the Hamilton’s principle and the Modified couple stress theory(MCST).In deriving the governing equation,we treat each micropanel as an isotropic linear elastic body occupying a volume?.In line with the theoretical framework of the MCST,the size-dependent strain energy of a deformed micro-scale structure is characterized by a quartet of tensors related as[Yang,Chong,Lam and Tong(2002);Reddy(2011)]:

    In general,thevolume?is taken to bean open setin R3with a well-behaved surface boundary(see Fig.1b for the unit normal to the boundaries’of a micro-panel).Accordingly, ΠU,εandσare the strain energy,the dilatation strain tensor and the Cauchy stress tensor,respectively.Furthermore,the tensorsmm mandχrefer to the deviatoric components of the couple stress and the symmetric curvature tensor,respectively.

    Figure 1:Schematic of the rib-connected system of micro-panels:(a)a 3D view of the coupled system;and(b)the mid-plane of a micro-panel with the adopted coordinate system.

    Given that the deformation of a material point of the micro-panel is described by the displacement fielduu uand a rotation vectorθ,then the tensorsεandχin Eq.(1)are known to satisfy the follow ing geometric relations:

    where the operator?is the 2D gradient notation.From kinematics consideration,the rotation vectorθis easily related to the displacement field in the form:

    Additionally,the stress fields(σandmm m)are mapped to the displacement field through the enriched constitutive rules as:

    In Eq.(5a)the stress field is related to the displacement field through the parametersλ(the bulk modulus)andG(the shear modulus)respectively.However,in Eq.(5b),the higher-order stress field(mm m)is related to the displacement field through an additional material constant(ζ)This new constant is associated with the material length scale parameter[Reddy(2011)].

    For the purpose of characterizing the deformation of the micro-panel through the above higher-order constitutive rules,an infinitesimal bounded volume of the micro-panel is considered.The infinitesimal bounded volume of the micro-panel is treated as a differentiable manifold embedded in a Euclidean 3-space?.Consequently,the following displacement trial field holds:

    whereu1,u2,andu3are components of the displacement vector of an arbitrary material point of the micro-panel in thex,yandzdirections.Based on the small deflection theory of thin plates,which rests on the Kirchhoff assumptions,each of these components of the displacement field is defined as:

    whereu,v,andware displacement components in thex,yandzdirections,respectively.Based on Eqs.(7a)–(7c),the non-zero components of the strain tensor are obtained as:

    The components of the rotation vector,from Eq.(4),are obtained as:

    With the help of Eq.(9)bearing in m ind Eq.(3),the components of the symmetric curvature tensor,are derived as:

    Given the above derived kinematic variables,the first variation of the microstructuredependent strain energy is now written as:

    From the displacement field defined in Eq.(7),the first variation of the kinetic energy,with the rotary inertia included,is defined as[Reddy(2002);Szilard(2004)]:

    whereρis the mass density andhis the constant thickness of the micro-panel.In the same spirit,the first variation of the virtual work done by external loads is[Akg?z and Civalek(2013)]:

    wherefi,ci,tiandsiare components of the body force,the body couple,the traction and the surface couple,respectively.With Eqs.(11)–(13),one invokes the variational statement of the Hamilton’s principle,which mathematically translates to:

    where the integration in Eq.(14)is carried out between the time interval(0,T).Eqs.(11)–(13)are substituted in Eq.(14),and the fundamental lemma of variational calculus is invoked to retrieve the size-dependent governing equations of a single micro-panel as:

    The terms that arise from the use of the MCST are underlined in Eqs.(15)–(17).In general,Eqs.(15)and(16)are adequate to predict the in-plane(extensional)vibration of a single micro-panel.On the other hand,Eq.(17)is suitable for the quantification of the transverse motion of a single micro-panel.Now,while Eq.(17)can be tackled alone,Eqs.(15)and(16)are coupled,and thus they cannot be solved independent of each other.Of interest in this study is the case of two inextensible micro-panels separated by evenly distributed ribs.On this premise,the focus of the current study is restricted to Eq(17)and its eigen-analysis.For the purpose of incorporating the influence of the ribs,the following assumptions are adopted:

    1.the ribs are made of similar materials and have resistance to stretching and compression;

    2.the ribs suffer negligibly marginal distortion of their positions with respect to their initial contact positions with the surface of each micro-panel;

    3.no structural anisotropy is introduced by the ribs and;

    4.the two micro-panels are made of the same material,length,width and density.

    With the stated assumptions,the concentrated rigidities of the ribs can be replaced by the distributed continuous support of the Winkler’s type.Given this simplification,the contribution of the ribs’stiffness is now reflected in the equation governing the transverse vibration of individual micro-panel as:

    Upper micro-panel:

    Lower micro-panel:

    It is pointed out that in Eqs.(18) – (19),the total stiffness(K)of the Winkler’s foundation is taken to be equivalent to the averaged stiffness of the overall ribs between the micro-panels.Besides,wuandwldenote the transverse motions of the upper and lower micro-panel,respectively.The two displacement field variables describing the response of each micro-panel are homogenized by subtracting Eq.(19)from(18)to get:

    A further modification of the system’s response is sought by employing a change of variable as done in Murmu and Adhikari(2011).In this vein,the relative displacement(wu-wl)of the upper micro-panel with respect to the lower micro-panel is denoted bywa.The change of variable leads to the equations of the rib-connected micro-panels as:

    Equations(21)and(22)describe the transverse motion of the connected Micropanels,whereIis the moment of inertia per unit area of a micro-panel.It deserves to be pointed out that if the underlined terms are eliminated,the classical size-independent governing equation of the Kirchhoff plate theory is retrieved.In succeeding sections,the dynamic behavior of the system is investigated under two idealized boundary conditions:(i)simple support on the four edges(that is,SSSS,where S stands for simply-supported);and(ii)a built-in support on the four edges(that is,CCCC,where C stands for clamped)as shown in Fig.2.

    Figure 2:The two types of boundary supports investigated for the rib-connected micro-panels.

    In order to specify the expressions for the stipulated boundary conditions the follow ing stress resultants are defined:

    whereandCyzare the couple moments that need to be mapped to the displacement field through Eq.(10).A lso,andare the moments(related to the Cauchy stress tensor)that are mapped to the displacement field through Eq.(8).Under the SSSS boundary condition,the following constraints are imposed around the periphery of the coupled micro-panels:

    Analogously,under the CCCC boundary condition the expressions stated in Eqs.(25)–(28),are supplemented with the follow ing additional constraints around the periphery of coupled micro-panels:

    3 Solution Procedure

    The Rayleigh method is adopted to evaluate the dynamic response of the system.The energy functional Π from the governing equation of the coupled is defined as:

    With the non-dimensional parameters,the explicit expressions for the maximum energy terms for the overall system become:

    The Rayleigh solution procedure requires that the mid-plane deflections of the micro-panel be expressed in terms of an assumed mode shape function in the form of a double Fourier series as:

    such thatpmnis the amplitude of the function,whileφm(ξ)andβn(η)are the mode functions that satisfy the Dirichlet boundary conditions of the micro-panel.The following comparison functions are used for the two boundary conditions considered in this study:

    wheremandnare the nodal lines in theξandηdirections that determine the wave modes of the micro-panels.For the frequency values to be determined,the Rayleigh method minimizes the energy functional(by ensuring that?Π/?pmn=0)[Liu(2011)].The minimization procedure results in a system of algebraic equations whose secular determinant yields the natural frequencies of the coupled system.In the next section,detailed numerical results are provided to evaluate the influence of different parameters of the model on the dynamic response of the coupled systems.

    4 Special cases

    Three different mechanistic cases of practical interests can be derived from the governing equation.These cases,shown in Fig.3,are briefly highlighted below.For convenience,the following additional non-dimensional terms have been introduced in what follows:

    4.1 Asynchronous motion of the coupled system

    The case of the asynchronous motion of the coupled system,which is also referred to as the out-of-phase vibration,occurs when the two micro-panels move in different directions[Murmu and Adhikari(2011)].In such case the condition of motion stipulates thatUnder this condition,the Rayleigh method yields an upper estimate of the frequency of the coupled micro-panels with the SSSS edge conditions as:

    In Eq.(45),γnow represents the influence of the size-effect(that is,the material length scale of the micro-panel).This Specific parameter quantifies the size dependent vibration Dynamics of the micro-panel with respect to the micro-panel’s thickness.A lso,αeffis the non-dimensional averaged stiffness of the elastic connections,while μ and φ represent the thickness-to-length ratio and the aspect ratio of the micro-panel,respectively

    4.2 Synchronous motion of the coupled system

    Under a synchronous motion,the movements of the two micro-panels are in sync.Hence,this case is also referred to as the in-phase vibration Here,the condition of motion during the in-phase vibration requires thatwa=0.With this,the Rayleigh method again yields an upper estimate of the frequency of the coupled micro-panels with SSSS edge conditions as:

    4.3 Motion of the upper-panel supported by the ribs

    The third special case relates to the situation when the lower micro-panel is a rigid base.Such situations do arise in the development of a mass sensing device[Agache,Blanco-Gomez,Cochet and Caillat(2011)].When this occurs,thenwl=0.Consequently,the frequency of the remnant systems is governed by the geometric and material properties as well as the boundary conditions of the upper micro-panel and the ribs.The upper estimate of the frequency of the remnant system with a SSSS edge conditions for the upper micro-panel then takes the simplified form:

    Figure 3:Special cases of the rib-connected micro-panels:(a)out-of-phase motion;(b)in-phase motion;and(c)motion of a single rib-supported micro-panel.

    5 Discussion

    The centerpiece of this section is to detail the qualitative and quantitative results relating to the free vibration properties of the system,based on the formulation presented in the foregoing sections.Principally,the section details the variation of the natural frequencies of the system with respect to changes in the aspect ratio(?),the material length scale parameter(γ),the Poisson’s ratio(ν),the thicknessto-span ratio(μ),and the stiffness of the ribs(αeff).For the reported analyses,the effective material properties of the polymeric micro-panel are assumed to be:E=1.44GPa;ρ=1220kg/m3;andν=0.38.Furthermore,based on the experimental work of Lam,Yang,Chong,Wang and Tong(2003),the material length scale parameter for the epoxy micro-plate is restricted to a conservative value ofζ=17.6μm.Meanwhile,for polymeric structural elements with underlying polymer chains of finite stiffness,the material length scale parameter(ζ)is reported to be directly related to the effective averaged Frank elastic constant[Gao,Huang and Reddy(2013)].For the analyses that follow,the thickness values considered is in the range 20μm≤h≤176μm.Besides,each rib is idealized as a fixed- fixed bar.Thus for each rib,the equivalent stiffness is estimated from,whereandLrare the cross-sectional area,the moment of inertia,the Young’s modulus and length of each rib.

    5.1 Validation

    For the purpose of validation,the governing equation of the system is Modified by eliminating the parametersμ,αeffandγfrom the mathematical model.With this elimination,the governing equation is reduced to that of the Kirchhoff’s plate theory[Szilard(2004)].Tab.1 reveals the comparison of the frequency values,based on the reduced form of the current model,with the classic work of Leissa(1973).Tab.1 contains selected numerical results for a panel(treated as a plate)under the SSSS edge conditions and the CCCC edge conditions.

    Tab.2 provides the validation of the non-dimensional frequencies of a micro-plate with simply-supported edges.The governing equation employed for the results in Tab.2 containsγ,but it does not containαeffandμ.The validation involves comparison with the closed-form expression presented in Yin,Qian,Wang and Xia(2010).It is noticed from Tab.2 that a good agreement is achieved between the predicted non-dimensional frequency from the current method and the closed-form solution.

    For brevity sake,the discussion is restricted to the two lowest symmetrical modes of the flexural vibration(whose non-dimensional frequency parameters areλ11andλ22)in the next subsections.For completeness,the mode shapes corresponding to bothλ11andλ22are shown in Figs 4 and 5,respectively.In these figures,the contour plot corresponding to each of the two vibration modes are also provided under each of the mode shape.From the plots,it is noticed that increasing values of the small-scale parameter stiffen the response of the micro-panel.Besides,as seen from the contour plots,higher values of the small-scale parameter generate more equilibrium positions during the deformation of the system.

    5.2 Frequency distribution and frequency shift

    To evaluate the frequency shift induced by the small-scale parameter,a percentage change in the computed natural frequencies based on the MCST and the classical(size-independent)theory is defined as:

    where(λnm)MCSTis the natural frequency of the system from the MCST,while(λnm)CCTis the corresponding natural frequency from the CCT.Besides,λnmis the non-dimensional natural frequency parameter defined as:

    Table 1:Validation of the non-dimensional frequencies of a classical plate.

    Table 2:Validation of the non-dimensional frequencies of a micro-plate with simply-supported edges.

    Figure 4:The variation in the mode shape along with the corresponding contour plots of the lowest symmetrical mode(λ11):(a)γ=0;(b)γ=0.2;and(c)γ=0.8.

    Summarized in Figs 68 are the distributions of the frequency variations for the three mechanistic cases of the coupled systems highlighted in section 4.Precisely,illustrated in Figs 6(a)and 6(b)are the distributions of the natural frequencies for the first symmetric vibration mode,under the SSSS and the CCCC boundary conditions,respectively.In each of the plot,the dummy variablesC1,C2 andC3 refer to case 1,case 2 and case 3,respectively.It is recalled that case 1 relates to the out-of phase motion of the coupled micro-panels,case 2 refers to the in-phase vibration of the coupled micro-panels,and case 3 is the motion of a single rib-supported micropanel(case 3).Fig.7 is indicative of the distribution of the natural frequencies for the second symmetric vibration modes of the three mechanistic cases.It is noticed from Fig.7 that the frequency response increases with the aspect ratio(similar to Fig.6).While a clear pattern of skew-symmetric distribution of the frequency values is easily noticed in Figs 6 and 7,a number of additional subtle observations can be made from the plots.First,in Fig.6a,the lowest non-dimensional natural frequency value for the out-of-phase motion(C1)is more than the highest nondimensional natural frequency value for the other two cases for the aspect ratio of 0.2.However,under an increased value of the aspect ratio,the difference in the natural frequency values for the three cases approaches each other,althoughC1 still maintains the lead.Furthermore,in Fig.6(b),the difference in the degrees of influence of the aspect ratio and the small-scale parameter on the pattern of the frequency increase is found to be comparatively similar across the three cases.

    Figure 5:The variation in the mode shape and the contour plots of the second symmetrical mode(λ22):(a)γ=0;(b)γ=0.2;and(c)γ=0.8.

    Figure 6:Distribution of the natural frequencies for the first symmetric vibration modes of the systems:(a)under four simply supported edges;(b)under fully clamped edges.

    Fig.8 represents a visual display of the boundary condition under which the effect of the small-scale parameter exerts a greater influence.From this plot,it is seen that the CCCC edge condition is more heavily affected by the size-effect than the SSSS edge condition for the two vibration modes.It is worth pointing out that,since the CCCC edge conditions do naturally yield greater frequency response,normalized frequency values are employed for Fig.8.Still,it is noticed that the effect of the small-scale parameter is more pronounced on the frequency of the system under the CCCC edge condition.

    Figure 7:Distribution of the natural frequencies for the second symmetric vibration modes(αeff=100):(a)micro-panels with four simply supported edges;(b)micropanels with fully clamped edges.

    Additional plots to examine the effects of the geometric and small-scale parameters are provided in Figs 9-12,all of which are related to the system with the SSSS edge conditions.It is observed from Fig.9(a)that as the micro-panel’s thickness reduces,up to 20%increase in the frequency value is attainable for an aspect ratio of 1(basically a square micro-panel).On the other hand,Fig.9(b)illustrates the vanishing influence of the size-effect on the natural frequency value of the panels as the thickness increases.

    Figure 8:A comparison of the effect of the small-scale parameter on the out-ofphase motion of the coupled system.

    Fig.10 shows the differential trend of the influence of the small-scale effect on the responses of the three mechanistic cases of the coupled system.From this plot,one is able to conclude that the out-of-phase motion of the coupled system experiences the most softening effect arising from the decreasing value of the Micropanels’thickness.Demonstrated in Fig.11 is the inverse relationship between the frequency response of the out-of-phase motion of the coupled system with the thickness-to-span ratio(μ).

    In Fig.12,the influence of the ribs’effective stiffness on the three special cases is shown.Specifically,Fig.12(a)reveals the trend of the frequency increase when the ribs’effective stiffness parameter approaches zero,while Fig.12(b)shows difference in the trend for the three cases when the ribs’effective stiffness parameter is maintained at a modest value of 100.

    5.3 Identification of the order of influence of the model’s parameters

    Figure 9:The quantification of the percentage change in frequency values:(a)the change in frequency against the small-scale effect;(b)the change in frequency against the micro-panels’thickness.

    The results presented under subsection 5.3 are generated by the traditional method of analysis,where one varies a single parameter of the model while keeping all others constant.Essentially,this method is analogous to the so calledone factorat-a-time(OFAT)analysis[Karray and Silva(2004)].One of the drawbacks of the OFAT methodology in the traditional computational mechanics is the inherent underestimation of the possibility of interaction effects between the variables that influence the response of the system under consideration.In the present study for instance,we recognized five continuous numerical dimensionless parameters that could influence the response of the system as seen in Fig.13.These five continuous numerical parameters(or factors)are the aspect ratio(?),the small-scale parameter(γ),the ribs’effective stiffness(αeff),the Poisson’s ratio(ν)and the thickness to-span ratio(μ).In what follows,the OFAT analysis is complemented with the applied statistical method of design of experiment(DOE)[Dean and Voss(1999);Mustapha and Zhong(2012)]to examine the order of influence of these parameters.

    Figure 10:Variation of frequency values with varying value of the material length scale for the special motion types of the system.

    Figure 11:The effect of rotary inertia on the two lowest symmetric vibration modes for the out-of-phase motion of the coupled system.

    Figs.14-16 are indicative of the outcome of the analyses based on the use of the DOE.Two levels of each of the five parameters are considered for the numerical DOE.Based on the established procedure of DOE,an experimental design involving five input factors at two levels(low and high)becomes a problem of 2pnumber of experimental runs,where the superscriptpis the number of factors.The capability of the statistical software M initab[Lesik(2010)]is used to run a randomized design of the experiment.It is pointed out that the term experiment is used in the sense of numerical analysis experiment in the current setting.The values of the factors at each run of the experiment are presented in Tab.3.

    The ordered ranking of the model’s factors(also refers to as main effects)as they influence the response of the system are presented in the form of the Pareto charts depicted in Figs 14-16.In these charts the termsA,B,C,DandEare dummy variables that symbolize the ribs effective stiffness,the aspect ratio,the size-effect,the thickness-to-span ratio and the Poisson’s ratio,respectively.The combinations of these dummy variables(such asAB,ACandABCetc.,)are visible in these charts,and they are called the interaction effects.Specifically,Figs.14,15 and 16 represent the Pareto chart of case 1(the asynchronous motion),case 2(the synchronous motion)and case 3(the motion of a rib-connected micro-panel),respectively.

    Figure 12:The effect of the ribs’stiffness on the three special cases:(a)a negligible ribs’effective stiffness parameter;(b)ribs’effective stiffness maintained at 100.

    Figure 13:The relation between the inputs and the output of the coupled Micropanels system.

    It is observed from Figs 14-16 that the factor that affects the natural frequency of the motion of the three cases the most is the interaction factorBC.This interaction factor is created by the interaction between the aspect ratio and the size-effect parameter.Furthermore,it is observed from the Pareto charts that the Poisson’s ratio has a somewhat negligible effect on the motion of the three systems.However,the interaction effect created between the Poisson’s ratio,the aspect ratio and size effect(BCE)is the fourth most Significant factor that influences the behavior of the synchronous motion.An additional conclusion that can be drawn from these charts is the fact the size-effect is the second most Significant factor that alters the natural frequency of the system for case 1 and case 2.It is also the third most Significant factor for case 3.Besides,the thickness-to-span ratio is discovered not to Significantly affect the response of any of the three mechanistic cases.

    Figure 14:The Pareto chart of the ordered ranking of the model’s factors for the asynchronous motion of coupled system.

    Table 3:Randomized numerical experimental runs.

    Figure 15:The Pareto chart of the ordered ranking of the model’s factors for the synchronous motion of coupled system.

    Figure 16:The Pareto chart for the motion of ribs-supported single micro-panel.

    6 Conclusion

    On the basis of the extended Hamilton’s principle and the Modified couple stress theory,the governing equations of a rib-connected system of coupled micro-panels are derived.Starting from a displacement trial field,the derivation considers the deformation of a single micro-panel embedded in a Euclidean 3-space?.The derivation procedure yields three field equations.Two of the field equations represent the extensional vibration mode of the micro-panel,while the third equation relates to the flexural vibration mode.Given the focus of the current study,the third field equation,which accounts for the flexural vibration of the micro-panel and is uncoupled from the extensional modes is adopted for comprehensive response analyses.In analyzing the behavior of the coupled micro-scale panels,three forms of special cases of motion of the system were assessed:(i)the out-of-phase motion;(ii)the in-phase motion;and(iii)the motion of a single micro-panel with rib connections and a rigid base.The vibration characteristics under each of these motion types were studied systematically for the determination of the frequency shift and the pattern of the frequency distribution.The study reaffirms the expected substantial increase in natural frequency value for a lower range of the micro-panel’s thickness.A skew-symmetric pattern of distribution of the shift in natural frequencies values is discovered for the first and second symmetric modes of the coupled system under the two edge conditions studied.Furthermore,it is noticed that,for lower values of the aspect ratio,the lowest non-dimensional natural frequency value for the out of-phase motion is more than the highest non-dimensional natural frequency value for both the in-phase motion and the motion of a single micro-panel with rib connection.It is also found that the effect of the material length scale on the frequency of the out-of-phase motion is higher when the edges are fully clamped than when simply-supported.Through Pareto analysis,notable interaction effects were discovered between the models’parameters.

    Although extrapolating theoretical conclusions to experimental studies do come with certain challenges,preliminary theoretical investigations such as the one carried out in this study strives to provide a cogent basis for close scrutiny of future experimental results.The observations from this study are expected to pave the way for the recognition of key variables(main effects or interactions effects)that might be employed in the future optimization of the system’s geometry and response.

    Acknowledgement:The author is greatly indebted to the anonymous reviewer for the insightful suggestions that lead to the improvement of the manuscript.The support of the management of Swinburne University(Sarawak Campus)is also acknowledged.

    Agache,V.;Blanco-Gomez,G.;Cochet,M.;Caillat,P.(2011):Suspended nanochannel in MEMS plate resonator for mass sensing in liquid.M icro Electro Mechanical Systems(MEMS),2011 IEEE 24th International Conference on.

    Aifantis,E.C.(1992):On the role of gradients in the localization of deformation and fracture.International Journal of Engineering Science,vol.30,no.10,pp.1279-1299.

    Aifantis,E.C.(2011):On the gradient approach – Relation to Eringen’s nonlocal theory.International Journal of Engineering Science,vol.49,no.12,pp.1367-1377.

    Akg?z,B.;Civalek,?.(2013):Free vibration analysis of axially functionally graded tapered Bernoulli-Euler microbeams based on the Modified couple stress theory.Composite Structures,vol.98,pp.314-322.

    Akg?z,B.;Civalek,?.(2013):Modeling and analysis of micro-sized plates resting on elastic medium using the Modified couple stress theory.Meccanica,vol.48,no.4,pp.863-873.

    Anthoine,A.(2000):Effect of couple-stresses on the elastic bending of beams.International Journal of Solids and Structures,vol.37,no.7,pp.1003-1018.

    Ardito,R.;Baldasarre,L.;Corigliano,A.;De M asi,B.;Frangi,A.;M agagnin,L.(2013):Experimental evaluation and numerical modeling of adhesion phenomena in polysilicon MEMS.Meccanica,vol.48,no.8,pp.1835-1844.

    Benkhelifa,E.;Farnsworth,M.;Tiwari,A.;Bandi,G.(2010):Design and optimisation of microelectromechanical systems:a review of the state-of-the-art.International Journal of Design Engineering,vol.3,no.1,pp.41-76.

    Boisen,A.;Dohn,S.;Keller,S.S.;Schm id,S.;Tenje,M.(2011):Cantilever-like micromechanical sensors.Reports on Progress in Physics,vol.74,no.3.

    Chiroiu,V.;M unteanu,L.;Delsanto,P.P.(2010):Evaluation of the Toupin-M indlin theory for predicting the size effects in the buckling of the carbon nanotubes.Computers,Materials&Continua(CMC),vol.16,no.2,pp.75.

    Chiroiu,V.;M unteanu,L.;G liozzi,A.S.(2010):Application of Cosserat Theory to the Modelling of Reinforced Carbon Nananotube Beams.Computers Materials and Continua,vol.19,no.1,pp.1.

    Cosserat,E.;Cosserat,F.(1909):Théorie des Corps Déformables.A.Hermann et Fils,Paris.

    Dean,A.M.;Voss,D.(1999):Design and analysis of experiments,Springer.

    Eringen,A.C.(1972):Nonlocal polar elastic continua.International Journal ofEngineering Science,vol.10,no.1,pp.1-16.

    Eringen,A.C.;Edelen,D.G.B.(1972):On nonlocal elasticity.International Journal of Engineering Science,vol.10,no.3,pp.233-248.

    Farokhi,H.;Ghayesh,M.H.;Amabili,M.(2013):Nonlinear Dynamics of a geometrically imperfect microbeam based on the Modified couple stress theory.International Journal of Engineering Science,vol.68,pp.11-23.

    Fleck,N.A.;Hutchinson,J.W.(1993):A phenomenological theory for strain gradient effects in plasticity.Journal of the Mechanics and Physics of Solids,vol.41,no.12,pp.1825-1857.

    Fotouhi,M.M.;Firouz-Abadi,R.D.;Haddadpour,H.(2013):Free vibration analysis of nanocones embedded in an elastic medium using a nonlocal continuum shell model.International Journal of Engineering Science,vol.64,pp.14-22.

    Gao,X.L.;Huang,J.X.;Reddy,J.N.(2013):A non-classical third-order shear deformation platemodelbased on aModified couplestress theory.ActaMechanica,vol.224,no.11,pp.2699-2718.

    Georgiadis,H.G.;Velgaki,E.G.(2003):High-frequency Rayleigh waves in materials with micro-structure and couple-stress effects.International Journal of Solids and Structures,vol.40,no.10,pp.2501-2520.

    Güven,U.(2011):The investigation of the nonlocal longitudinal stress waves with Modified couple stress theory.Acta Mechanica,vol.221,no.3-4,pp.321-325.

    Jomehzadeh,E.;Noori,H.R.;Saidi,A.R.(2011):The size-dependent vibration analysis of micro-plates based on a Modified couple stress theory.Physica E:Lowdimensional Systems and Nanostructures,vol.43,no.4,pp.877-883.

    Karray,F.;Silva,C.D.(2004):Soft Computing and Tools of Intelligent Systems Design:Theory and Applications.

    Kun,W.;Nguyen,C.T.C.(1999):High-order medium frequency micromechanical electronic filters.Microelectromechanical Systems,Journal of,vol.8,no.4,pp.534-556.

    Lam,D.C.C.;Yang,F.;Chong,A.C.M.;Wang,J.;Tong,P.(2003):Experiments and theory in strain gradient elasticity.Journal of the Mechanics and Physics of Solids,vol.51,no.8,pp.1477-1508.

    Leissa,A.W.(1973):The free vibration of rectangular plates.Journal of Sound and Vibration,vol.31,no.3,pp.257-293.

    Lesik,S.A.(2010):Applied Statistical Inference with MINITAB,CRC Press.

    Liew,K.M.;Wong,C.H.;He,X.Q.;Tan,M.J.;M eguid,S.A.(2004):Nanomechanics of single and multi walled carbon nanotubes.Physical Review B-Condensed Matter and Materials Physics,vol.69,no.11,pp.1154291-1154298.

    Liu,D.-S.;Tu,C.-Y.;Chung,C.-L.(2012):Eigenvalue Analysis of MEMS Components with Multi-defect using In finite Element Method Algorithm.Computers Materials and Continua,vol.28,no.2,pp.97.

    Liu,M.(2011):Orthogonal Tapered Beam Functions in the Study of Free Vibrations for Non-uniform Isotropic Rectangular Plates.Computers Materials and Continua,vol.22,no.2,pp.97.

    Mahdavi,M.H.;Farshidianfar,A.;Tahani,M.;M ahdavi,S.;Dalir,H.(2008):A more comprehensive modeling of atomic force microscope cantilever.Ultramicroscopy,vol.109,no.1,pp.54-60.

    M anzaneque,T.;Ruiz,V.;Hernando-Garcia,J.;Ababneh,A.;Seidel,H.;Sanchez-Rojas,J.L.(2012):Characterization and simulation of the first extensional mode of rectangular micro-plates in liquid media.Applied Physics Letters101(15):151904-151904-151904.

    M arin,M.;Agarwal,R.P.;Othman,M.(2014):Localization in Time of Solutions for Thermoelastic M icropolar Materials with Voids.CMC:Computers,Materials&Continua,vol.40,no.1,pp.35-48.

    M attila,T.;K iiham?ki,J.;Lamm inm?ki,T.;Jaakkola,O.;Rantakari,P.;O ja,A.;Sepp?,H.;Kattelus,H.;Tittonen,I.(2002):A 12 MHz micromechanical bulk acoustic mode oscillator.Sensors and Actuators A:Physical,vol.101,no.1–2,pp.1-9.

    M urmu,T.;Adhikari,S.(2011):Nonlocal vibration of bonded double-nanoplatesystems.Composites Part B:Engineering,vol.42,no.7,pp.1901-1911.

    M ustapha,K.B.(2014):Modeling of a functionally graded micro-ring segment for the analysis of coupled extensional– flexural waves.Composite Structures,vol.117,pp.274-287.

    M ustapha,K.B.;Zhong,Z.W.(2012):A new modeling approach for the Dynamics of a micro end m ill in high-speed micro-cutting.Journal of Vibration and Control.

    M ustapha,K.B.;Zhong,Z.W.(2012):Spectral element analysis of a nonclassical model of a spinning micro beam embedded in an elastic medium.Mechanism and Machine Theory,vol.53,pp.66-85.

    M ustapha,K.B.;Z.W.Zhong(2012):Wave propagation characteristics of a twisted m icro scale beam.International Journal of Engineering Science,vol.53,pp.46-57.

    Nguyen,C.T.C.(1995):Micro mechanical resonators for oscillators and filters.Ultrasonics Symposium,1995.Proceedings.,1995 IEEE.

    Papacharalam popoulos,A.;Karlis,G.;Charalambopoulos,A.;Polyzos,D.(2010):BEM Solutions for 2 D and 3 D dynamic Problems in M indlin’s Strain Gradient Theory of Elasticity.Computer Modeling in Engineering&Sciences(CMES),vol.58,no.1,pp.45-74.

    Papargyri-Beskou,S.;Tsepoura,K.G.;Polyzos,D.;Beskos,D.E.(2003):Bending and stability analysis of gradient elastic beams.International Journal of Solids and Structures,vol.40,no.2,pp.385-400.

    Park,S.K.;Gao,X.L.(2006):Bernoulli-Euler beam model based on a Modified couple stress theory.Journal of Micro mechanics and Micro engineering,vol.16,no.11,pp.2355-2359.

    Peddieson,J.;Buchanan,G.R.;M cNitt,R.P.(2003):Application of nonlocal continuum models to nanotechnology.International Journal of Engineering Science,vol.41,no.3-5,pp.305-312.

    Reddy,J.N.(2002):Energy principles and variational methods in applied mechanics.Hoboken,N.J.,Wiley.

    Reddy,J.N.(2011):microstructure-dependent couple stress theories of functionally graded beams.Journal of the Mechanics and Physics of Solids,vol.59,no.11,pp.2382-2399.

    Romanoff,J.;Reddy,J.(2014):Experimental validation of the Modified couple stress Timoshenko beam theory for web-core sandw ich panels.Composite Structures,vol.111,pp.130-137.

    Sakhaee-Pour,A.;Ahmadian,M.;Vafai,A.(2008):Applications of singlelayered graphene sheets as mass sensors and atomistic dust detectors.Solid State Communications,vol.145,no.4,pp.168-172.

    Szilard,R.(2004):Theories and applications of plate analysis:classical,numerical,and engineering methods.Hoboken,N.J.,John Wiley.

    Tang,Z.;Shen,S.;Atluri,S.(2003):Analysis of materials with strain-gradient effects:A meshless local Petrov-Galerkin(MLPG)approach,with nodal displacements only.Computer Modeling in Engineering and Sciences,vol.4,no,1,pp.177-196.

    Toupin,R.A.(1962):Elastic materials with couple-stresses.Archive for Rational Mechanics and Analysis,vol.11,no.1,pp.385-414.

    Uchic,M.D.;Dim iduk,D.M.;Florando,J.N.;Nix,W.D.(2004):Sample dimensions influence strength and crystal plasticity.Science,vol.305,no.5686,pp.986-989.

    Volkert,C.A.;Lilleodden,E.T.(2006):Size effects in the deformation of submicron Au columns.Philosophical Magazine,vol.86,no.33-35,pp.5567-5579.

    Wang,L.;Liu,H.T.;Ni,Q.;Wu,Y.(2013):Flexural vibrations of microscale pipes conveying fluid by considering the size effects of micro- flow and microstructure.International Journal of Engineering Science,vol.71,no.0,pp.92-101.

    Xie,G.;Long,S.(2006):Elastic vibration behaviors oof carbon nanotubes based on micropolar mechanics.CMC-TECH SCIENCE PRESS-,vol.4,no.1,pp.11.

    Yang,F.;Chong,A.C.M.;Lam,D.C.C.;Tong,P.(2002):Couple stress based strain gradient theory for elasticity.International Journal of Solids and Structures,vol.39,no.10,pp.2731-2743.

    Yazdi,N.;Ayazi,F.;Naja fi,K.(1998):Micromachined inertial sensors.Proceedings of the IEEE,vol.86,no.8,pp.1640-1659.

    Yin,L.;Qian,Q.;Wang,L.;Xia,W.(2010):Vibration analysis of micro scale plates based on Modified couple stress theory.Acta Mechanica Solida Sinica,vol.23,no.5,pp.386-393.

    Younis,M.I.(2011):MEMS Linear and Nonlinear Statics and Dynamics.

    国产欧美日韩精品亚洲av| 好男人电影高清在线观看| 久久精品亚洲精品国产色婷小说| 日本撒尿小便嘘嘘汇集6| 亚洲人与动物交配视频| 三级毛片av免费| 亚洲黑人精品在线| 老司机福利观看| 一本一本综合久久| 我要搜黄色片| 成人特级av手机在线观看| 久久国产乱子伦精品免费另类| 久久精品人妻少妇| 麻豆久久精品国产亚洲av| 国内精品美女久久久久久| 国产亚洲精品综合一区在线观看| 级片在线观看| svipshipincom国产片| 免费在线观看成人毛片| 国产欧美日韩一区二区精品| a在线观看视频网站| 欧美在线一区亚洲| 岛国在线免费视频观看| 日日干狠狠操夜夜爽| 午夜两性在线视频| 757午夜福利合集在线观看| 一个人看视频在线观看www免费 | 国内少妇人妻偷人精品xxx网站| 国语自产精品视频在线第100页| 欧美日韩精品网址| 久久精品国产亚洲av涩爱 | 亚洲无线在线观看| 免费高清视频大片| 亚洲熟妇熟女久久| 天堂√8在线中文| 国产精品免费一区二区三区在线| 一区福利在线观看| 欧美在线黄色| 99国产极品粉嫩在线观看| 老汉色∧v一级毛片| 国产免费一级a男人的天堂| 一级黄色大片毛片| 黄色日韩在线| 欧美中文日本在线观看视频| 久久九九热精品免费| 99riav亚洲国产免费| 青草久久国产| 最后的刺客免费高清国语| 日本免费a在线| 亚洲av一区综合| 亚洲av日韩精品久久久久久密| 中文字幕熟女人妻在线| 国产精品爽爽va在线观看网站| 午夜福利免费观看在线| 天堂动漫精品| 免费在线观看亚洲国产| 美女 人体艺术 gogo| 桃色一区二区三区在线观看| 亚洲一区高清亚洲精品| 又爽又黄无遮挡网站| 非洲黑人性xxxx精品又粗又长| 很黄的视频免费| 国产97色在线日韩免费| 首页视频小说图片口味搜索| www国产在线视频色| 欧美一级毛片孕妇| 亚洲欧美激情综合另类| 国产成人aa在线观看| 女警被强在线播放| 欧美色欧美亚洲另类二区| 最近在线观看免费完整版| 一本久久中文字幕| 午夜免费激情av| 亚洲av免费高清在线观看| 99热只有精品国产| 在线观看一区二区三区| 久久精品国产自在天天线| 国产欧美日韩一区二区三| 国产不卡一卡二| 男人舔女人下体高潮全视频| 99久久精品热视频| 久久婷婷人人爽人人干人人爱| 成人三级黄色视频| 91av网一区二区| 久久精品国产自在天天线| 国产精品香港三级国产av潘金莲| 久久精品国产自在天天线| 国产精品久久久久久精品电影| 999久久久精品免费观看国产| 久久99热这里只有精品18| 夜夜看夜夜爽夜夜摸| 99国产精品一区二区三区| 久久婷婷人人爽人人干人人爱| 在线天堂最新版资源| 麻豆久久精品国产亚洲av| 99国产极品粉嫩在线观看| 五月伊人婷婷丁香| 男女做爰动态图高潮gif福利片| 欧美午夜高清在线| 亚洲精品色激情综合| 久久中文看片网| 色综合站精品国产| 嫩草影院精品99| 免费大片18禁| 色播亚洲综合网| 99在线视频只有这里精品首页| xxxwww97欧美| 特大巨黑吊av在线直播| 国产av一区在线观看免费| 亚洲在线自拍视频| 真人做人爱边吃奶动态| 国产精品久久久久久久电影 | 国内揄拍国产精品人妻在线| 在线视频色国产色| 亚洲成人精品中文字幕电影| 一进一出抽搐gif免费好疼| 老司机在亚洲福利影院| 亚洲一区二区三区不卡视频| 99久久99久久久精品蜜桃| 内射极品少妇av片p| 欧美激情久久久久久爽电影| 国产极品精品免费视频能看的| 欧美一区二区精品小视频在线| 亚洲国产精品999在线| 国产伦精品一区二区三区视频9 | 久久亚洲真实| 美女cb高潮喷水在线观看| 99在线视频只有这里精品首页| 在线免费观看不下载黄p国产 | 五月伊人婷婷丁香| 国产真人三级小视频在线观看| 亚洲美女视频黄频| www.999成人在线观看| or卡值多少钱| 69人妻影院| 俺也久久电影网| aaaaa片日本免费| 亚洲天堂国产精品一区在线| 亚洲av中文字字幕乱码综合| 欧美日韩国产亚洲二区| 黄色成人免费大全| 日本黄大片高清| 中文字幕人成人乱码亚洲影| 国产精品久久久久久精品电影| 麻豆国产97在线/欧美| 亚洲av熟女| 国产麻豆成人av免费视频| 久久久久精品国产欧美久久久| 国产精品野战在线观看| 激情在线观看视频在线高清| 熟女电影av网| 男人舔奶头视频| 午夜福利欧美成人| 19禁男女啪啪无遮挡网站| 免费人成视频x8x8入口观看| 精品一区二区三区视频在线 | 免费看a级黄色片| АⅤ资源中文在线天堂| 午夜免费激情av| 久久久久精品国产欧美久久久| 天堂av国产一区二区熟女人妻| 99在线人妻在线中文字幕| 国产精品久久久久久人妻精品电影| 夜夜爽天天搞| 亚洲欧美精品综合久久99| 国内精品一区二区在线观看| 啦啦啦免费观看视频1| 国产精品女同一区二区软件 | 老司机午夜福利在线观看视频| 日韩欧美在线二视频| 成人永久免费在线观看视频| 亚洲美女黄片视频| 69人妻影院| 蜜桃久久精品国产亚洲av| 99热精品在线国产| 97人妻精品一区二区三区麻豆| 草草在线视频免费看| 最近最新中文字幕大全免费视频| 亚洲精品乱码久久久v下载方式 | 一区福利在线观看| 亚洲国产精品成人综合色| 久久久国产成人精品二区| 午夜免费男女啪啪视频观看 | 久久久久久久精品吃奶| 欧美3d第一页| 99热这里只有是精品50| 伊人久久大香线蕉亚洲五| 久久久久久久久久黄片| 国产黄a三级三级三级人| 久久九九热精品免费| 美女被艹到高潮喷水动态| 精品人妻偷拍中文字幕| 欧美性猛交黑人性爽| 亚洲人成电影免费在线| xxx96com| 欧美区成人在线视频| 国产国拍精品亚洲av在线观看 | 国内精品一区二区在线观看| 午夜福利高清视频| 久久久精品欧美日韩精品| 国产成人aa在线观看| 可以在线观看毛片的网站| 中文亚洲av片在线观看爽| 久久久久久久久大av| 亚洲黑人精品在线| 一个人免费在线观看的高清视频| 99国产精品一区二区蜜桃av| 狂野欧美激情性xxxx| 国产精品亚洲美女久久久| www国产在线视频色| 国产亚洲精品av在线| 少妇熟女aⅴ在线视频| 一级a爱片免费观看的视频| 国产国拍精品亚洲av在线观看 | 午夜影院日韩av| 好男人电影高清在线观看| 国产欧美日韩一区二区三| 免费大片18禁| 亚洲人与动物交配视频| 国产在线精品亚洲第一网站| 亚洲人成网站在线播放欧美日韩| 国产真人三级小视频在线观看| 国产一区二区三区在线臀色熟女| 欧美成狂野欧美在线观看| 99热这里只有精品一区| 免费人成在线观看视频色| 精品一区二区三区人妻视频| 国产不卡一卡二| 噜噜噜噜噜久久久久久91| 成年人黄色毛片网站| 中文字幕人妻熟人妻熟丝袜美 | 国产欧美日韩一区二区三| 亚洲av第一区精品v没综合| 国产中年淑女户外野战色| 脱女人内裤的视频| 亚洲 欧美 日韩 在线 免费| 久久人人精品亚洲av| 有码 亚洲区| 亚洲精品久久国产高清桃花| 成年女人毛片免费观看观看9| 天堂av国产一区二区熟女人妻| 成年女人看的毛片在线观看| 精品国产三级普通话版| 69人妻影院| 两人在一起打扑克的视频| 午夜视频国产福利| 日韩中文字幕欧美一区二区| 中文字幕人成人乱码亚洲影| 香蕉丝袜av| 久99久视频精品免费| 国产精品爽爽va在线观看网站| 成人无遮挡网站| 国产精品久久电影中文字幕| 国产亚洲精品综合一区在线观看| 两个人的视频大全免费| 宅男免费午夜| 天天躁日日操中文字幕| 亚洲人成网站在线播| 99国产精品一区二区三区| 成人三级黄色视频| 久久久久久国产a免费观看| 久久九九热精品免费| 欧美大码av| 又紧又爽又黄一区二区| 久久精品夜夜夜夜夜久久蜜豆| 18禁在线播放成人免费| 午夜激情福利司机影院| 成人欧美大片| 夜夜看夜夜爽夜夜摸| 久久中文看片网| 岛国在线免费视频观看| 国产视频内射| 波多野结衣巨乳人妻| 亚洲av成人不卡在线观看播放网| 五月玫瑰六月丁香| 亚洲五月婷婷丁香| 日本一本二区三区精品| 亚洲中文字幕日韩| 亚洲激情在线av| 99riav亚洲国产免费| 中文在线观看免费www的网站| 国产亚洲精品久久久久久毛片| 一区福利在线观看| 国产高清有码在线观看视频| 久久久国产成人精品二区| 熟妇人妻久久中文字幕3abv| 91av网一区二区| 18禁在线播放成人免费| 一级黄片播放器| 天堂av国产一区二区熟女人妻| 亚洲 国产 在线| 变态另类丝袜制服| 久99久视频精品免费| a级一级毛片免费在线观看| 又粗又爽又猛毛片免费看| 国产三级黄色录像| 国产淫片久久久久久久久 | 国产精品美女特级片免费视频播放器| 国产激情欧美一区二区| 日韩精品青青久久久久久| 99精品欧美一区二区三区四区| 精品久久久久久久末码| 天堂影院成人在线观看| 精品一区二区三区视频在线观看免费| 宅男免费午夜| 一本一本综合久久| 久久久久久久亚洲中文字幕 | 99久久九九国产精品国产免费| 最新中文字幕久久久久| 免费搜索国产男女视频| 亚洲精品乱码久久久v下载方式 | 美女cb高潮喷水在线观看| 国产高清videossex| 一区二区三区激情视频| 日本精品一区二区三区蜜桃| 欧美成狂野欧美在线观看| www.熟女人妻精品国产| 成年版毛片免费区| 一区福利在线观看| 欧美成人a在线观看| 午夜久久久久精精品| 亚洲电影在线观看av| 国产黄a三级三级三级人| 国产麻豆成人av免费视频| 久久久久免费精品人妻一区二区| 国产三级在线视频| 日日干狠狠操夜夜爽| 国产精品 欧美亚洲| 人妻夜夜爽99麻豆av| 国产精品三级大全| 久久性视频一级片| 丁香六月欧美| 国产三级在线视频| 日日干狠狠操夜夜爽| 国产成人啪精品午夜网站| 熟女电影av网| 亚洲精品美女久久久久99蜜臀| 久99久视频精品免费| 搡老熟女国产l中国老女人| 欧美日本亚洲视频在线播放| av视频在线观看入口| 久久久久精品国产欧美久久久| 国产极品精品免费视频能看的| 亚洲国产欧美人成| 亚洲成a人片在线一区二区| 亚洲色图av天堂| 亚洲av美国av| 很黄的视频免费| 国产精品一区二区三区四区免费观看 | 成人精品一区二区免费| 久久精品人妻少妇| 偷拍熟女少妇极品色| 法律面前人人平等表现在哪些方面| 中文亚洲av片在线观看爽| 亚洲国产欧美人成| 免费看日本二区| 黄色日韩在线| 少妇的逼好多水| 日本黄色片子视频| 国产一区在线观看成人免费| 高清日韩中文字幕在线| 国产美女午夜福利| 99久久99久久久精品蜜桃| 欧美在线黄色| 最近最新免费中文字幕在线| 亚洲在线观看片| 成人三级黄色视频| 久久天躁狠狠躁夜夜2o2o| 少妇的逼水好多| 精品人妻1区二区| 91久久精品国产一区二区成人 | 久久精品国产综合久久久| 少妇丰满av| 国产真实乱freesex| 又黄又爽又免费观看的视频| 97超视频在线观看视频| 禁无遮挡网站| 看免费av毛片| 亚洲欧美日韩无卡精品| 午夜福利在线观看吧| 人人妻人人看人人澡| 91av网一区二区| 国模一区二区三区四区视频| 免费一级毛片在线播放高清视频| 久久国产乱子伦精品免费另类| 母亲3免费完整高清在线观看| 看免费av毛片| 国产成人系列免费观看| 国模一区二区三区四区视频| 人人妻人人看人人澡| 色噜噜av男人的天堂激情| 禁无遮挡网站| 欧美日本视频| 热99在线观看视频| av女优亚洲男人天堂| 欧美精品啪啪一区二区三区| 在线免费观看的www视频| 国产成人aa在线观看| 无限看片的www在线观看| 草草在线视频免费看| av女优亚洲男人天堂| 欧美乱色亚洲激情| 宅男免费午夜| 亚洲熟妇熟女久久| 啪啪无遮挡十八禁网站| 男女那种视频在线观看| 12—13女人毛片做爰片一| 少妇裸体淫交视频免费看高清| 精品久久久久久久久久久久久| 波多野结衣高清无吗| 18美女黄网站色大片免费观看| 久久久久久久久中文| 久久这里只有精品中国| 免费在线观看成人毛片| 免费av不卡在线播放| 一个人免费在线观看的高清视频| 欧美国产日韩亚洲一区| 免费观看人在逋| 丰满人妻熟妇乱又伦精品不卡| 欧美+亚洲+日韩+国产| 久久久久国内视频| 99久久精品一区二区三区| 18禁黄网站禁片免费观看直播| 欧美乱妇无乱码| 国产午夜精品论理片| 亚洲av美国av| 久久草成人影院| 国产免费一级a男人的天堂| 51午夜福利影视在线观看| 在线观看免费午夜福利视频| 国产精品国产高清国产av| 亚洲av电影在线进入| 99热这里只有是精品50| 国产蜜桃级精品一区二区三区| 国产视频内射| 午夜两性在线视频| 最新在线观看一区二区三区| 岛国在线观看网站| 女生性感内裤真人,穿戴方法视频| 精品久久久久久成人av| 国产精品久久久久久亚洲av鲁大| 男插女下体视频免费在线播放| 天天一区二区日本电影三级| 九色成人免费人妻av| 尤物成人国产欧美一区二区三区| 亚洲精品日韩av片在线观看 | 久久久精品大字幕| 男女下面进入的视频免费午夜| 中文字幕精品亚洲无线码一区| 伊人久久精品亚洲午夜| 亚洲午夜理论影院| 国产成人系列免费观看| а√天堂www在线а√下载| 91麻豆av在线| 欧美高清成人免费视频www| 国产男靠女视频免费网站| 在线观看美女被高潮喷水网站 | 中文字幕人成人乱码亚洲影| 99久久无色码亚洲精品果冻| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 午夜亚洲福利在线播放| 99久久综合精品五月天人人| 日韩精品中文字幕看吧| 九九久久精品国产亚洲av麻豆| 最近最新免费中文字幕在线| 国产又黄又爽又无遮挡在线| 精品国产超薄肉色丝袜足j| 亚洲精品色激情综合| 99精品久久久久人妻精品| 人人妻人人看人人澡| 窝窝影院91人妻| 欧美+亚洲+日韩+国产| www.www免费av| 成人国产综合亚洲| 欧美日韩乱码在线| 精品久久久久久久人妻蜜臀av| 日本精品一区二区三区蜜桃| 高清在线国产一区| 丁香欧美五月| 亚洲欧美激情综合另类| 老汉色∧v一级毛片| 成人无遮挡网站| 国产精品一区二区三区四区免费观看 | 在线a可以看的网站| 国产精品精品国产色婷婷| 脱女人内裤的视频| 免费av毛片视频| 亚洲av不卡在线观看| 午夜影院日韩av| 狂野欧美白嫩少妇大欣赏| 动漫黄色视频在线观看| 欧美一区二区亚洲| 中文字幕高清在线视频| 黄片小视频在线播放| 在线播放国产精品三级| 18禁黄网站禁片免费观看直播| 99久久精品国产亚洲精品| 日韩人妻高清精品专区| 精品欧美国产一区二区三| www日本在线高清视频| 制服丝袜大香蕉在线| 99久久99久久久精品蜜桃| 19禁男女啪啪无遮挡网站| 观看免费一级毛片| 色综合亚洲欧美另类图片| 欧美另类亚洲清纯唯美| 亚洲国产精品999在线| 一级黄片播放器| 久久精品人妻少妇| 欧美日韩一级在线毛片| 国产探花极品一区二区| 偷拍熟女少妇极品色| 成人一区二区视频在线观看| 中文字幕人妻丝袜一区二区| 成人18禁在线播放| www日本黄色视频网| 国产97色在线日韩免费| 波多野结衣高清无吗| 可以在线观看的亚洲视频| 一进一出抽搐gif免费好疼| 日韩亚洲欧美综合| 国产极品精品免费视频能看的| 日韩高清综合在线| 久久国产精品影院| 欧美xxxx黑人xx丫x性爽| 国产毛片a区久久久久| 一夜夜www| 欧美激情久久久久久爽电影| 两个人视频免费观看高清| 欧美日韩瑟瑟在线播放| а√天堂www在线а√下载| 熟妇人妻久久中文字幕3abv| 欧美日韩乱码在线| 18+在线观看网站| 欧美一区二区国产精品久久精品| 日日夜夜操网爽| www.999成人在线观看| 久久久久久久亚洲中文字幕 | av欧美777| 亚洲男人的天堂狠狠| 久久人人精品亚洲av| 欧美色欧美亚洲另类二区| 婷婷精品国产亚洲av在线| 免费在线观看成人毛片| 又粗又爽又猛毛片免费看| 久99久视频精品免费| 每晚都被弄得嗷嗷叫到高潮| 一本久久中文字幕| 久久精品91蜜桃| 亚洲欧美日韩高清专用| 两个人的视频大全免费| av女优亚洲男人天堂| 国产精品综合久久久久久久免费| 麻豆国产av国片精品| 亚洲一区二区三区色噜噜| 真人一进一出gif抽搐免费| 91字幕亚洲| 国产麻豆成人av免费视频| 日韩欧美国产一区二区入口| 免费在线观看亚洲国产| 日韩欧美国产一区二区入口| xxxwww97欧美| 国产野战对白在线观看| 国产成人欧美在线观看| 美女大奶头视频| 欧美另类亚洲清纯唯美| 午夜a级毛片| 级片在线观看| 久久久久久久久大av| 两个人看的免费小视频| 欧美黄色片欧美黄色片| 精品国内亚洲2022精品成人| 国产精品三级大全| 成年女人永久免费观看视频| 美女被艹到高潮喷水动态| 亚洲无线在线观看| 好看av亚洲va欧美ⅴa在| 国产精品女同一区二区软件 | av视频在线观看入口| 国产毛片a区久久久久| 午夜福利在线观看吧| 夜夜看夜夜爽夜夜摸| 亚洲国产色片| 大型黄色视频在线免费观看| 三级毛片av免费| 亚洲乱码一区二区免费版| 欧美一级毛片孕妇| 久久精品国产自在天天线| 欧美国产日韩亚洲一区| 欧美午夜高清在线| 制服人妻中文乱码| 老汉色av国产亚洲站长工具| 麻豆一二三区av精品| av在线天堂中文字幕| 在线播放无遮挡| 一个人免费在线观看的高清视频| 国产免费男女视频| 国产精品久久久久久人妻精品电影| 在线观看66精品国产| 亚洲欧美日韩高清专用| 嫩草影视91久久| 国产日本99.免费观看| 亚洲成人精品中文字幕电影| 老司机午夜福利在线观看视频| 国产伦精品一区二区三区视频9 | 亚洲国产高清在线一区二区三| 亚洲国产色片| 欧美又色又爽又黄视频| 欧美色欧美亚洲另类二区| 中文字幕人成人乱码亚洲影| 日韩欧美国产在线观看| 亚洲熟妇熟女久久| netflix在线观看网站| 日日干狠狠操夜夜爽| 又紧又爽又黄一区二区|