• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fast and High-Resolution Optical Inspection System for In-Line Detection and Labeling of Surface Defects

    2014-04-16 10:48:01ChouPLin
    Computers Materials&Continua 2014年11期

    Y.C.ChouP.T.Lin

    1 Introduction

    Manufactured products are tested prior to delivery to ensure that they remain reliable and meet customer expectations.Under such environment,it is essential that the tests being implemented do not compromise the properties and performance of the final product,i.e.non-destructive[Blitz(1991)].The decision to test the quality of a product is usually defined by economic considerations in the part of the manufacturer,where cost of the inspection system,expenses of replacing a failed component,and inconvenience to the end users are weighed in.Prohibitive costs of test systems often lead manufacturers to take calculated risks and only test a small sample from a given batch of products.However,for sensitive components such as ICs,imagers,etc.,in-line inspection is strictly enforced during the early stages of manufacturing and at Specific intervals in order to monitor critical parts of the product.Early detection of defects at these stages help manufacturers implement corrective actions prior to delivery thereby improving overall productivity by reducing re-works,line disruptions,and eventual shipment delay.

    Automated optical inspection(AOI)systems based on computer or machine vision technology(MVT)have been employed to equip a production line with more reliable measurements.The fast acquisition speeds of the instruments compared to manual inspection saves the manufacturer both time and resources in troubleshooting,quality evaluation,and yield.Depending on the size and surface properties of the materials,the inherent concerns on the performance of AOIs are the processing speed,accuracy,and resolution of the imaging module.

    Computer vision technology is a method that relies on image or motion analysis to provide automated optical inspection,robot control,remote navigation,and dynamic visual recognition.In general,it consists of an image acquisition module such as a camera,lenses,and illumination source and a software package that can interpret the acquired images by means of digital image-processing(DIP)techniques[Gonzalez and Woods(2008)].The software package is developed speci fi-cally to extractkey features from the images where decisions for succeeding actions of the system are based on.In recent years,the technology has been widely used in automotive camera systems,remote surveillance,materials sorting,and product packaging.

    Manufacturing industries have employed MVT as a non-destructive test(NDT)protocol for reliable inspection and localization of surface defects.In such systems,one or multiple DIP solutions are applied after image acquisition to assess the integrity of the product.Among the popular DIP operations include gamma correction,stitching,binarization,labeling,edge detection,color and texture analyses,and pattern recognition.Surface defect inspection systems based on these operations have been previously proposed in combination with advanced imaging techniques.Inspection platforms using linear CCDs were developed to discriminate texture variation in metal slabs[Ryu,Choi,Jeon,Lee,Yun,and Kim(2014)]and surface flaws in decorative labels[Busin,Vandenbroucke,and Macaire(2013)].Contrast based image processing algorithm[Li,Lu,and Zhang(2012)]and image recognition technique[Chen,Lin,Han,and Liang(2013)]were also proposed to localize defect in steel bars and ceramic surfaces,respectively.Scanning systems for in-line inspection were developed for surface inspection of metal slabs[Zhao,Ouyang,Chen,and Wen(2011)]and textures of plastic surfaces[Michaeli and Berdel(2011)].Other schemes featured automatic detection of cracks on solar wafers[Li and Tsai(2011);Tsai,Chang and Chao(2010);Chiou,Liu and Liang(2011)]and real-time inspection of automotive parts[Rosati,Boschetti,Biondi,and Rossi(2009)]and reflective metal surfaces[Zhang,Ding,Lv,Shi,and Liang(2011)].To inspect surface imperfections on LCD panels and other glass samples,the solutions employed were optical flow-based motion analysis[Tsai and Tsai(2011)],binary feature histogram operation[Zhao,Kong,Zhao,Liu,and Liu(2011)],and color space selection method[Nishu and Agrawal(2012)].In terms of screening products based on pre-defined criteria,these techniques have delivered reliable performance.However,a compromise between resolution and detection speed often creates a bottleneck for in-line inspection.

    This paper presents an inspection system that can achieve Significant and reliable performance in speed and resolution for extraction and labeling of micron-sized surface defects.The system features a lighting solution combining a linear CCD with LED array and a parallel computing algorithm for simultaneous detection and labeling of the surface defects.These defects are reconstructed from light scattered on the surface of the test objects.The information is collected by the line CCD and stored in a host CPU.To deliver fast computation,the image data is transmitted to a GPU device where computations using Compute Unified Device Architecture(CUDA)kernel functions such as gamma correction,Gaussian pyram id,binariza-tion,labeling,and edge detection,are completed in parallel.The processed data is sent back to the CPU allowing the user to display a defect map.To our know ledge,this is the first non-destructive optical inspection system that combines parallel computing architecture to support both high resolution and fast detection speed of surface defects for in-line measurements of large test objects.

    2 Optical Inspection Setup

    The optical inspection system consists of an imaging module,a motorized inspection stage,and image processing software such as shown in Fig.1.Each imaging module features a 5W broadband light source and a 12288 pixel-line CCD camera(Basler raL12288-66km).The pixel resolution of the CCD is 3.5μm hence the detectable width is roughly 43 mm per CCD module.At 12 kHz line rate,the image data acquired by one CCD alone is approximately 147 megapixels per second.The detectable width can be improved to accommodate even bigger samples by investing on additional imaging modules or increasing the pixel number of each module.Huge data capacity can be expected from either method which can be handled by parallel processing on a common integration server combining CPU and multiple GPU devices.

    The inspection stage is motorized with a maximum translation speed of 70 mm/s.It has a built-in movable holder for mounting the samples.Two opposite levers can be used to lock-in different sizes of test samples on the stage.The levers are also fitted with adjustment knobs to latch on the samples and control their position and tilt.The camera and linear stage are connected to a common host computer.The images acquired are also stored on the same computer.

    In order to demonstrate the detection speed and resolution capability of the test setup,this study w ill focus on only one imaging module.The line CCD is oriented parallel to the width of the test object as shown.Two sets of LED array are mounted on the light source holder and are juxtaposed to the CCD.The LED illuminates the sample at an angle from the normal.In principle,the incident light impinging the test object is reflected,transmitted,or absorbed by the surface.In our case,the normal orientation of the CCD with respect to the sample is optimized to receive the most light which are scattered from artificial or geometrical defects on the surface.Thus,if the surface is perfectly smooth the camera w ill record a mostly dark image since the majority of the light reflected is specular.Conversely,if there is a defect on the surface it w ill scatter light in the direction of the camera which in turn appears as a bright area in a dark background on the recorded image.

    Figure 1:The hardware components of the optical inspection system.

    3 System Flow Chart

    Asshown in Fig.2,the surface detection software initially prompts the user to input the parameters settings which include the capture rate of the CCD,speed of the motorized stage,and acquisition time.A command string is sent out next to initialize the CCD and the stage.The line CCD acquires the surface scattered light from the test object as it moves on the translation stage.The image data is stored on the host server(CPU)after the set acquisition time has elapsed.The image pre-processing and defect inspection tasks are assigned as CUDA-based kernel functions to a GPU device.With this design and depending on the size of the object,multiple GPU devices can be con figured to perform the same kernel operations in parallel.

    In aGPU device,the imagepre-processing and defect detection tasks are performed as pixel-wise operations on a designed block of CUDA threads.An image pixel is represented by a CUDA thread which can be varied depending on the resolution requirements.Initially,the raw data is copied from the CPU’s main memory to the GPU’s global memory through a Message Passing Interface(MPI)command.Separate memory is also allocated in the GPU to contain the processed data after each kernel function,i.e.dst_1,dst_2,etc.in Fig 2.The kernel functions are also initiated by MPI commands.After the CUDA threads complete the kernels,the processed data(i.e.dst_out)is transferred back to the CPU.The processed data from multiple GPUs are combined to generate a defect map where the size,number,and features of surface defects are displayed for defect classification or quality evaluation of the test object.

    Figure 2:The system flowchart from acquisition to transmission and detection of surface defects.

    4 Kernel Functions for Surface Defect Inspection

    Six kernel functions are carried out by the CUDA threads.These include two image pre-processing operations and four successive defect detection algorithms.These kernels can be completed iteratively on a single GPU or in parallel on multiple devices depending on the size of the image data.

    4.1 Image pre-processing

    The first kernel is gamma correction[Asadi and Hassanpour(2012)].This is applied to the raw imageIinto enhance the contrast and is defined by the relationThe coefficientαgs arbitrarily assigned a value of 1 andγg 0.84 is chosen after optimization.The output data is normalized from 0 to 255.After correction,the data is stored in the allocated memory dst_1 as shown in Fig.2.

    The second kernel implements a Gaussian pyram id[Jain and Sharma(2013)]scal-ing operation to further reduce the computation time.The processed data in dst_1 is resized by convolving with the kernelsalong the rows andon all the columns.The computation is repeated until the pixel size approaches a set threshold,e.g.25μm.A ll the even rows and columns are removed after convolution and the processed output is stored in the allocated memory dst_2.

    4.2 Defect Detection

    Four kernel functions for defect detection are carried out in succession by the CUDA threads.These include binarization,labeling,size detection,and edge detection.The latter two operations can be combined into one kernel.

    4.2.1Binarization

    The processed data in dst_2 is binarized based on a preset threshold.As illustrated in Fig.3,if a pixel value is larger than the threshold,the pixel value is set to 255.Otherwise,the pixel value is set to zero.The binarized output is stored in the allocated memory dst_3.

    Figure 3:The binarization algorithm.

    4.2.2Labeling

    In order to obtain the number of defects in an image,each are assigned a label.The idea is to locate the starting and terminal points of defects,and then eliminate the redundant starting and terminal points.After elimination,the number of defects should be the same as the number of starting or terminal points.

    The algorithm for determining the starting point of a defect follows the diagram shown in Fig.4(a).If a pixel value is equal to zero,the pixel value is not changed.However,if a pixel value is larger than zero,and if the pixel value’s left,upperleft,upper,and upper-right pixel values are all zeroes,that pixel value is set to 1.Otherwise,the pixel value is set to 9.Image pixels with a value of 1 are then considered the starting points of defects.

    The algorithm for determining the terminal point of a defect is illustrated in Fig.4(b).If a pixel value is either equal to zero or 1,that pixel value is not changed.However,if a pixel value is larger than zero but not equal to 1,and if the pixel value’s right,bottom-right,bottom,and bottom-left pixel values are all zeroes,the pixel value is set to 2.Otherwise,the pixel value is still set to 9.Image pixels with a value of 2 are then considered the terminal points of defects.

    The algorithm for elimination of redundant defect starting points is shown in Fig.5(a).This operation is Specifically targeted toward pixels with a value equal to 1.In such a case,if there is any pixel on its left side along the same row with a value of 1,the target pixel’s value is changed from 1 to 9.

    The algorithm for elimination of redundant defect terminal point is illustrated in Fig.5(b).In contrast to the previous operation,this is targeted toward pixels with a value equal to 2.For a target pixel,if there is any pixel on its right side along the same row with a value of 2,the target pixel’s value is changed from 2 to 9.The processed output after labeling is stored in the allocated memory dst_4.

    4.2.3Size and Edge Detection

    Finally,this operation is implemented to obtain the size and geometric shapes or contours of defects,i.e.the left,upper,right,and bottom edges of defects.In addition,after the labeling operation,all nonzero pixel values are changed back to 255,which is the original value obtained after binarization.Moreover,an array of zeroes,which has the same size as the image,is allocated in the CUDA global memory for the edge detect algorithm.

    The algorithm for left edge detection of defect is shown in Fig.6(a).For a target pixel with a value of 255,if the values of its left and right pixels are zero and 1,respectively,the target pixel’s value in the new array is set to 255.Otherwise,the target pixel’s value in the new array is not changed.

    Figure 4:The defect(a)starting point and(b)terminal point determination algorithms.

    The algorithm for right edge detection shown in Fig.6(b)is the counterpart of the left edge detection procedure.For a target pixel with a value of 255,if the values of its right and left pixels are zero and 1,respectively,the target pixel’s value in the new array is also set to 255.Otherwise,the target pixel’s value in the new array is not changed.

    The algorithm for upper edge detection is illustrated in Fig.7(a).For a target pixel with a value of 255,if the values of its upper pixel and its corresponding pixel in the new array are both zeroes,and also the value of its bottom pixel is 255,then the target pixel’s value in the new array is set to 255.Otherwise,the target pixel’s value in the new array is not changed.

    Figure 5:The redundant defect(a)starting point elimination and(b)terminal point elimination algorithms.

    The algorithm for bottom edge detection shown in Fig.7(b)is also the counterpart of the upper edge detection procedure.For a target pixel with a value of 255,if the values of its bottom pixel and its corresponding pixel in the new array are both zeroes,and also the value of its upper pixel is 255,then the target pixel’s value in the new array is set to 255.Otherwise,the target pixel’s value in the new array is not changed.

    The size of the defects is calculated from the bounded edges.The processed output is stored in the allocated memory dst_out.This memory is directly accessible to the CPU.

    Figure 6:The defect(a)left edge and(b)right edge detection algorithms.

    5 Experimental Results

    The dark- field image of the upper left corner of a back-coated mirror object is shown in Fig.8(a).The actual dimension is 43 mm(W)x 70 mm(L).The image on the left was the raw data stored on the CPU’s main memory after acquisition.The data is transferred to the GPU’s global memory for defect inspection follow ing the algorithm discussed in Fig.2.The processed output in dst_out is shown in Fig.8(b).On the CPU,a defect map was created based on the geometrical shape,size,and position of the defects on the sample.The map is a Specific area on the test object where a cluster of defects is detected.An example of a defect map on the corner of a test sample is shown in Fig.10(c).The sizes and features of defects found on the sample are listed in Table1.Point-like or circular defects ranging from 50μm to 160μm in diameter are labeled as bubbles.Thin and elongated features which are located far from the edge of the test object are labeled as cracks.The width and length of the cracks found on the sample is about 10 to 20μm and 1 to 10 mm,respectively.Jagged contours and voids that are detected on the perimeter of the test object are generally labeled as edge defects.Information about the shape and size of this particular defect can be utilized to gauge not only the quality of the test object but also the integrity of the tooling/cutting process on the sample.

    Figure 7:The defect(a)upper edge and(b)bottom edge detection algorithms.

    Tab.2 summarizes the detection sensitivity of the algorithm for each defect.The calculation compares the number of defects correctly detected by the algorithm with that of the actual defects.The results are Significant and show that the accuracy of the algorithm is above 94%on the three defects category.

    The processing time for each kernel function on a single GPU is listed in Table 3.

    Figure 8:(a)Dark- field image of test object stored on CPUs main memory.(b)Processed output with defects detected near the upper-left edge.(c)A typical defect map with labeled bubbles and crack.

    Table 1:Size and features found on the test sample.

    Table 2:True detection rates(TDR)of surface defect detection algorithm.TDR=100x(N d/N a);N d=defects identified from algorithm,N a=actual defects=100.

    The total time to complete the image-processing tasks is 126.71 ms.Meanwhile,the total time to complete the defect detection tasks is 121.82 ms.In total,the combined processing times is Significantly faster than computations on a CPU of the same tasks which exceeds more than 1 minute for the same test object.

    Table 3:Computation time to complete surface detection.

    6 Conclusions

    The paper presents an automated optical inspection system that combines a versatile imaging module with parallel computing platform to achieve fast and high resolution surface defect detection for in-line measurements.Fast processing time of large image data from the imaging module is realized by utilizing GPU structures to execute image processing functions in parallel.High resolution surface flaws such as bubbles,cracks,and edge defects are detected accurately from the image processed defect maps where the width of the smallest defect is about 10μm.The sensitivity of the detection algorithm is above 94%for each defect category.The computation time to complete the defect inspection on a single CPU-GPU platform is at least 248 ms,which is Significantly faster compared to purely CPU-based processing.As such,inspection of defects on large objects is possible by either multiplying the GPU platforms to complete the processing tasks or increasing the number of imaging modules to expand the inspection area.

    Acknowledgement:This research is supported by the Ministry of Science and Technology under grant No.102-2218-E-033-002-MY2 and Chung Yuan Christian University.

    Asadi,S.;Hassanpour,H.(2012):A preprocessing approach for image analysis using gamma correction.International Journal of Computer Applications,vol.38,no.12,pp.38-46.

    Blitz,J.(1991):Electrical and Magnetic Methods of Nondestructive Testing,IOP Publishing Ltd,New York.1991.pp.1.

    Busin,L.;Vandenbroucke,N.;M acaire,L.(2013):Contribution of a color space selection to a flaw detection vision system.Journal of Electronic Imagingvol.22,no.3,pp.17.

    Chen,S.G.;Lin,B.;Han,X.S.;Liang,X.H.(2013):Automated inspection of engineering ceramic grinding surface damage based on image recognition.International Journal of Advanced Manufacturing Technology,vol.66,no.1-4,pp.431-443.

    Chiou,Y.C.;Liu,J.Z.;Liang,Y.T.(2011):M icro-crack detection of multicrystalline silicon solar wafer using machine vision techniques.Sensor Review,vol.31,no.2,pp.154-165.

    Gonzalez,R.C;Woods,R.E.(2008):Digital Image Processing,3rd ed.,Prentice Hall.

    Jain,A.;Sharma,S.(2013):Entropy enhancement using image fusion techniques based on Laplacian and Gaussian pyramid decomposition.International Journal of Engineering Innovation&Research,vol.2,no.3,pp.273-276.

    Li,W.B.;Lu,C.H.;Zhang,J.C.(2012):A local annular contrast based real time inspection algorithm for steel bar surface defects.Applied Surface Science,vol.258 no.16,pp.6080-6086.

    Li,W.C.;Tsai,D.M.(2011):Automatic saw-mark detection in multicrystalline solar wafer images.Solar Energy Materials and Solar Cellsvol.95,no.8,pp.2206-2220.

    M ichaeli,W.;Berdel,K.(2011):In-line inspection of textured plastics surfaces.Optical Engineering,vol.50,no.2,pp.6.

    Nishu;Agrawal S.(2012):Automated inspection of defects in glass by proper color space selection and segmentation technique of digital image processing.International Journal of Computer Technology&Applications,vol.3,no.3,pp.1058-1063.

    Rosati,G.;Boschetti,G.;Biondi,A.;Rossi,A.(2009):Real-time defect detection on highly reflective curved surfaces.Optics and Lasers in Engineering,vol.47,no.3-4,pp.379-384.

    Ryu,S.G.;Choi,D.C.;Jeon,Y.J.;Lee,S.J.;Yun,J.P.;K im,S.W.(2014):Detection of scar fing faults on the edges of slabs.ISJI International,vol.54,no.1,pp.112-118.

    Tsai,D.M.;Chang,C.C.;Chao,S.M.(2010):Micro-crack inspection in heterogeneously textured solar wafers using anisotropic diffusion.Image and Vision Computing,vol.28,no.3,pp.491-501.

    Tsai,D.M.;Tsai,H.Y.(2011):Low-contrast surface inspection of mura defects in liquid crystal displays using optical flow-based motion analysis.Machine Vision and Applications,vol.22,no.4,pp.629-649.

    Zhang,X.W.;Ding,Y.Q.;Lv,Y.Y.;Shi,A.Y.;Liang,R.Y.(2011):A vision inspection system for the surface defects of strongly reflected metal based on multiclass Svm.Expert Systems with Applications,vol.38,no.5,pp.5930-5939.

    Zhao,L.M.;Ouyang,Q.;Chen,D.F.;Wen,L.Y.(2011):Surface defects inspection method in hot slab continuous casting process.Ironmaking&Steelmaking,vol.38,no.6,pp.464-470.

    Zhao,J.;Kong,Q.J.;Zhao,X.;Liu,J.;Liu,Y.(2011):A method for detection and classification of glass defects in low resolution images.Sixth International Conference on Image and Graphics,pp 642-647

    一个人免费在线观看的高清视频| 午夜视频精品福利| 男男h啪啪无遮挡| 亚洲国产欧美网| 亚洲精品av麻豆狂野| 啦啦啦视频在线资源免费观看| 青青草视频在线视频观看| 人人妻人人添人人爽欧美一区卜| 脱女人内裤的视频| 日本av手机在线免费观看| 久久久久久亚洲精品国产蜜桃av| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲人成电影观看| 久久精品91无色码中文字幕| 亚洲av国产av综合av卡| 精品少妇久久久久久888优播| 亚洲第一欧美日韩一区二区三区 | 丰满人妻熟妇乱又伦精品不卡| 成人三级做爰电影| 国产成人啪精品午夜网站| 一级片'在线观看视频| 少妇的丰满在线观看| aaaaa片日本免费| 成年女人毛片免费观看观看9 | 色精品久久人妻99蜜桃| 久久亚洲真实| 午夜福利在线观看吧| 欧美精品一区二区大全| 国产伦人伦偷精品视频| 亚洲av日韩在线播放| 精品福利永久在线观看| 国产精品 国内视频| 国产av又大| 国产一区二区在线观看av| 午夜成年电影在线免费观看| 丁香六月欧美| 亚洲自偷自拍图片 自拍| 亚洲专区国产一区二区| 国产高清视频在线播放一区| 老熟女久久久| 亚洲国产看品久久| 一进一出好大好爽视频| 岛国毛片在线播放| 俄罗斯特黄特色一大片| 黄频高清免费视频| 男女边摸边吃奶| 色精品久久人妻99蜜桃| 免费观看a级毛片全部| 美女主播在线视频| 黄色片一级片一级黄色片| 桃花免费在线播放| 国产男女内射视频| 国产精品电影一区二区三区 | 亚洲午夜理论影院| 老司机在亚洲福利影院| 一级黄色大片毛片| 日本黄色视频三级网站网址 | 黄网站色视频无遮挡免费观看| 大型黄色视频在线免费观看| 亚洲专区中文字幕在线| 免费少妇av软件| 精品一品国产午夜福利视频| 精品乱码久久久久久99久播| 国产不卡av网站在线观看| 老汉色av国产亚洲站长工具| 久久久水蜜桃国产精品网| 叶爱在线成人免费视频播放| 男女边摸边吃奶| 国产熟女午夜一区二区三区| aaaaa片日本免费| 国产高清videossex| 人人澡人人妻人| 日日爽夜夜爽网站| 国产在视频线精品| 免费在线观看视频国产中文字幕亚洲| 亚洲精品一卡2卡三卡4卡5卡| 国产精品亚洲一级av第二区| 在线观看66精品国产| 精品国产亚洲在线| av线在线观看网站| 国产一区有黄有色的免费视频| 亚洲av美国av| 国产一区二区三区在线臀色熟女 | 在线观看舔阴道视频| 一级a爱视频在线免费观看| 国产精品98久久久久久宅男小说| 建设人人有责人人尽责人人享有的| 超碰97精品在线观看| 亚洲成人免费av在线播放| 宅男免费午夜| 丝袜美腿诱惑在线| 国产精品成人在线| 操美女的视频在线观看| 男女高潮啪啪啪动态图| 中文字幕高清在线视频| 午夜激情av网站| 欧美+亚洲+日韩+国产| av欧美777| 国产午夜精品久久久久久| 在线看a的网站| 欧美成狂野欧美在线观看| aaaaa片日本免费| 国产精品一区二区在线不卡| 大片免费播放器 马上看| 精品少妇一区二区三区视频日本电影| 狠狠精品人妻久久久久久综合| 午夜精品国产一区二区电影| 国产精品香港三级国产av潘金莲| 日韩欧美三级三区| 亚洲性夜色夜夜综合| 久久精品91无色码中文字幕| 久久精品国产亚洲av高清一级| 男女下面插进去视频免费观看| 久久久国产成人免费| 日韩中文字幕视频在线看片| 亚洲九九香蕉| 久久亚洲真实| 精品一区二区三区四区五区乱码| 欧美中文综合在线视频| 亚洲av片天天在线观看| 在线观看免费视频日本深夜| 亚洲伊人色综图| 人妻 亚洲 视频| 日韩熟女老妇一区二区性免费视频| 纵有疾风起免费观看全集完整版| 久久久国产成人免费| 精品午夜福利视频在线观看一区 | 麻豆乱淫一区二区| 免费看a级黄色片| 日韩欧美三级三区| 99国产综合亚洲精品| 免费看十八禁软件| 无人区码免费观看不卡 | 少妇精品久久久久久久| 在线永久观看黄色视频| 国产av精品麻豆| 久久午夜亚洲精品久久| 一本—道久久a久久精品蜜桃钙片| 国产精品一区二区免费欧美| 在线十欧美十亚洲十日本专区| 少妇粗大呻吟视频| 日韩视频在线欧美| 欧美激情极品国产一区二区三区| 免费女性裸体啪啪无遮挡网站| 制服诱惑二区| 国产精品久久电影中文字幕 | 老司机午夜十八禁免费视频| 欧美大码av| 我要看黄色一级片免费的| 久久婷婷成人综合色麻豆| 欧美黑人精品巨大| 91成年电影在线观看| 超色免费av| 色婷婷av一区二区三区视频| 亚洲精品国产色婷婷电影| 亚洲欧美一区二区三区久久| 动漫黄色视频在线观看| 亚洲精品久久成人aⅴ小说| 亚洲性夜色夜夜综合| 99香蕉大伊视频| 夫妻午夜视频| av电影中文网址| 亚洲全国av大片| 久久天堂一区二区三区四区| 亚洲黑人精品在线| 女人精品久久久久毛片| 黑人欧美特级aaaaaa片| 美女国产高潮福利片在线看| 久久精品国产a三级三级三级| 久久久欧美国产精品| 日本a在线网址| bbb黄色大片| 久久ye,这里只有精品| 欧美 亚洲 国产 日韩一| 亚洲专区中文字幕在线| 人人妻人人爽人人添夜夜欢视频| 中文字幕另类日韩欧美亚洲嫩草| 日本av免费视频播放| √禁漫天堂资源中文www| 咕卡用的链子| 丝袜在线中文字幕| avwww免费| 久久中文字幕人妻熟女| 美女主播在线视频| 色视频在线一区二区三区| 美女国产高潮福利片在线看| 久久久久久久国产电影| 成年动漫av网址| 久久中文字幕一级| 欧美人与性动交α欧美精品济南到| 国产成人啪精品午夜网站| 女性被躁到高潮视频| 欧美精品高潮呻吟av久久| 90打野战视频偷拍视频| 午夜福利在线观看吧| 可以免费在线观看a视频的电影网站| 亚洲午夜理论影院| 好男人电影高清在线观看| 一本一本久久a久久精品综合妖精| 高清黄色对白视频在线免费看| 后天国语完整版免费观看| 午夜久久久在线观看| 午夜日韩欧美国产| 好男人电影高清在线观看| www.999成人在线观看| 高清毛片免费观看视频网站 | 12—13女人毛片做爰片一| 国产高清激情床上av| 啪啪无遮挡十八禁网站| 成人国语在线视频| 亚洲午夜理论影院| 999久久久国产精品视频| 亚洲精品粉嫩美女一区| 香蕉国产在线看| 国产高清国产精品国产三级| 国产老妇伦熟女老妇高清| 国产精品久久久av美女十八| 亚洲中文av在线| 成人手机av| 最新美女视频免费是黄的| 亚洲熟女毛片儿| 日韩欧美一区视频在线观看| 国产av精品麻豆| 18禁黄网站禁片午夜丰满| 91精品国产国语对白视频| 欧美日韩av久久| 久久久国产欧美日韩av| 国产伦理片在线播放av一区| 国产福利在线免费观看视频| 夜夜夜夜夜久久久久| 亚洲天堂av无毛| 国产亚洲午夜精品一区二区久久| 香蕉久久夜色| 涩涩av久久男人的天堂| 久久人妻福利社区极品人妻图片| 国产精品秋霞免费鲁丝片| 美女福利国产在线| 成人国产一区最新在线观看| 岛国毛片在线播放| 99香蕉大伊视频| 国精品久久久久久国模美| 在线亚洲精品国产二区图片欧美| 精品乱码久久久久久99久播| 免费看十八禁软件| 欧美日韩亚洲国产一区二区在线观看 | 久久久精品免费免费高清| 亚洲黑人精品在线| 免费av中文字幕在线| 成人永久免费在线观看视频 | 热99re8久久精品国产| 久久国产亚洲av麻豆专区| 日韩制服丝袜自拍偷拍| 在线天堂中文资源库| 一区在线观看完整版| 午夜免费鲁丝| 亚洲国产成人一精品久久久| 国产精品九九99| 无人区码免费观看不卡 | 国产亚洲欧美在线一区二区| 免费在线观看黄色视频的| 久久 成人 亚洲| 欧美 日韩 精品 国产| 大香蕉久久网| 黄色片一级片一级黄色片| 99久久99久久久精品蜜桃| 精品亚洲乱码少妇综合久久| 久久久国产精品麻豆| 操美女的视频在线观看| 成人永久免费在线观看视频 | 首页视频小说图片口味搜索| 又黄又粗又硬又大视频| 午夜福利欧美成人| 亚洲av日韩在线播放| 美女扒开内裤让男人捅视频| 成年版毛片免费区| 两个人免费观看高清视频| 久久亚洲真实| 成人18禁高潮啪啪吃奶动态图| 12—13女人毛片做爰片一| 久久精品人人爽人人爽视色| aaaaa片日本免费| 免费日韩欧美在线观看| 久久久精品免费免费高清| 欧美日韩成人在线一区二区| 99国产精品99久久久久| 亚洲少妇的诱惑av| 中亚洲国语对白在线视频| 精品国产乱子伦一区二区三区| 亚洲专区中文字幕在线| 99精国产麻豆久久婷婷| aaaaa片日本免费| 757午夜福利合集在线观看| av视频免费观看在线观看| 免费观看a级毛片全部| 啦啦啦视频在线资源免费观看| 极品少妇高潮喷水抽搐| 狠狠狠狠99中文字幕| 欧美国产精品一级二级三级| 久热爱精品视频在线9| 人妻一区二区av| 精品熟女少妇八av免费久了| 精品卡一卡二卡四卡免费| 丝袜喷水一区| 亚洲精品中文字幕一二三四区 | 国产在线观看jvid| 午夜福利在线观看吧| 亚洲精品av麻豆狂野| 少妇精品久久久久久久| 99riav亚洲国产免费| 久久青草综合色| 欧美av亚洲av综合av国产av| 交换朋友夫妻互换小说| 国产一区二区 视频在线| 亚洲全国av大片| 黄色视频,在线免费观看| 婷婷丁香在线五月| 亚洲精品成人av观看孕妇| 亚洲精品粉嫩美女一区| 亚洲国产av新网站| 亚洲va日本ⅴa欧美va伊人久久| 两个人免费观看高清视频| 国产色视频综合| 国产av国产精品国产| 美女午夜性视频免费| 99国产精品一区二区蜜桃av | 丁香六月欧美| 日韩成人在线观看一区二区三区| 1024视频免费在线观看| 黑人欧美特级aaaaaa片| 人人妻,人人澡人人爽秒播| 国产有黄有色有爽视频| 法律面前人人平等表现在哪些方面| 国产精品久久久久久精品古装| 色94色欧美一区二区| 久久久久视频综合| 亚洲精品成人av观看孕妇| 精品人妻熟女毛片av久久网站| 热99re8久久精品国产| 色婷婷久久久亚洲欧美| 他把我摸到了高潮在线观看 | 飞空精品影院首页| 女人久久www免费人成看片| 成人三级做爰电影| 精品国产超薄肉色丝袜足j| 肉色欧美久久久久久久蜜桃| 黑人猛操日本美女一级片| 亚洲国产欧美日韩在线播放| 国产亚洲精品久久久久5区| 欧美日韩亚洲国产一区二区在线观看 | 精品熟女少妇八av免费久了| 不卡av一区二区三区| 另类亚洲欧美激情| 国产极品粉嫩免费观看在线| 午夜福利影视在线免费观看| 久热这里只有精品99| 中文字幕人妻熟女乱码| 精品第一国产精品| 涩涩av久久男人的天堂| 母亲3免费完整高清在线观看| 啦啦啦中文免费视频观看日本| 国产真人三级小视频在线观看| 久久午夜亚洲精品久久| 91九色精品人成在线观看| 精品久久蜜臀av无| 久久国产精品影院| 女人久久www免费人成看片| 大片电影免费在线观看免费| 动漫黄色视频在线观看| 露出奶头的视频| 丰满人妻熟妇乱又伦精品不卡| 亚洲专区中文字幕在线| 大型av网站在线播放| av天堂久久9| 丁香六月天网| 欧美日韩成人在线一区二区| 9191精品国产免费久久| 国产xxxxx性猛交| 成人黄色视频免费在线看| 欧美性长视频在线观看| 亚洲精品美女久久久久99蜜臀| 欧美一级毛片孕妇| 国产无遮挡羞羞视频在线观看| 天堂中文最新版在线下载| 午夜免费鲁丝| 亚洲精品久久成人aⅴ小说| 日本一区二区免费在线视频| 老司机在亚洲福利影院| 十八禁网站免费在线| 一本色道久久久久久精品综合| 国产精品98久久久久久宅男小说| 大香蕉久久网| 国产精品久久电影中文字幕 | 国产1区2区3区精品| 在线观看一区二区三区激情| 午夜精品久久久久久毛片777| 岛国在线观看网站| 亚洲久久久国产精品| 亚洲第一欧美日韩一区二区三区 | 高清视频免费观看一区二区| 国产区一区二久久| 日韩中文字幕欧美一区二区| 日韩视频一区二区在线观看| 在线播放国产精品三级| 女人高潮潮喷娇喘18禁视频| a级毛片在线看网站| 亚洲午夜理论影院| 精品乱码久久久久久99久播| 日韩中文字幕视频在线看片| 国产一区二区三区视频了| 久久人妻熟女aⅴ| 黄色怎么调成土黄色| 日韩视频在线欧美| 国产一区二区在线观看av| 日韩一区二区三区影片| 国产伦人伦偷精品视频| 久久影院123| 国产xxxxx性猛交| 午夜精品久久久久久毛片777| 97人妻天天添夜夜摸| 99re6热这里在线精品视频| av又黄又爽大尺度在线免费看| 999精品在线视频| 一级片免费观看大全| 丝袜美足系列| 国产不卡av网站在线观看| 菩萨蛮人人尽说江南好唐韦庄| 午夜两性在线视频| 亚洲av日韩在线播放| 亚洲国产欧美网| 免费在线观看完整版高清| 精品欧美一区二区三区在线| 悠悠久久av| 午夜福利在线观看吧| 高清欧美精品videossex| 国产在线免费精品| 成人18禁在线播放| 一个人免费看片子| 日韩有码中文字幕| 欧美成人午夜精品| 亚洲欧美一区二区三区黑人| 国产99久久九九免费精品| 考比视频在线观看| 制服人妻中文乱码| 可以免费在线观看a视频的电影网站| 99久久99久久久精品蜜桃| 久久久久网色| tube8黄色片| 精品国产乱码久久久久久男人| 美女扒开内裤让男人捅视频| 蜜桃国产av成人99| 麻豆av在线久日| 国产成+人综合+亚洲专区| 亚洲熟妇熟女久久| 美女扒开内裤让男人捅视频| 丁香六月天网| 国产极品粉嫩免费观看在线| 黄色成人免费大全| 天堂中文最新版在线下载| 亚洲av片天天在线观看| 国产欧美日韩精品亚洲av| 国产片内射在线| 免费黄频网站在线观看国产| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲专区国产一区二区| 亚洲av第一区精品v没综合| 国产免费视频播放在线视频| 欧美老熟妇乱子伦牲交| 国产精品 欧美亚洲| 午夜福利视频在线观看免费| 操出白浆在线播放| 热re99久久精品国产66热6| 欧美精品人与动牲交sv欧美| 美国免费a级毛片| 国产精品九九99| 黑人欧美特级aaaaaa片| 久热这里只有精品99| av又黄又爽大尺度在线免费看| 欧美+亚洲+日韩+国产| 成人手机av| 国产精品免费视频内射| 国产免费福利视频在线观看| 精品国产国语对白av| av有码第一页| 午夜免费鲁丝| 免费在线观看完整版高清| 午夜久久久在线观看| 亚洲第一av免费看| 国产成人一区二区三区免费视频网站| 国产无遮挡羞羞视频在线观看| 久久精品成人免费网站| 757午夜福利合集在线观看| 欧美日韩亚洲综合一区二区三区_| 精品高清国产在线一区| 在线天堂中文资源库| 9色porny在线观看| 欧美变态另类bdsm刘玥| 可以免费在线观看a视频的电影网站| 人人妻,人人澡人人爽秒播| 99香蕉大伊视频| 免费在线观看影片大全网站| 欧美乱妇无乱码| 999久久久精品免费观看国产| 在线观看免费日韩欧美大片| 日韩免费高清中文字幕av| 国产一卡二卡三卡精品| 国产人伦9x9x在线观看| 日韩成人在线观看一区二区三区| 亚洲成国产人片在线观看| 午夜福利视频在线观看免费| 麻豆国产av国片精品| 超碰97精品在线观看| 欧美亚洲 丝袜 人妻 在线| 日本wwww免费看| 国产深夜福利视频在线观看| 操出白浆在线播放| 午夜视频精品福利| 国产av又大| 美女视频免费永久观看网站| 国产熟女午夜一区二区三区| 国产一区二区三区视频了| tocl精华| 国产高清视频在线播放一区| 麻豆国产av国片精品| 国产成人欧美| 欧美日韩视频精品一区| 不卡一级毛片| 成人黄色视频免费在线看| 精品一区二区三区视频在线观看免费 | 久久午夜亚洲精品久久| 日韩中文字幕欧美一区二区| 大香蕉久久成人网| 建设人人有责人人尽责人人享有的| 大香蕉久久成人网| 精品国产亚洲在线| 青草久久国产| 亚洲中文字幕日韩| 最新的欧美精品一区二区| 精品福利观看| 啪啪无遮挡十八禁网站| 亚洲一区中文字幕在线| 性色av乱码一区二区三区2| 超碰成人久久| 久久中文字幕一级| 99久久99久久久精品蜜桃| 视频区欧美日本亚洲| 大片免费播放器 马上看| 90打野战视频偷拍视频| 亚洲国产欧美网| 女性生殖器流出的白浆| 国产精品电影一区二区三区 | 午夜福利,免费看| 国产aⅴ精品一区二区三区波| a级片在线免费高清观看视频| 久久ye,这里只有精品| 精品人妻1区二区| 菩萨蛮人人尽说江南好唐韦庄| 狠狠精品人妻久久久久久综合| 久久久国产成人免费| 女人被躁到高潮嗷嗷叫费观| 国产av又大| 亚洲国产欧美日韩在线播放| 制服诱惑二区| 老熟妇仑乱视频hdxx| 精品熟女少妇八av免费久了| 91字幕亚洲| 女警被强在线播放| 大型黄色视频在线免费观看| 欧美日韩一级在线毛片| 午夜精品国产一区二区电影| 三级毛片av免费| 国产深夜福利视频在线观看| 精品国产一区二区久久| 国产欧美日韩一区二区三区在线| 丝袜人妻中文字幕| 建设人人有责人人尽责人人享有的| 91国产中文字幕| 另类精品久久| 欧美日韩视频精品一区| 欧美日韩亚洲高清精品| 欧美日韩福利视频一区二区| 每晚都被弄得嗷嗷叫到高潮| 久久香蕉激情| 欧美日韩黄片免| 免费人妻精品一区二区三区视频| 成人特级黄色片久久久久久久 | 欧美黄色淫秽网站| 国产成人系列免费观看| 人妻久久中文字幕网| 日本欧美视频一区| av网站在线播放免费| h视频一区二区三区| av天堂久久9| 亚洲av美国av| 亚洲 欧美一区二区三区| 岛国毛片在线播放| netflix在线观看网站| 男女免费视频国产| 欧美日韩av久久| 久久性视频一级片| 18禁观看日本| 成人国产av品久久久| cao死你这个sao货| 一边摸一边做爽爽视频免费| 久久午夜亚洲精品久久| 亚洲精品在线观看二区| 一级片'在线观看视频| 亚洲av美国av| 91九色精品人成在线观看| 久久久久久久精品吃奶| 女同久久另类99精品国产91| 男人操女人黄网站| av天堂在线播放| 一本色道久久久久久精品综合| 久久精品国产亚洲av香蕉五月 | 久久99热这里只频精品6学生|