• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Sliding Mode Control Algorithm for Solving an Ill-posed Positive Linear System

    2014-04-16 02:50:27CheinShanLiu
    Computers Materials&Continua 2014年2期

    Chein-Shan Liu

    1 Introduction

    In this paper we propose a robust and easily-implemented algorithm to solve the following linear equations system:

    whereB∈Rn×nis a given positive-definite matrix,and x∈Rnis an unknown vector to be determined from the input data b∈Rn.When B is severely ill-conditioned and b is perturbed by noise,we may encounter the problem that the numerical solution of Eq.(1)will deviate from the exact one to a great extent.Therefore,an algorithm compromises stability,efficiency and accuracy is desired.

    There are several regularization techniques developed after the pioneering work of Tikhonov and Arsenin(1977).Previously,the author and his co-workers have developed several methods to solve the ill-posed linear problems:using the fictitious time integration method as a filter for ill-posed linear system[Liu and Atluri(2009a)],a modified polynomial expansion method[Liu and Atluri(2009b)],the non-standard group-preserving scheme[Liu and Chang(2009)],a vector regularization method[Liu,Hong and Atluri(2010)],the preconditioners and postconditioners generated from a transformation matrix,obtained by Liu,Yeih and Atluri(2009)for solving the Laplace equation with a multiple-scale Trefftz basis functions,the relaxed steepest descent method[Liu(2011a,2012a)],the optimal iterative algorithm[Liu and Atluri(2011a)],an optimally scaled vector regularization method[Liu(2012b)],the best vector iterative method[Liu(2012c)],a globally optimal iterative method[Liu(2012d)],the generalized Tikhonov regularization methods[Liu(2012e)],the optimal tri-vector iterative methods[Liu(2013a,2014a)],as well as an adaptive Tikhonov regularization method[Liu(2013b)].

    It is known that iterative methods for solving the system of algebraic equations can be derived from the discretization of certain ODEs system[Bhaya and Kaszkurewicz(2006);Chehab and Laminie(2005);Liu and Atluri(2008)].Particularly,the descent methods can be interpreted as the discretizations of gradient flows[Brown and Bartholomew-Biggs(1989);Helmke and Moore(1994)].For a large scale system the main choice is using an iterative regularization algorithm,where a regularization parameter is presented by the number of iterations.The iterative method works if an early stopping criterion is used to prevent the reconstruction of noisy components in the approximate solutions.

    Liu and Atluri(2008)have developed a very simple ODEs system for iteratively solving algebraic equations.After the work by Liu and Atluri(2008),there were several works applied the fictitious time integration method(FTIM)to solve engineering problems,e.g.,[Liu and Atluri(2009a);Liu(2008a,2009a,2009b,2009c,2010);Chi,Yeih and Liu(2009),Ku,Yeih,Liu and Chi(2009);Chang and Liu(2009)].In this paper we will develop an affine nonlinear ODEs system with a derived controller from the sliding mode control theory to accelerate the convergence speed in the solution of ill-posed linear problems.

    2 An invariant manifold

    There are several regularization methods to deal with Eq.(1)when B is ill-conditioned,of which the most prominent and best well understood ones are the Tikhonov method,the Landweber iteration method,and truncated singular value decomposition,all being linear and all being strongly convergent with an appropriate a priori parameter choice[Eicke,Louis and Plato(1990)].In this paper we consider an iterative regularization method for Eq.(1)by investigating

    We start from a continuous manifold[Absil,Baker and Gallivan(2007);Adler,Dedieu,Margulies,Martens and Shub(2002);Baker,Absil and Gallivan(2008);Smith(1994);Yang(2007)],defined in terms of the square-residual-norm of r and a functionQ(t):

    Here,we let x be a function of a fictitious time-like variablet,and expect that in our algorithmQ(t)>0 is an increasing function oft,and the residual error can be decreased with time.We letQ(0)=1,andCis determined by the initial condition x(0)=x0given by

    Usually,C>0,andC=0 when the initial value x0is just the solution of Eq.(1).WhenC>0 andQ>0,the manifold defined by Eq.(3)is continuous and differentiable,and thus the following differential operation carried out on the manifold makes sense.For the requirement of"consistency condition",i.e.,x(t)always on the manifold in time,we have

    which is obtained by taking the time differential of Eq.(3)with respect totand considering x=x(t).

    The governing equation of x cannot be uniquely determined by Eq.(5);however,we suppose that x is governed by a gradient- flow,like that for the steepest-descent method(SDM):

    where λ is to be determined.Inserting Eq.(6)into Eq.(5)we can solve

    Thus by inserting the above λ into Eq.(6)we can obtain an ODEs system for x:

    where

    IfQ(t)can be guaranteed to be an increasing function oft,we have an absolutely convergent numerical method to solve Eq.(1)shown as follows:

    Whentis large enough the above equation will enforce the residual error‖r(x)‖tending to zero,and meanwhile the solution of Eq.(1)is obtained approximately.

    3 The sliding mode control method

    Equation(8)is an ODEs system defined on the invariant manifold in Eq.(10).Based on this equation,Liu(2011a)has derived the relaxed steepest descent method(RSDM)for solving linear system(1).Although the original design of the numerical algorithm is for the purpose of keeping the orbit of x on the invariant manifold in Eq.(10),but in practice the RSDM cannot satisfy this requirement.For this purpose we can insert acompensated controller?uin Eq.(8):

    such that a suitable design of?ucan help us to achieve this purpose.In above we letq=1 and r is taken as a gain vector.

    The theory of sliding mode control for system(11)is designed an invariant hypersurface[Utkin(1978,1992);Liu(2014b)]:

    in the state space,such that by keeping the orbit of x on the surface we require

    Here we can set up the most simple sliding surface by

    where a is a constant vector.Hence,we have

    Inserting Eq.(11)for˙x we can derive

    where

    From Eq.(16)we can solve

    and then by Eq.(11)we have

    however,this ODEs system may be unstable.Thus we recast Eq.(19)to be

    where

    In the control theory,Eq.(20)is a form of anaffine nonlinear system,which is linear with the control forceu(t),while the residual vector r is acting as a gain vector.

    Now we prove that the above dynamical system is asymptotically stable,tending to the zero dynamics of the residual vector r.Consider the following Lyapunov function:

    Taking the derivative ofVand insertingand Eq.(20)we can derive

    where we have used the positiveness of A,B andu.As compared with Eq.(8),the new ODEs system(20)possesses an extra termur to enforce the dynamics to the zero point of r=0,which is gained by a sliding effect with the aid of a gain vector r and a positive control forceu.

    Given an initial point r0=Bx0-b we can construct the constant vector a by an arbitrarily given vector a0,say a0=(1,...,1)T:

    it is obvious that a·r0=0,such thats0=a·r0=0.

    We simply use the Euler scheme to integrate Eq.(20),and thus one can derive the following sliding mode control algorithm(SMCA):

    (i)Give a step sizeh,an initial x0,r0=Bx0-b and a0=(1,...,1)T,and compute

    (ii)Fork=0,1,2,...,we repeat the following computations:

    If xk+1converges according to a given stopping criterion ‖rk+1‖< ε,then stop;otherwise,go to step(ii).

    4 Numerical examples

    In order to assess the performance of the newly developed method of the sliding mode control algorithm(SMCA),let us investigate the following examples.Some results are compared with that obtained by the relaxed steepest descent method(RSDM),conjugate gradient method(CGM),the optimal iterative algorithm driven by an optimal descent vector(OIA/ODV),and the globally optimal iterative algorithm(GOIA).

    4.1 Hilbert problems

    Finding ann-degree polynomial functionp(x)=a0+a1x+...+anxnto best match a continuous functionf(x)in the interval ofx∈[0,1]:

    leads to a problem governed by Eq.(1),where B is the(n+1)×(n+1)Hilbert matrix,defined by

    x is composed of then+1 coefficientsa0,a1,...,anappeared inp(x),and

    is uniquely determined by the functionf(x).

    The Hilbert matrix is a famous example of highly ill-conditioned matrices.Eq.(1)with the coefficient matrix B having a large condition number usually displays that an arbitrarily small perturbation of data on the right-hand side may lead to an arbitrarily large perturbation to the solution on the left-hand side.

    In this example we consider a highly ill-conditioned linear equation(1)with B given by Eq.(27).The ill-posedness of Eq.(1)with the above B increases very fast with an exponential growth withn.

    4.1.1 n=9

    In order to compare the numerical solutions with exact solutions we suppose thatx1=...=xn=1 to be the exact one,and then by Eq.(27)we have

    where we consider noise being imposed on the data with random numbersR(i)∈[-1,1].

    We first calculate this problem for the case withn=9 and σ=0.The resulting linear equation is highly ill-conditioned,since the condition number is quite large,up to 4.93×1011.

    In the computation by the SMCA we have fixedh=0.3.Starting fromx1=...=x9=0.5,and with a stopping criterion ε=10-8we find that SMCA converges with 1166 iterations,where the maximum error is 1.03×10-3.

    The RSDM with γ=0.06 does not converge within 5000 iterations;however the numerical solution is close to the exact solution as shown in Table 1 with the maximum error being 1.44×10-3;wherein,for the purpose of comparison,the values obtained by the conjugate gradient method(CGM)are also listed.The maximum error of CGM is 7.85×10-3.

    4.1.2 n=50

    Let us increase the ill-posedness of the linear Hilbert problem ton=50.For this problem the condition number is about 1.1748×1019.We first consider a constant solutionx1=...=x50=1.The convergence criterion ε is fixed to be ε=10-6for case 1 with noise-free σ =0,and case 2 with ε=10-3and with a noise σ =10-4.Starting from the initial conditionxi=0.5,i=1,...,50,for case 1 the SMCA withh=0.1 converges with 1184 iterations as shown in Fig.1(a)for the residual error,Fig.1(b)for the control force and Fig.1(c)for the numerical error,of which the maximum error is 0.00392.Very accurate result is obtained.From Fig.2(a)we can observe that the iterative dynamics approaches to the sliding surface withs=0 very quickly.For case 2 the SMCA withh=0.1 converges with 116 iterations as shown in Fig.2(b)for the sliding quantitys,Fig.2(c)for the residual error and the control force.The maximum error is 0.037 as shown in Fig.1(c)by the dashed line.

    4.1.3 n=200

    Let us considern=200 and with a noise σ=10-5.In the computation of this noisy problem by the SMCA,we fixh=0.35 and ε=10-3,where we show the residual error in Fig.3(a)and the SMCA converges with 82 iterations.From Fig.3(b)we can see that the sliding mode is obtained very fast.The numerical solution obtained by the SMCA converges to the exact solution very accurately as shown in Fig.3(c)with the maximum error being 0.0258.We also apply the CGM to this problem under the same noise.Under the above convergence criterion the CGM converges very fast with 9 steps,and the maximum error as shown in Fig.3(c)is 0.0993.It can be seen that the accuracy of SMCA is better than CGM.

    Figure 1:For example 1 of Hilbert problem with n=50,(a)the residual and(b)the control force for noise free case,and(c)comparing the numerical errors.

    Figure 2:For example 1 of Hilbert problem with n=50,comparing the sliding quantities for(a)noise free and(b)under a noise,and(c)the control force and residual for the noised case.

    Figure 3:For example 1 of Hilbert problem with n=200,(a)the residual and(b)the sliding quantity for noised case,and(c)comparing the numerical errors.

    Figure 4:For example 1 of Hilbert problem with n=500,(a)the residual and(b)the sliding quantity for noised case,and(c)comparing the numerical errors.

    4.1.4 n=500

    Let us considern=500 and with a noise σ=10-5.In the computation by the SMCA,we fixh=0.4 and ε=10-3,where we show the residual error in Fig.4(a)and the SMCA can converge with 96 iterations.From Fig.4(b)we can see that the sliding mode is obtained very fast.The numerical solution of SMCA is very accurate as shown in Fig.4(c)with the maximum error being 0.024.The maximum error of CGM as shown in Fig.4(c)is large up to 0.1973.It can be seen that the accuracy of SMCA is much better than CGM.From the above cases for this highly ill-posed Hilbert problem we can observe that the present SMCA is robust and effective,which is insensitive to the degree of the ill-posedness.The accuracy of the SMCA is much better than other methods.

    4.2 Example 2

    When the backward heat conduction problem(BHCP)is considered in a spatial interval of 0<x<? by subjecting to the boundary conditions at two ends of a slab:

    we solveuunder a final time condition:

    The fundamental solution to Eq.(30)is given as follows:

    whereH(t)is the Heaviside function.

    The method of fundamental solutions(MFS)has a broad application in engineering computations.However,the MFS has a serious drawback in that the resulting system of linear equations is always highly ill-conditioned,when the number of source points is increased[Golberg and Chen(1996)],or when the distances of source points are increased[Chen,Cho and Golberg(2006)].

    In the MFS the solution ofuat the field point z=(x,t)can be expressed as a linear combination of the fundamental solutionsU(z,sj):

    Table 1:Comparing the numerical results for Example 1 with different methods

    whereNis the number of source points,cjare unknown coefficients,andsjare source points located in the complement Ωcof Ω =[0,?]× [0,T].For the heat conduction equation we have the basis functions:

    It is known that the location of source points in the MFS has a great influence on the accuracy and stability.In a practical application of MFS to solve the BHCP,the source points are uniformly located on two straight lines parallel to thet-axis and not over the final time,which was adopted by Hon and Li(2009)and Liu(2011b),showing a large improvement than the line location of source points below the initial time.After imposing the boundary conditions and the final time condition on Eq.(34)we can obtain a linear equations system:

    where

    The numbern=2m1+m2of collocation points does not necessarily equal to the numberNof source points.By applying the SMCA to solve the above problem we solve a normal equation:

    Since the BHCP is highly ill-posed,the ill-conditioning of the matrix B=VTV in Eq.(38)is serious.To overcome the ill-posedness of Eq.(38)we can employ the SMCA to solve this problem.Here we compare the numerical solution with an exact solution:

    For the case withT=1 the value of final data is in the order of 10-4,which is small in a comparison with the value of the initial temperatureu0(x)=cos(πx)to be retrieved,which isO(1).

    We apply the SMCA to solve Eq.(38)withh=0.05 and ε=10-4,and a relative random noise with an intensity σ=10% is added on the final time data.TheSMCA converges with 899 iterations as shown in Fig.5(a),while the sliding quantitysis shown in Fig.5(b).The numerical error as shown in Fig.5(c)by the solid line is smaller than 0.0438.For the purpose of comparison we also apply the RSDM with γ=0.05 to solve this problem;however,over 10000 iterations it does not converge as shown in Fig.5(a)by the dashed line for the residual error.However,the result as shown in Fig.5(c)by the dashed line for numerical error is smaller than 0.05.

    Figure 5:For example 2,(a)comparing the residual errors obtained by RSDM and SMCA,(b)the sliding quantities o SMCA,and(c)comparing the numerical errors.

    4.3 Example 3

    We solve the Cauchy problem of the Laplace equation under over specified boundary conditions:

    whereh(θ)andg(θ)are given functions,and ρ = ρ(θ)is a given contour to describe the boundary shape.The contour in the polar coordinates is specified by Γ ={(r,θ)|r=ρ(θ),0≤ θ ≤2π},which is the boundary of the problem domain

    Ω,andndenotes the normal direction.

    In the potential theory,it is well known that the method of fundamental solutions(MFS)can be used to solve the Laplace equation when a fundamental solution is known.In the MFS the trial solution ofuat the field point z=(rcosθ,rsinθ)can be expressed as a linear combination of the fundamental solutionsU(z,sj):

    wherenis the number of source points,cjare the unknown coefficients,sjare the source points,and Ωcis the complementary set of Ω.For the Laplace equation(39)we have the fundamental solutions:

    In the practical application of MFS,frequently the source points are uniformly located on a circle with a radiusR,such that after imposing the boundary conditions(40)and(41)on Eq.(42)we can obtain a linear equations system:

    where

    in whichn=2m,and

    A noise with an intensity σ=10%is imposed on the given data.We fixn=60 and use a circle with a constant radiusR=14 to distribute the source points.By applying the SMCA to solve the normal equation(38)obtained from Eq.(44)we fixh=0.3.Under the convergence criterion ε=10-2,the SMCA converges with 7308 iterations and the residual error is shown in Fig.6(a),while the control force is shown in Fig.6(b)and the sliding quantitysis plotted in Fig.7(a).Along the lower half contourin Fig.6(c)we compare the numerical solution with the exact data given byu=ρ2cos(2θ),π≤θ <2π,of which the maximum error is found to be 0.121.

    For the purpose of comparison we also apply the OIA/ODV developed by Liu and Atluri(2011a)and the GOIA developed by Liu(2012d)to solve this problem under the same conditions.In Fig.7(b)we compare the relative residuals obtained by these three methods,while in Fig.7(c)we compare the numerical errors,where the maximum error obtained by the SMCA is 0.121,the maximum error by the GOIA is 0.141,and the maximum error by the OIA/ODV is 0.148.Both the GOIA and OIA/ODV do not converge within 10000 iterations under the above convergence criterion ε=10-2.We can say that the performance of SMCA is better than GOIA and OIA/ODV.

    4.4 Example 4

    In this example we consider an inverse Cauchy problem of the following biharmonic equation:

    where Ω is an interior domain in the plane.This inverse Cauchy problem of biharmonic equation is under an incomplete set of data given by

    When β =1 we recover to the direct problem.Here we let β < 1 and do not use the overspecified data,such that the present problem is a Cauchy problem with an incomplete set of given data.

    For the purpose of comparison we suppose that the exact solution is

    Figure 6:For example 3,(a)the residual error obtained by SMCA,(b)the control force,and(c)comparing the numerical solution with the exact one.

    Figure 7:For example 3,(a)the sliding quantity obtained by SMCA,(b)comparing the relative residuals,and(c)comparing the numerical errors.

    Figure 8:For example 4 of an inverse Cauchy problem of biharmonic equation,comparing the numerical solutions obtained by the SMCA with exact ones.

    and the domain is defined by

    For this example we apply the following Trefftz method[Liu(2008b)]to solve the inverse Cauchy problem of biharmonic equation:

    Under the following parametersR0=200,m=20,β =0.8 and σ =0.01 we apply the SMCA to solve this Cauchy problem,of which the results are compared with the exact solutions in Fig.8,wherev=?u.The results obtained by the SMCA are quite accurate.

    5 Conclusions

    In orderto tackle the problem of the discrepancy of iteration orbit from the invariant manifold,which causes a slow convergence,in this new invariant-manifold based theory we introduce a sliding mode control method by adding an extra controller with the residual vector as being a gain vector into the evolution equation.The new dynamics is proven to be asymptotically stable towards the zero point of the residual vector,which means that we can quickly find the real solution of a positive linear system by the sliding mode control algorithm(SMCA).In several numerical examples we have observed the sliding behavior with a fast sliding phase,and by comparing with exact solutions,the SMCA can work very effectively for the highly ill-conditioned linear equations system under a large noisy perturbation.We have obtained very accurate solution of the linear Hilbert problem with dimensionn=500,and the number of iterations is still smaller than 100.For the inverse problems the SMCA is also effective,although the noise being imposed on the input data is large up to 10%.

    Acknowledgement:Taiwan’s National Science Council project NSC-100-2221-E-002-165-MY3 and the 2011 Outstanding Research Award,granted to the author,are highly appreciated.Acknowledges that the author has been promoted to be a Lifetime Distinguished Professor of National Taiwan University,since 2013.

    Absil,P.-A.;Baker,C.G.;Gallivan,K.A.(2007):Trust-region methods on Riemannian manifolds.Found.Comput.Math.,vol.7,pp.303-330.

    Adler,R.L.;Dedieu,J.-P.;Margulies,J.Y.;Martens,M.;Shub,M.(2002):Newton’s method on Riemannian manifolds and a geometric model for the human spine.IMA J.Numer.Anal.,vol.22,pp.359-390.

    Baker,C.G.;Absil,P.-A.;Gallivan,K.A.(2008):Implicit trust-region methods on Riemannian manifolds.IMA J.Numer.Anal.,vol.28,pp.665-689.

    Bhaya,A.;Kaszkurewicz,E.(2006):Control Perspectives on Numerical Algorithms and Matrix Problems.SIAM,Advances in Design and Control 10.

    Brown,A.A.;Bartholomew-Biggs,M.C.(1989):Some effective methods for unconstrained optimization based on the solution of systems of ordinary differential equations.J.Optim.Theory Appl.,vol.62,pp.211-224.

    Chang,C.W.;Liu,C.-S.(2009):A fictitious time integration method for backward advection-dispersion equation.CMES:Computer Modeling in Engineering&Sciences,vol.51,pp.261-276.

    Chehab,J.-P.;Laminie,J.(2005):Differential equations and solution of linear systems.Numer.Algor.,vol.40,pp.103-124.

    Chen,C.S.;Cho,H.A.;Golberg,M.A.(2006):Some comments on the ill conditioning of the method of fundamental solutions.Eng.Anal.Bound.Elem.,vol.30,pp.405-410.

    Chi,C.C.;Yeih,W.;Liu,C.-S.(2009):A novel method for solving the Cauchy problem of Laplace equation using the fictitious time integration method.CMES:Computer Modeling in Engineering&Sciences,vol.47,pp.167-190.

    Eicke,B.;Louis,A.K.;Plato,R.(1990):The instability of some gradient methods for ill-posed problems.Numer.Math.,vol.58,pp.129-134.

    Golberg,M.A.;Chen,C.S.(1996):Discrete Projection Methods for Integral Equations.Computational Mechanics Publications,Southampton.

    Helmke,U.;Moore,J.B.(1994):Optimization and Dynamical Systems.Springer,Berlin.

    Hon,Y.C.;Li,M.(2009):A discrepancy principle for the source points location in using the MFS for solving the BHCP.Int.J.Comput.Meth.,vol.6,pp.181-197.

    Ku,C.Y.;Yeih,W.;Liu,C.-S.;Chi,C.C.(2009):Applications of the fictitious time integration method using a new time-like function.CMES:Computer Modeling in Engineering&Sciences,vol.43,pp.173-190.

    Liu,C.-S.(2008a):A time-marching algorithm for solving non-linear obstacle problems with the aid of an NCP-function.CMC:Computers,Materials&Continua,vol.8,pp.53-65.

    Liu,C.-S.(2008b):A highly accurate MCTM for direct and inverse problems of biharmonic equation in arbitrary plane domains.CMES:Computer Modeling in Engineering&Sciences,vol.30,pp.65-75.

    Liu,C.-S.(2009a):A fictitious time integration method for the Burgers equation.CMC:Computers,Materials&Continua,vol.9,pp.229-252.

    Liu,C.-S.(2009b):A fictitious time integration method for solving delay ordinary differential equations.CMC:Computers,Materials&Continua,vol.10,pp.97-116.

    Liu,C.-S.(2009c):A fictitious time integration method for a quasilinear elliptic boundary value problem,defined in an arbitrary plane domain.CMC:Computers,Materials&Continua,vol.11,pp.15-32.

    Liu,C.-S.(2010):The fictitious time integration method to solve the space-and time-fractional Burgers equations.CMC:Computers,Materials&Continua,vol.15,pp.221-240.

    Liu,C.-S.(2011a):A revision of relaxed steepest descent method from the dynamics on an invariant manifold.CMES:Computer Modeling in Engineering&Sciences,vol.80,pp.57-86.

    Liu,C.-S.(2011b):The method of fundamental solutions for solving the backward heat conduction problem with conditioning by a new post-conditioner.Num.Heat Transfer,B:Fundamentals,vol.60,pp.57-72.

    Liu,C.-S.(2012a):Modifications of steepest descent method and conjugate gradient method against noise for ill-posed linear systems.Commun.Numer.Anal.,volume 2012,Article ID cna-00115,24 pages.

    Liu,C.-S.(2012b):Optimally scaled vector regularization method to solve illposed linear problems.Appl.Math.Comp.,vol.218,pp.10602-10616.

    Liu,C.-S.(2012c):The concept of best vector used to solve ill-posed linear inverse problems.CMES:Computer Modeling in Engineering&Sciences,vol.83,pp.499-525.

    Liu,C.-S.(2012d):A globally optimal iterative algorithm to solve an ill-posed linear system.CMES:Computer Modeling in Engineering&Sciences,vol.84,pp.383-403.

    Liu,C.-S.(2012e):Optimally generalized regularization methods for solving linear inverse problems.CMC:Computers,Materials&Continua,vol.29,pp.103-127.

    Liu,C.-S.(2013a):An optimal tri-vector iterative algorithm for solving ill-posed linear inverse problems.Inv.Prob.Sci.Eng.,vol.21,pp.650-681.

    Liu,C.-S.(2013b):A dynamical Tikhonov regularization for solving ill-posed linear algebraic systems.Acta Appl.Math.,vol.123,pp.285-307.

    Liu,C.-S.(2014a):A globally optimal tri-vector method to solve an ill-posed linear system.J.Comp.Appl.Math.,vol.260,pp.18-35.

    Liu,C.-S.(2014b):A new sliding control strategy for nonlinear system solved by the Lie-group differential algebraic equation method.Commun.Nonlinear Sci.Numer.Simulat.,vol.19,pp.2012-2038.

    Liu,C.-S.;Atluri,S.N.(2008):A novel time integration method for solving a large system of non-linear algebraic equations.CMES:Computer Modeling in Engineering&Sciences,vol.31,pp.71-83.

    Liu,C.-S.;Atluri,S.N.(2009a):A Fictitious time integration method for the numerical solution of the Fredholm integral equation and for numerical differentiation of noisy data,and its relation to the filter theory.CMES:Computer Modeling in Engineering&Sciences,vol.41,pp.243-261.

    Liu,C.-S.;Atluri,S.N.(2009b):A highly accurate technique for interpolations using very high-order polynomials,and its applications to some ill-posed linear problems.CMES:Computer Modeling in Engineering&Sciences,vol.43,pp.253-276.

    Liu,C.-S.;Atluri,S.N.(2011a):An iterative method using an optimal descent vector,for solving an ill-conditioned systemBx=b,better and faster than the conjugate gradient method.CMES:Computer Modeling in Engineering&Sciences,vol.80,pp.275-298.

    Liu,C.-S.;Atluri,S.N.(2011b):An iterative algorithm for solving a system of nonlinear algebraic equations,F(x)=0,using the system of ODEs with an optimum α in˙x=λ[αF+(1-α)BTF];Bij=?Fi/?xj.CMES:Computer Modeling in Engineering&Sciences,vol.73,pp.395-431.

    Liu,C.-S.;Atluri,S.N.(2011c):Simple"residual-norm"based algorithms,for the solution of a large system of non-linear algebraic equations,which converge faster than the Newton’s method.CMES:Computer Modeling in Engineering&Sciences,vol.71,pp.279-304.

    Liu,C.-S.;Chang,C.W.(2009):Novel methods for solving severely ill-posed linear equations system.J.Marine Sci.Tech.,vol.17,pp.216-227.

    Liu,C.-S.;Hong,H.K.;Atluri,S.N.(2010):Novel algorithms based on the conjugate gradient method for inverting ill-conditioned matrices,and a new regularization method to solve ill-posed linear systems.CMES:Computer Modeling in Engineering&Sciences,vol.60,pp.279-308.

    Liu,C.-S.;Yeih,W.;Atluri,S.N.(2009):On solving the ill-conditioned systemAx=b:general-purpose conditioners obtained from the boundary-collocation solution of the Laplace equation,using Trefftz expansions with multiple length scales.CMES:Computer Modeling in Engineering&Sciences,vol.44,pp.281-311.

    Smith,S.T.(1994):Optimization techniques on Riemannian manifolds:Hamiltonian and gradient flows,algorithms and control.Fields Inst.Commun.,vol.3,pp.113-136.

    Tikhonov,A.N.;Arsenin,V.Y.(1977):Solutions of Ill-Posed Problems.John-Wiley&Sons,New York.

    Utkin,V.I.(1978):Sliding Modes and Their Application in Variable Structure Systems.Mir Publishers,Moscow.

    Utkin,V.I.(1992):Sliding Modes in Control and Optimization.Springer-Verlag,New York.

    Yang,Y.(2007):Globally convergent optimization algorithms on Riemannian manifolds:Uniform framework for unconstrained and constrained optimization.J.Optim.Theory Appl.,vol.132,pp.245-265.

    美国免费a级毛片| 日韩免费高清中文字幕av| 国产日韩一区二区三区精品不卡| 午夜福利视频精品| 激情视频va一区二区三区| 久久久国产欧美日韩av| 另类亚洲欧美激情| 国产欧美亚洲国产| 大型av网站在线播放| 免费看十八禁软件| 亚洲成国产人片在线观看| 男女高潮啪啪啪动态图| 又黄又粗又硬又大视频| 久久久精品区二区三区| 国产不卡一卡二| 午夜福利在线免费观看网站| 国产精品偷伦视频观看了| 一级片'在线观看视频| 国产成人精品久久二区二区免费| 建设人人有责人人尽责人人享有的| 成人国产一区最新在线观看| 亚洲,欧美精品.| 亚洲av日韩精品久久久久久密| 欧美激情极品国产一区二区三区| 母亲3免费完整高清在线观看| 黄色片一级片一级黄色片| 国产精品免费大片| 精品少妇内射三级| 日本黄色视频三级网站网址 | 中文亚洲av片在线观看爽 | 高清视频免费观看一区二区| 纵有疾风起免费观看全集完整版| 日本vs欧美在线观看视频| 9色porny在线观看| 夜夜骑夜夜射夜夜干| 老熟妇仑乱视频hdxx| a级片在线免费高清观看视频| 69av精品久久久久久 | 搡老岳熟女国产| 国产一区二区激情短视频| 肉色欧美久久久久久久蜜桃| 女警被强在线播放| 黑人欧美特级aaaaaa片| 一本大道久久a久久精品| 岛国在线观看网站| 自线自在国产av| 欧美午夜高清在线| 精品国产乱码久久久久久男人| 国产欧美日韩一区二区精品| 亚洲综合色网址| 黑人操中国人逼视频| 久久久久久人人人人人| 亚洲男人天堂网一区| 欧美精品人与动牲交sv欧美| 国产精品亚洲av一区麻豆| 国产成人av激情在线播放| 一二三四在线观看免费中文在| 99re在线观看精品视频| 久久中文字幕一级| 女警被强在线播放| 精品国内亚洲2022精品成人 | 老司机亚洲免费影院| 好男人电影高清在线观看| 99精品欧美一区二区三区四区| 久久久久久久久久久久大奶| 一本—道久久a久久精品蜜桃钙片| 在线观看免费高清a一片| 国产无遮挡羞羞视频在线观看| 欧美午夜高清在线| 国产精品久久久久久人妻精品电影 | 亚洲熟妇熟女久久| 亚洲人成电影观看| 亚洲国产中文字幕在线视频| 国产老妇伦熟女老妇高清| 女人高潮潮喷娇喘18禁视频| 99re6热这里在线精品视频| 日韩大码丰满熟妇| 多毛熟女@视频| 免费日韩欧美在线观看| 免费黄频网站在线观看国产| 成在线人永久免费视频| 欧美日韩福利视频一区二区| 亚洲欧美日韩高清在线视频 | 麻豆国产av国片精品| 黑人欧美特级aaaaaa片| 日韩一区二区三区影片| 他把我摸到了高潮在线观看 | 国产亚洲一区二区精品| 国产欧美日韩一区二区三| 久久亚洲真实| 亚洲精品国产一区二区精华液| 老司机深夜福利视频在线观看| av天堂在线播放| 国产精品.久久久| 久久香蕉激情| 国产99久久九九免费精品| 妹子高潮喷水视频| 亚洲第一青青草原| 最新的欧美精品一区二区| 高清在线国产一区| 下体分泌物呈黄色| 国产淫语在线视频| 高清黄色对白视频在线免费看| 十分钟在线观看高清视频www| 亚洲欧美一区二区三区久久| av天堂在线播放| 免费高清在线观看日韩| 亚洲国产av新网站| 国产免费视频播放在线视频| 女人被躁到高潮嗷嗷叫费观| 一本一本久久a久久精品综合妖精| 这个男人来自地球电影免费观看| svipshipincom国产片| 9热在线视频观看99| av欧美777| 亚洲一码二码三码区别大吗| 精品午夜福利视频在线观看一区 | av视频免费观看在线观看| 亚洲黑人精品在线| 成人黄色视频免费在线看| 91麻豆av在线| 黑人操中国人逼视频| 老司机在亚洲福利影院| av欧美777| 最近最新免费中文字幕在线| 黑人猛操日本美女一级片| 久久国产精品影院| 日韩欧美一区二区三区在线观看 | 五月开心婷婷网| 99热国产这里只有精品6| 啦啦啦在线免费观看视频4| 免费在线观看影片大全网站| 亚洲中文av在线| 精品久久久久久电影网| netflix在线观看网站| 精品亚洲成国产av| 俄罗斯特黄特色一大片| 日韩大片免费观看网站| 一本综合久久免费| 亚洲成av片中文字幕在线观看| 久久精品亚洲av国产电影网| 亚洲欧美日韩高清在线视频 | 久久久精品国产亚洲av高清涩受| 色播在线永久视频| 无遮挡黄片免费观看| 51午夜福利影视在线观看| 成人三级做爰电影| 九色亚洲精品在线播放| 久热这里只有精品99| 亚洲精品自拍成人| 国产高清videossex| 一区二区三区激情视频| 亚洲成av片中文字幕在线观看| 制服诱惑二区| 美女福利国产在线| 女人高潮潮喷娇喘18禁视频| 狠狠婷婷综合久久久久久88av| 国产单亲对白刺激| 色老头精品视频在线观看| 成年动漫av网址| 男女边摸边吃奶| 久久午夜综合久久蜜桃| 妹子高潮喷水视频| 国产亚洲欧美在线一区二区| 免费不卡黄色视频| 久久99热这里只频精品6学生| 国产亚洲av高清不卡| 亚洲精品久久成人aⅴ小说| 中亚洲国语对白在线视频| 免费av中文字幕在线| 天堂俺去俺来也www色官网| 亚洲精品一二三| 日本av免费视频播放| 丁香六月欧美| 热re99久久精品国产66热6| 欧美日本中文国产一区发布| 日本wwww免费看| 天天躁日日躁夜夜躁夜夜| 美女午夜性视频免费| 麻豆av在线久日| 人人妻人人添人人爽欧美一区卜| 老熟妇仑乱视频hdxx| 黑丝袜美女国产一区| 国产成人欧美在线观看 | 大型黄色视频在线免费观看| 中文字幕人妻丝袜制服| 久久久国产一区二区| 亚洲欧美日韩另类电影网站| 男女床上黄色一级片免费看| 免费在线观看黄色视频的| 一区二区三区乱码不卡18| 久久精品熟女亚洲av麻豆精品| 久久天躁狠狠躁夜夜2o2o| 久久久久久久久免费视频了| 中文字幕制服av| 叶爱在线成人免费视频播放| 亚洲第一欧美日韩一区二区三区 | 在线天堂中文资源库| 操美女的视频在线观看| 国产精品熟女久久久久浪| 80岁老熟妇乱子伦牲交| 麻豆国产av国片精品| 久久精品国产综合久久久| 天天影视国产精品| 视频在线观看一区二区三区| 精品少妇久久久久久888优播| 乱人伦中国视频| 天堂中文最新版在线下载| 国产高清国产精品国产三级| 老熟妇仑乱视频hdxx| 中文字幕人妻丝袜制服| 久久久精品94久久精品| 丝袜在线中文字幕| 亚洲九九香蕉| 成人18禁在线播放| 悠悠久久av| 久久人妻福利社区极品人妻图片| 夫妻午夜视频| 老汉色∧v一级毛片| 国产一区二区三区在线臀色熟女 | 国产成人精品无人区| 高清在线国产一区| 三上悠亚av全集在线观看| 一夜夜www| 久久人妻av系列| 亚洲伊人色综图| av网站免费在线观看视频| 50天的宝宝边吃奶边哭怎么回事| av线在线观看网站| 亚洲性夜色夜夜综合| 国产精品免费大片| 黄色 视频免费看| 成在线人永久免费视频| 欧美中文综合在线视频| 12—13女人毛片做爰片一| 狠狠婷婷综合久久久久久88av| www.熟女人妻精品国产| 亚洲全国av大片| 亚洲av第一区精品v没综合| 精品第一国产精品| 黑人巨大精品欧美一区二区蜜桃| 91av网站免费观看| 高清在线国产一区| 欧美+亚洲+日韩+国产| 亚洲七黄色美女视频| 91老司机精品| 精品亚洲乱码少妇综合久久| 欧美日韩亚洲综合一区二区三区_| 99久久国产精品久久久| 午夜日韩欧美国产| 久久狼人影院| 免费观看a级毛片全部| 午夜91福利影院| 国产免费av片在线观看野外av| 最黄视频免费看| 亚洲va日本ⅴa欧美va伊人久久| 免费在线观看完整版高清| av片东京热男人的天堂| 老司机在亚洲福利影院| 女人久久www免费人成看片| av网站在线播放免费| 飞空精品影院首页| 日本a在线网址| 我的亚洲天堂| 无遮挡黄片免费观看| 成人手机av| 午夜福利影视在线免费观看| 国产91精品成人一区二区三区 | 日本五十路高清| 国产亚洲精品久久久久5区| 亚洲精品国产色婷婷电影| 女人被躁到高潮嗷嗷叫费观| 51午夜福利影视在线观看| 高潮久久久久久久久久久不卡| 欧美精品高潮呻吟av久久| 高清毛片免费观看视频网站 | 精品久久久久久电影网| 777久久人妻少妇嫩草av网站| 国产精品.久久久| 男女高潮啪啪啪动态图| 精品亚洲乱码少妇综合久久| 久久精品成人免费网站| 热re99久久国产66热| 另类亚洲欧美激情| 99热网站在线观看| 建设人人有责人人尽责人人享有的| 俄罗斯特黄特色一大片| 黑人欧美特级aaaaaa片| 日韩成人在线观看一区二区三区| 99riav亚洲国产免费| 美国免费a级毛片| 人妻一区二区av| 十分钟在线观看高清视频www| 亚洲专区国产一区二区| 国产精品av久久久久免费| av天堂久久9| 国产亚洲精品第一综合不卡| 精品福利永久在线观看| 精品国内亚洲2022精品成人 | 精品亚洲成a人片在线观看| 1024视频免费在线观看| 国产成人精品久久二区二区免费| 久久精品国产亚洲av香蕉五月 | 久久久精品94久久精品| 亚洲精品在线观看二区| 国产精品成人在线| 国产成人精品久久二区二区免费| av天堂在线播放| a级毛片在线看网站| 在线观看舔阴道视频| 国产免费av片在线观看野外av| 女人精品久久久久毛片| 国产精品久久久久久精品古装| 精品免费久久久久久久清纯 | 美女国产高潮福利片在线看| 国产精品九九99| 法律面前人人平等表现在哪些方面| 99久久人妻综合| 中文欧美无线码| 国产在视频线精品| 欧美黑人欧美精品刺激| 老司机午夜福利在线观看视频 | 国产有黄有色有爽视频| 国产成人av激情在线播放| 久久精品熟女亚洲av麻豆精品| 久久这里只有精品19| 日韩一区二区三区影片| 男女免费视频国产| 国产av国产精品国产| 日韩欧美一区视频在线观看| 国产麻豆69| 日本黄色视频三级网站网址 | 久久久精品国产亚洲av高清涩受| 午夜两性在线视频| 午夜福利在线免费观看网站| 久久影院123| 美女午夜性视频免费| 精品久久久久久电影网| 蜜桃国产av成人99| 欧美精品人与动牲交sv欧美| 一本久久精品| 国产一区二区激情短视频| 最新美女视频免费是黄的| 在线观看一区二区三区激情| 国产熟女午夜一区二区三区| 精品福利观看| 亚洲九九香蕉| 国精品久久久久久国模美| 少妇被粗大的猛进出69影院| 亚洲免费av在线视频| 女人被躁到高潮嗷嗷叫费观| 国产成人影院久久av| 色婷婷久久久亚洲欧美| 亚洲av日韩精品久久久久久密| 久久热在线av| 两个人免费观看高清视频| 久久久精品国产亚洲av高清涩受| 热re99久久精品国产66热6| 啪啪无遮挡十八禁网站| 午夜福利影视在线免费观看| 久久久国产精品麻豆| 高潮久久久久久久久久久不卡| 国产精品国产av在线观看| 亚洲成国产人片在线观看| 午夜精品国产一区二区电影| 午夜福利在线观看吧| 国产精品熟女久久久久浪| 国产精品一区二区在线观看99| 久久人人爽av亚洲精品天堂| 午夜福利一区二区在线看| 精品欧美一区二区三区在线| 十八禁高潮呻吟视频| 后天国语完整版免费观看| 亚洲精品一卡2卡三卡4卡5卡| 51午夜福利影视在线观看| 色播在线永久视频| 19禁男女啪啪无遮挡网站| 青青草视频在线视频观看| 久热这里只有精品99| 国产区一区二久久| 亚洲全国av大片| 欧美日韩视频精品一区| 国产精品免费视频内射| 亚洲七黄色美女视频| 久久青草综合色| 一本一本久久a久久精品综合妖精| www.熟女人妻精品国产| avwww免费| 亚洲精品乱久久久久久| 亚洲精品在线观看二区| 一进一出抽搐动态| 另类精品久久| 丝袜人妻中文字幕| 欧美日韩精品网址| 国产成人精品久久二区二区91| 在线观看舔阴道视频| 成人免费观看视频高清| 一级毛片女人18水好多| 午夜福利,免费看| 正在播放国产对白刺激| 国产主播在线观看一区二区| 婷婷丁香在线五月| 亚洲少妇的诱惑av| 在线观看免费午夜福利视频| 国产精品久久久久久精品古装| 嫁个100分男人电影在线观看| 老司机在亚洲福利影院| 国产成人精品无人区| 咕卡用的链子| 亚洲av电影在线进入| 啦啦啦在线免费观看视频4| a级片在线免费高清观看视频| 法律面前人人平等表现在哪些方面| 欧美在线黄色| 久久久久视频综合| 无遮挡黄片免费观看| av片东京热男人的天堂| 人人妻,人人澡人人爽秒播| 黄色片一级片一级黄色片| 在线亚洲精品国产二区图片欧美| 欧美乱妇无乱码| 久久久精品区二区三区| 18在线观看网站| 一二三四在线观看免费中文在| 最近最新中文字幕大全免费视频| 搡老熟女国产l中国老女人| 欧美日韩中文字幕国产精品一区二区三区 | av片东京热男人的天堂| 国产在线一区二区三区精| 免费在线观看黄色视频的| 悠悠久久av| 亚洲一卡2卡3卡4卡5卡精品中文| 一二三四在线观看免费中文在| 日韩人妻精品一区2区三区| 欧美激情久久久久久爽电影 | 蜜桃在线观看..| 亚洲人成电影免费在线| 不卡一级毛片| 丝袜人妻中文字幕| 麻豆成人av在线观看| av超薄肉色丝袜交足视频| 欧美日韩av久久| 一级片免费观看大全| 成年版毛片免费区| 欧美精品一区二区大全| 9热在线视频观看99| 电影成人av| 9热在线视频观看99| 电影成人av| 一级黄色大片毛片| 欧美精品一区二区大全| 国产精品久久久久久精品电影小说| 日本a在线网址| 欧美精品啪啪一区二区三区| 18禁美女被吸乳视频| 亚洲va日本ⅴa欧美va伊人久久| 18禁美女被吸乳视频| 757午夜福利合集在线观看| 天堂中文最新版在线下载| 热99国产精品久久久久久7| 狠狠狠狠99中文字幕| 女性被躁到高潮视频| 亚洲av欧美aⅴ国产| 亚洲精品一卡2卡三卡4卡5卡| 午夜福利在线观看吧| 亚洲成人免费电影在线观看| 亚洲五月婷婷丁香| 国产视频一区二区在线看| 欧美在线一区亚洲| 高潮久久久久久久久久久不卡| kizo精华| 国产精品免费大片| 少妇被粗大的猛进出69影院| 中文字幕最新亚洲高清| a级片在线免费高清观看视频| 最近最新中文字幕大全电影3 | 中文亚洲av片在线观看爽 | 精品欧美一区二区三区在线| 久久狼人影院| 黑人猛操日本美女一级片| 亚洲精品一二三| 久久人人爽av亚洲精品天堂| 十八禁网站免费在线| 国精品久久久久久国模美| 超碰成人久久| 国产精品国产高清国产av | 亚洲精品中文字幕一二三四区 | 久久久久国内视频| 日日爽夜夜爽网站| 人人妻人人澡人人爽人人夜夜| 亚洲av片天天在线观看| 久久中文字幕一级| 在线 av 中文字幕| 麻豆av在线久日| www日本在线高清视频| 电影成人av| 建设人人有责人人尽责人人享有的| 后天国语完整版免费观看| 999久久久国产精品视频| 国产成人一区二区三区免费视频网站| 十八禁高潮呻吟视频| 亚洲第一欧美日韩一区二区三区 | 国产av又大| 久久人人97超碰香蕉20202| 久久这里只有精品19| 欧美av亚洲av综合av国产av| www.精华液| 在线永久观看黄色视频| 成人影院久久| 捣出白浆h1v1| 大片免费播放器 马上看| 叶爱在线成人免费视频播放| 国产在视频线精品| 交换朋友夫妻互换小说| 在线观看66精品国产| 欧美成狂野欧美在线观看| 国产欧美日韩一区二区三区在线| 18禁黄网站禁片午夜丰满| 99久久人妻综合| 大码成人一级视频| 另类亚洲欧美激情| 怎么达到女性高潮| 久久国产精品大桥未久av| 亚洲专区字幕在线| 国产福利在线免费观看视频| 国产亚洲av高清不卡| 亚洲色图 男人天堂 中文字幕| 丝瓜视频免费看黄片| 精品久久蜜臀av无| 日韩欧美一区二区三区在线观看 | www.熟女人妻精品国产| 中文字幕人妻丝袜一区二区| 午夜日韩欧美国产| 国产福利在线免费观看视频| 麻豆乱淫一区二区| 精品熟女少妇八av免费久了| videos熟女内射| 免费久久久久久久精品成人欧美视频| av视频免费观看在线观看| 色视频在线一区二区三区| 色94色欧美一区二区| 老司机深夜福利视频在线观看| 亚洲av欧美aⅴ国产| 国产日韩欧美视频二区| 波多野结衣一区麻豆| 不卡一级毛片| 国产精品成人在线| 久久久精品区二区三区| 国产极品粉嫩免费观看在线| 亚洲精品国产区一区二| 成人手机av| 999精品在线视频| 老司机午夜十八禁免费视频| 丁香欧美五月| 成人18禁高潮啪啪吃奶动态图| 捣出白浆h1v1| 女人爽到高潮嗷嗷叫在线视频| av网站免费在线观看视频| 俄罗斯特黄特色一大片| 老熟妇乱子伦视频在线观看| 一区二区三区精品91| 三上悠亚av全集在线观看| 可以免费在线观看a视频的电影网站| 另类亚洲欧美激情| 日日摸夜夜添夜夜添小说| 久久人妻熟女aⅴ| 国产精品亚洲一级av第二区| 一进一出抽搐动态| 美女午夜性视频免费| 国产精品一区二区免费欧美| 日韩视频一区二区在线观看| 欧美激情久久久久久爽电影 | 中文字幕精品免费在线观看视频| 色精品久久人妻99蜜桃| 午夜视频精品福利| 老司机午夜福利在线观看视频 | 精品国产乱码久久久久久小说| 国产亚洲精品第一综合不卡| 在线播放国产精品三级| av有码第一页| 亚洲一区中文字幕在线| 国产黄频视频在线观看| 97在线人人人人妻| 久久久精品94久久精品| 国产一区二区激情短视频| 热99国产精品久久久久久7| 国产精品成人在线| 涩涩av久久男人的天堂| 亚洲精品国产色婷婷电影| 成人免费观看视频高清| 曰老女人黄片| 99精品久久久久人妻精品| 国产男靠女视频免费网站| 国产亚洲午夜精品一区二区久久| 日本黄色日本黄色录像| 欧美人与性动交α欧美软件| 国产成人影院久久av| av天堂在线播放| 伦理电影免费视频| 色94色欧美一区二区| 九色亚洲精品在线播放| 国产欧美日韩一区二区精品| av线在线观看网站| 中文字幕色久视频| 久久毛片免费看一区二区三区| 黄色怎么调成土黄色| 黄频高清免费视频| 国产无遮挡羞羞视频在线观看| 一本色道久久久久久精品综合| 宅男免费午夜| 91九色精品人成在线观看| 亚洲av国产av综合av卡| 午夜免费成人在线视频| 免费av中文字幕在线| 久久久国产精品麻豆|