• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Plastic Damage Model with Stress Triaxiality-Dependent Hardening for Concrete

    2014-04-16 02:50:25ShenandWang
    Computers Materials&Continua 2014年2期

    X.P.Shenand X.C.Wang

    1 Introduction

    The inelastic failure of concrete-like materials and structures is characterized by the initiation and evolution of cracks and the frictional sliding on the closed crack surfaces.Plastic damage models are the major measures to deal with cracking-related failure analysis,and are widely used by various researchers,see e.g.Lemaitre(1990);Chaboche(1992);Seweryn and Mroz(1998);de Borst,Pamin,Geers(1999).Owing to its simplicity and a reasonable capacity of problem representation,the isotropic damage model is the most popular damage model in the simulation of the failure phenomena of concrete structures and is therefore the choice of this study.Another important reason for the choice of an isotropic damage model in this study is due to that the aim of this investigation is to analyse the cracking process of concrete material of a prestressed concrete structure.Consequently the modelling of pre-peak nonlinearity of stress-strain curve under compression and the stress-triaxiality dependent plastic hardening law and the corresponding damage evolution law are the most important concerns of this study.

    One of the plasticity-based isotropic damage models for concrete is the so-called Barcelona model which is reported by Lubliner,Oliver,Oller,Onate(1989),and has recently been adopted by Lee and Fenves(1998)and Nechnech,Meftah and Reynouard(2002).In this model,a holonomic relationship between damage and equivalent plastic strain has been presented,and two damage variables have been designed for tensile damage and compressive damage respectively.It should be noted that most of the existing plastic damage models have not emphasized on the stress-triaxiality dependent plastic hardening law.

    The framework of the constitutive model in this study is constructed on the basis of the plasticity-based damage model reported by Saanouni,Forster and Ben Hatira(1994).Although this model was proposed for the simulation of the plastic damage phenomena of metals,it is still an attractive model for the purpose of this study because of its important advantages over the other available damage models:firstly,in this model,the damage evolution is not only closely connected to the increase of plastic strain,but it is also influenced explicitly by the elastic strain;secondly,the damage evolution is coupled with an increase of plastic strain;finally,this model is relatively easy to modify to make it suitable for the simulation of plastic damage phenomena of concrete-like material.The generalized Drucker-Prager criterion introduced in Liebe and Willam(2001)for plastic loading,together with its plastic potential for non-associated plastic flow rule,is referred to here.

    The context of the article is organised in the following order:in section 2,the equations of the constitutive model are given for elasto-plasticity coupled with damage in general;a definition of stress triaxiality is proposed and later introduced in the plastic hardening and damage evolution laws.A driver subroutine for validation of the constitutive models is developed with reference to the principle proposed by Hashash,Wotring,Yao,Lee and Fu(2002).In section 3,results of numerical tests of the proposed model are given for some typical loading cases.Some conclusions are given in section 4.

    2 Formulation of the proposed model

    2.1 Fundamental equations of the plasticity-based damage model

    With the ‘Energy Equivalence Principle’,the fundamental relationships of the plasticity-based damage model proposed by Saanouni,Forster and Ben Hatira(1994)are listed in Eqn.(1)as:

    where σijand εijare total stress and strain tensors respectively,superscript p stands for plastic and e represents elastic quantities,overhead tilt~represents the quantities for fictitious net materials,is the deviatoric stress tensor,is the inelastic multiplier,D represents the isotropic damage variable,Y is the damage conjugate force,is the elasticity tensor of the intact material,δijis the 2nd order unit tensor,is the sum of the effective principal stresses,is the second invariant of the deviatoric effective stress tensor,F is a plastic damage potential function.

    It is seen from the above equations that the damage evolution is designed to be accompanied by plastic strain increase,and its quantity of increment is also dependent on elastic strain tensor via damage conjugate force.

    2.2 Specification for Drucker-Prager type plasticity coupled with damage

    With reference to the generalized Drucker-Prager criterion introduced in Menétrey and Willam(1995),together with the hardening model introduced in Besson(2001),the plastic damage loading condition is primarily defined in the effective stress space in the following form(stress triaxiality will be introduced later):

    where k is initial shear strength constant,k∞is the strain hardening limit of the fictitious net material,which corresponds to infinite equivalent plastic strain,i.e.λ → ∞,and αFis a material constant designed for pressure-sensitivity properties,parameter b is a model constant which can be determined by fitting experimental phenomena.

    The plastic part of the potential,i.e.,is given in the effective stress space as:

    where αQis the dilatancy constant for non-associated flow rule if αQ/= αF.

    The following form of plastic damage potential function F is adopted in order to have non-associate plastic flow in the effective stress space:

    wheres,S,φ are material parameters,Dis damage variable,Yis damage conjugate force.

    It is observed that the experimental results of stress-strain curves of concrete-like materials are highly dependent on the stress triaxiality.In fact,phenomena of stress triaxiality dependency of the stress-strain curves exist in engineering for a wide range of materials such as geometerials,ceramics,composites and metals.In order to simulate this kind of phenomena,the stress triaxiality was used by several references(see Alves and Jones,1999;Horstemeyer,Lathrop,Gokhale and Dighe,2000;Borvik,Hopperstad and Berstad,2003;Li,Zhang and Ansari,2002).The forms of expressions of stress triaxiality are different from one to another:Alves and Jones(1999),Borvik et al(2003)and Horstemeyer et al(2000)define their stress triaxiality explicitly,while Li,Zhang and Ansari(2002)implicitly account for stress triaxiality influence in its plastic hardening law by using the stress invariants I1 and J2.

    Here,for the convenience of model formulation,together with a reference to the conventional expressions adopted in several references(Sfer,Carol,Gettu and Etse 2002;Etse and Willam 1999),the stress triaxiality is defined as:

    The stress triaxiality is introduced into the damage plastic loading condition and the damage plastic potential function in the following form:

    where

    Consequently plastic strain increment is obtained as:

    with

    It is obtained with Eqn.(5)that:

    The damage evolution law can be derived as:

    with

    The parameters used in this model are:E,ν,k,αF,αQfor plasticity,ands,S,φ for damage.Stress triaxiality γ is a special variable introduced in this model.

    2.3 Constitutive behaviour for a finite displacement increment?εij

    With above constitutive model,the constitutive behaviour can be derived for a known initial stress state()and a given strain increment?εij.The stress increment can be obtained by making total differential operation over total stress tensor in above Eqn.(1)and a subsequent linearization over the time increment?t,thus

    With the above equations,the following equation is obtained:

    The plastic damage multipliercan be determined explicitly with the following consistency condition:

    Consequently it is obtained the following equation:

    Thus,the following expression for plastic multiplier can be derived:

    For the sake of brevity,Eqn.(18)can be re-written in another form as:

    with

    For a given strain increment?εij,the stress tensor increment can be obtained by substituting Eqn.(20)into Eqn.(14)such that:

    Therefore the algorithmic tangential stiffness tensor can be deduced as

    The elastoplastic damage loading condition for a given strain increment?εijcan be expressed conceptually in the effective stress space as

    With Eqn.(2),the following relationship is obtained:

    With Eqns.(1)and(2),the tensors and vectors on the right hand side of Eqn.(24)are obtained as

    The formulation of Newton-Raphson iteration equation between?λ and?fis formed as:

    3 Numerical validation at local level

    Here a driver subroutine is designed for the purpose of validation of 3-dimensional constitutive model at local level,i.e.for a material point only,with reference to the algorithm proposed in Hashash,Wotring,Yao,Lee,and Fu(2002).Its principle can be illustrated with Fig.1 as:a mixed loading condition is applied with ε11= ε11(t),and σ22= σ33=const,which means that a strain loading will be applied incrementally under a constant stress confinement in the other two directions.The strain loading is applied elastically in direction 11,while the self-equilibrium mechanism at this material point will result in variation of lateral strains nonlinearly(for the sake of damage)in order to keep the lateral confinement constant.The details of the numerical calculations will be given in the following context.

    Figure 1:Illustration of the mixed loading condition.

    Figure 2:Flow chart of global equilibrium iteration.

    3.1 Iteration procedure for the constitutive validation:external equilibrium iteration.

    The function of the external equilibrium iteration is:for a known stress and strain state and a set of internal variablesapply a load increment(?ε1,?σ2,?σ3),to find out quasi-elastically the response of(?σ1,?ε2,?ε3,D)by an iterative procedure.

    The following quasi-elastic equations(i.e.elastic relationship for a finite time increment?t)are adopted in the calculation:

    where Eijklare components of the elasticity tensor of damaged material which is expressed in Eqn.(22).The principle of the external equilibrium iteration is illustrated in Fig.2.

    In Fig.2,UMAT is the constitutive module which checks elastoplastic loading state and makes elastic and/or elastoplastic damage calculations.Subroutine CONSTITUERE will be called in the UMAT.The function of subroutine CONSTITUERE is to carry on the constitutive integration and will be introduced in detail in the following sub-section.The elasto-plastic-damage loading stiffnesswhich also known as algorithmic tangential stiffness,will be updated after every iteration,and will be used in the quasi-elastic calculation of?ε2and ?ε3at every first iteration step at each of the loading increments.

    3.2 Iteration procedure for the constitutive validation:internal elasto-plastic damage iteration

    Byusingthe ‘fixed-point’method described in Chaboche and Cailletaud(1996),for a given finite strain ?εij,the only unknown in the elastoplastic damage calculation at local level is the plastic-damage multiplier?λ.

    The solution steps adopted in the procedure of CONSTITUERE subroutine are:

    ·Step 1:Initiate the stress state and state of all the internal variables:

    ·Step 2:Apply strain increment?εij,with ?εij=0 fori/=jobtained from the outer global equilibrium iteration;

    ·Step 3:Calculate?λ0with given initial stress state,strain increment and linearized Eqn.(18);

    ·Step4:With this ?λ0obtained in step3,calculate consequently the following quantities:

    ·Step 5:With Eqn.(24)and(30),calculate iteratively the plastic-damage multiplier with the following equations:

    ·Step 6:Check convergence:if?(?λ)≤Tolerance,cease the iteration and continue to the next load increment;

    ·Otherwise,make

    ·Return to step 2 to carry on the next iterative calculation up to the maximum iteration limit.

    3.3 Numerical examples

    In this sub-section,numerical validations of the constitutive model at local level are carried out with the driver subroutine developed here for 3 kind of typical loading cases,i.e.,(1)uniaxial tension;(2)uniaxial compression;and(3)uniaxial compressions under various hydrostatic stress confinements.

    With reference to the existing literatures(see Lee and Fenves,1998;Ghavamian and Carol,2003;Etse and Willam,1999),the following values of material parameters are adopted in the calculation.They are:

    E=31140MPa,ν=0.2,αF=αQ=0.15,k=2.0MPa,s=1,S=10-16 for tension and 4×10-5 for compression,φ=-1.0,b=88 for tension and 500 for compression,k∞=100MPa for tension and 248MPa for compression.Tolerance=10-20 for internal iteration(i.e.for?(?λ))and 10-4 for external iteration(i.e.for constant lateral stress confinement).

    3.3.1 Uniaxial tension

    The stress-stain behaviour under uniaxial tension of the model is shown in Fig.3.No plastic hardening behaviours is observed in this case.Comparison between the experimental data(Gopalaratnam,Shah,1985)and the numerical results of stress-strain response under uniaxial tension indicates that the prepeak stress-strain behaviour can be predicated very well,while the postpeak behaviour can only be predicted with a reasonable accuracy by the proposed model.Fig.4 shows the numerical results of the response of the lateral strain and volumetric strain.The damage response in Fig.5 shows that damage value asymptotically tends to maximum 1.0 with the increase of strain loading.

    3.3.2 Uniaxial compression

    The stress-stain behaviour and damage evolution response of the proposed model under uniaxial compression are shown in the following Fig.s.Comparison between the experimental data given by Karsan,Jirsa(1969)and the numerical results of stress-strain response under uniaxial compression in Fig.6 indicates that the prepeak behaviour can be predicated very well,and the postpeak behaviour can be predicted with a reasonable accuracy.The numerical results of the response of the lateral strain and volumetric strain shown in the same Fig.6 indicate the dilatancy property of the model:there is a saturation of dilatancy at which the volumetric strain ceases to increase.The corresponding damage evolution behaviour is presented in Fig.10.

    Figure 4:Stress-strain behaviours under uniaxial tension:lateral and volumetric responses.

    Figure 5:Damage evolution under uniaxial tension.

    Figure 6:Stress-strain behaviours under uniaxial compression.

    3.3.3 Compressions with confinement

    The stress-strain behaviour of a model for concrete under hydro-static stress confinement is an important aspect:it indicates the pressure-sensitivity behaviour of the model.In the numerical tests performed here,the procedure of loading is given as:the hydro-static confinement,i.e.σmI,is applied before strain loading in direction 11 being carried on.Fig.7 shows the variation of the stress-strain response caused by the confinement of the stress-stain behaviour and damage evolution response,with the other parameters were kept unchanged:with the increment of the stress confinement,the softening phenomena become weaker and weaker.It seems that the stress-triaxiality dependent plastic hardening phenomena are properly simulated by the model proposed here.

    In Fig.8 and 9,the stress-strain curves under confinement of-10MPa and-30MPa are given respectively,together with the responses of ε22- σ11and εv-σ11.The dilatancy phenomena become weaker with the increase of confinement pressure.The prepeak nonlinearity of the stress-strain curve seems reasonably simulated.

    Figure 7:influence of hydrostatic stress confinement:stress-strain behaviour(σm=0,-10,-30 MPa).

    In order to illustrate the proposed model further in-depth,in Fig.11 and 12,the peak strength envelopes obtained numerically with the proposed model are given out.Because of the different parameter values adopted in the calculation for tension and compression,it is seen in Fig.11 that the shape of tensile strength envelope is quite different from the shape of the compressive strength envelope.The axial points in Fig.11 are obtained analytically by using the Dracker-Prager condition directly,because there is no prepeak nonlinearity for tensile case,which is judged by criterionI1≥0.In Fig.12,the envelope of peak-strengths of compression under very high confinement up to-200MPa is shown in order to show the validity of the model for a wide range of hydrostatic stress confinement.

    Figure 8:Stress-strain behaviours under compression with-10MPa confinement.

    Figure 9:Stress-strain behaviours under compression with-30MPa confinement.

    Figure 10::Damage-strain behaviours under compression with various stress confinements.

    Figure 11::Peak strength envelope in thespace(with confinements up to-30MPa).

    Figure 12::Peak strength envelope in thespace(with confinements up to-200MPa).

    4 Conclusions

    In this article,a plasticity-based isotropic damage model has been proposed with special concerns being given to the modelling of the stress-triaxiality dependent plastic hardening law and corresponding damage evolution.Numerical validations have been made for the proposed model with a driver subroutine developed in this study.The numerical results of stress-strain behaviour seem reasonably accurate for the uniaxial tension and uniaxial compression cases compared with the experimental data of the references.The phenomena of stress-triaxiality-dependent plastic hardening have been simulated.Owing to the highly nonlinearity existing among the model parameters and the experimental phenomena,it seems necessary to choose values of constitutive parameters by some kind of technique of inverse analysis.

    Acknowledgement:Financial support from National Natural Science Foundation of China(contract No.11272116),and support from The Importation and Development of High-Caliber Talent Project of Beijing Municipal Institutions,are gratefully acknowledged.

    Alves,M.;Jones,N.(1999):influence of hydrostatic stress on failure of axisymmetric notched specimens.J.Mech.Phys.Solids,vol.47,pp.643-667.

    Besson,J.(2001):Mecanique et Ingenierie des Materiaux-Essais mecaniques,Eprouvettes axisymetriques entaillees,Hermes(in French).

    Borvik,T.;Hopperstad,O.S.;Berstad,T.(2003):On the influence of stress triaxiality and strain rate on the behaviour of a structural stell.Part II.Numerical study.Eur.J.Mech.A/Solids,vol.22,pp.15-32.

    Chaboche,J.L.(1992):Damage induced anisotropy:on the difficulties associated with the active/passive unilaterial condition.Int.J.Dama.Mech.,vol.1,pp.148-171.

    Chaboche,J.L.;Cailletaud,G.(1996):Integration methods for complex plastic constitutive equations.Comp.Methods.Appl.Mech.Engng.,vol.133,pp.125-155.

    de Borst,J.;Pamin,M.G.;Geers,D.(1979):On coupled gradient-dependent plasticity and damage theories with a view to localization analysis.Eur.J.Mech.A/Solids,vol.18,pp.939-962.

    Dragon,A.;Mroz,Z.(1995):A continuum model for plastic-brittle behaviour of rock and concrete.Int.J.Mech.Sci.,vol.17,pp.121-137.

    Etse,G.;Willam,K.(1999):Failure analysis of elastoviscoplastic material models.ASCEJ.Engng.Mech.,vol.125,no.1,pp.60-69.

    Ghavamian,S.;Carol,I.(2003):Benchmarking of concrete cracking constitutive laws:MECA project.In:Computational Modelling of Concrete Structures.N.Bicanic,R.de Borst,H.Mang,G.Meschke(Eds.),Swets&Zeitinger,Lisse,pp.179-187.

    Gopalaratnam,V.S.;Shah,S.P.(1985):Softening response of plain concrete in direct tension.ACI J.,vol.82,no.3,pp.310-323.

    Hashash,Y.M.A.;Wotring,D.C.;Yao,J.I.C.;Lee,J.S.;Fu,Q.(2002):Visual framework for development and use of constitutive models.Int.J.Numer.Anal.Meth.Geomech.,vol.26,pp.1493-1513.

    Horstemeyer,M.F.;Lathrop,J.;Gokhale,A.M.;Dighe,M.(2000):Modeling stress state dependent damage evolution in a cast Al-Si-Mg aluminium alloy.Theo.Appl.Frac.Mech.,vol.33,pp.31-47.

    Karsan,I.D.;Jirsa,J.O.(1969):Behaviour of concrete under compressive loading.ASCEJ.Engng Mech,vol.95,no.12,pp.2535-2563.

    Lee,J.;Fenves,G.L.(1998):Plastic-damage model for cyclic loading of concrete structures.ASCEJ.Engng Mech.,vol.124,no.8,pp.892-900.

    Lemaitre,J.(1990):A Course on Damage Mechanics,2nd ed.,Berlin:Springer.

    Li,Q.;Zhang,L.;Ansari,F.(2002):Damage constitutive for high strength con-crete in triaxial cyclic compression.Int.J.Solids Struct.,vol.39,no.15,pp.4013-4025.

    Liebe,T.;Willam,K.(2001):Localization properities of generalized Drucker-Prager elastoplasticity.ASCEJ.Engng Mech.,vol.127,no.6,pp.616-619.

    Lubliner,J.;Oliver,J.;Oller,S.;Onate,E.(1989):A plastic damage model for concrete.Int.J.Solids&Struct.,vol.25,no.3,pp.299-326.

    Nechnech,W.;Meftah,F.;Reynouard,J.M.(2002):An elasto-plastic damage model for plain concrete subjected to high temperatures.Engng.Strut.,vol.24,no.5,pp.597-611.

    Saanouni,K.;Forster,C.;Hatira,F.B.(1994):On the anelastic flow with damage.Int.J.Dama.Mech.,vol.3,pp.140-169.

    Seweryn,A.;Mroz,Z.(1998):On the criterion of damage evolution for variable multiaxial stress state.Int.J.Solids&Struct.,vol.35,no.14,pp.1589-1616.

    Sfer,D.;Carol,I.;Gettu,M.R.;Etse,G.(2002):Study of the behavior of concrete under triaxial compression.ASCEJ.Engng Mech,vol.128,no.2,pp.156-163.

    久久久欧美国产精品| 国产精品二区激情视频| 国精品久久久久久国模美| 人妻人人澡人人爽人人| 精品国产国语对白av| 亚洲欧美精品综合一区二区三区| 亚洲国产成人一精品久久久| 蜜桃在线观看..| 亚洲九九香蕉| 成人手机av| 黄色片一级片一级黄色片| 国产成人欧美在线观看 | 九色亚洲精品在线播放| 日本五十路高清| 一二三四社区在线视频社区8| 免费观看人在逋| 91国产中文字幕| 18禁裸乳无遮挡动漫免费视频| 校园人妻丝袜中文字幕| 午夜两性在线视频| 老熟女久久久| 国产精品久久久人人做人人爽| 老汉色av国产亚洲站长工具| 嫁个100分男人电影在线观看 | 久久天堂一区二区三区四区| 国产女主播在线喷水免费视频网站| bbb黄色大片| 美女扒开内裤让男人捅视频| 美国免费a级毛片| 热re99久久精品国产66热6| 精品人妻在线不人妻| 夫妻性生交免费视频一级片| 嫁个100分男人电影在线观看 | 黄色一级大片看看| 成年人黄色毛片网站| 高清av免费在线| 久久青草综合色| 无限看片的www在线观看| 在线亚洲精品国产二区图片欧美| 午夜免费男女啪啪视频观看| 亚洲av日韩在线播放| 国产精品秋霞免费鲁丝片| 国产一区亚洲一区在线观看| 一本综合久久免费| 成人国产一区最新在线观看 | 精品卡一卡二卡四卡免费| 建设人人有责人人尽责人人享有的| 久久狼人影院| 男女之事视频高清在线观看 | 少妇 在线观看| 十八禁高潮呻吟视频| 国产在线免费精品| 麻豆国产av国片精品| 国产高清videossex| av不卡在线播放| 成人国产一区最新在线观看 | 99国产精品99久久久久| 美女视频免费永久观看网站| 久久久国产欧美日韩av| 亚洲人成77777在线视频| 久久精品亚洲av国产电影网| 中国国产av一级| 亚洲精品一卡2卡三卡4卡5卡 | h视频一区二区三区| 免费高清在线观看日韩| 国产极品粉嫩免费观看在线| 国产精品一区二区免费欧美 | 在线观看一区二区三区激情| 老司机影院毛片| 人人妻人人澡人人看| 国产精品一区二区免费欧美 | 一二三四社区在线视频社区8| 国产精品偷伦视频观看了| 伦理电影免费视频| 麻豆乱淫一区二区| 国产一卡二卡三卡精品| 亚洲精品久久久久久婷婷小说| 国产亚洲午夜精品一区二区久久| 黄色视频在线播放观看不卡| 一区福利在线观看| av网站免费在线观看视频| 日韩av免费高清视频| 精品久久久精品久久久| tube8黄色片| 欧美精品人与动牲交sv欧美| 日本午夜av视频| 国产人伦9x9x在线观看| 国产精品国产三级国产专区5o| videos熟女内射| 波野结衣二区三区在线| 一级毛片 在线播放| 99久久综合免费| 女人高潮潮喷娇喘18禁视频| 亚洲九九香蕉| 啦啦啦在线观看免费高清www| 丝袜美足系列| 国产爽快片一区二区三区| 五月开心婷婷网| 18禁黄网站禁片午夜丰满| 国产精品一区二区免费欧美 | a级片在线免费高清观看视频| 又大又爽又粗| 国产高清国产精品国产三级| 国产日韩欧美视频二区| 欧美人与善性xxx| 欧美精品一区二区免费开放| 亚洲成国产人片在线观看| 日韩免费高清中文字幕av| 十八禁高潮呻吟视频| 少妇裸体淫交视频免费看高清 | 午夜福利在线免费观看网站| 操美女的视频在线观看| 我要看黄色一级片免费的| 亚洲第一av免费看| 伊人亚洲综合成人网| 男女边吃奶边做爰视频| 天堂俺去俺来也www色官网| 国产伦理片在线播放av一区| 久9热在线精品视频| 久久 成人 亚洲| 18禁观看日本| 最近中文字幕2019免费版| 首页视频小说图片口味搜索 | 如日韩欧美国产精品一区二区三区| 精品一区二区三区av网在线观看 | 啦啦啦视频在线资源免费观看| 狠狠精品人妻久久久久久综合| 成人免费观看视频高清| 一级毛片 在线播放| 五月天丁香电影| 巨乳人妻的诱惑在线观看| 纵有疾风起免费观看全集完整版| 国产视频首页在线观看| 亚洲国产成人一精品久久久| 叶爱在线成人免费视频播放| 国产一区亚洲一区在线观看| 久久精品亚洲熟妇少妇任你| 欧美成人精品欧美一级黄| 成年人免费黄色播放视频| 亚洲九九香蕉| 可以免费在线观看a视频的电影网站| 一级毛片我不卡| 亚洲av在线观看美女高潮| 久久中文字幕一级| 国产精品亚洲av一区麻豆| 国语对白做爰xxxⅹ性视频网站| 丝袜喷水一区| 麻豆av在线久日| 黄色怎么调成土黄色| 老熟女久久久| 久久天躁狠狠躁夜夜2o2o | 你懂的网址亚洲精品在线观看| 亚洲国产中文字幕在线视频| 一区二区三区激情视频| 色94色欧美一区二区| 爱豆传媒免费全集在线观看| 一边摸一边做爽爽视频免费| 亚洲av日韩精品久久久久久密 | 久久精品国产a三级三级三级| 国产精品av久久久久免费| 首页视频小说图片口味搜索 | 日本wwww免费看| 国产成人免费无遮挡视频| 亚洲精品国产av蜜桃| 国产免费现黄频在线看| 丝袜人妻中文字幕| 少妇人妻久久综合中文| 久久鲁丝午夜福利片| 国产精品久久久av美女十八| 你懂的网址亚洲精品在线观看| 亚洲伊人久久精品综合| 99热国产这里只有精品6| 亚洲国产精品一区三区| 国产精品熟女久久久久浪| 午夜精品国产一区二区电影| 国产精品免费视频内射| 久久精品亚洲熟妇少妇任你| 亚洲成人免费电影在线观看 | 日韩制服骚丝袜av| 精品熟女少妇八av免费久了| 咕卡用的链子| 波多野结衣av一区二区av| 亚洲精品美女久久久久99蜜臀 | 久久精品亚洲熟妇少妇任你| 亚洲国产精品成人久久小说| 国产精品熟女久久久久浪| 好男人电影高清在线观看| 看十八女毛片水多多多| 欧美人与性动交α欧美精品济南到| 国产成人啪精品午夜网站| 高清欧美精品videossex| 国产在线一区二区三区精| 久久鲁丝午夜福利片| 成人黄色视频免费在线看| 自拍欧美九色日韩亚洲蝌蚪91| 日韩 亚洲 欧美在线| 婷婷成人精品国产| 亚洲少妇的诱惑av| 一个人免费看片子| 久久人妻熟女aⅴ| 一级,二级,三级黄色视频| 如日韩欧美国产精品一区二区三区| 亚洲精品av麻豆狂野| 亚洲专区国产一区二区| 国产深夜福利视频在线观看| 99精国产麻豆久久婷婷| 18禁裸乳无遮挡动漫免费视频| 欧美人与性动交α欧美软件| 考比视频在线观看| 亚洲激情五月婷婷啪啪| 首页视频小说图片口味搜索 | 两个人免费观看高清视频| a级毛片在线看网站| 黑人欧美特级aaaaaa片| 韩国高清视频一区二区三区| 久久毛片免费看一区二区三区| 婷婷色麻豆天堂久久| 狂野欧美激情性xxxx| 王馨瑶露胸无遮挡在线观看| 国产在线一区二区三区精| av有码第一页| 国产麻豆69| 啦啦啦在线免费观看视频4| 欧美成人精品欧美一级黄| 亚洲国产日韩一区二区| 日本色播在线视频| 在线观看免费午夜福利视频| 又黄又粗又硬又大视频| 涩涩av久久男人的天堂| 女性生殖器流出的白浆| 国产一区二区三区av在线| 欧美少妇被猛烈插入视频| 777久久人妻少妇嫩草av网站| 久久天堂一区二区三区四区| 国产精品成人在线| 久久 成人 亚洲| 日本五十路高清| 一级片免费观看大全| 中文字幕人妻熟女乱码| 首页视频小说图片口味搜索 | 男女免费视频国产| 18禁裸乳无遮挡动漫免费视频| 亚洲国产欧美网| 亚洲五月色婷婷综合| 亚洲人成网站在线观看播放| 日韩av在线免费看完整版不卡| 亚洲美女黄色视频免费看| 啦啦啦在线观看免费高清www| 丝袜美足系列| 大片免费播放器 马上看| 美女视频免费永久观看网站| 天天添夜夜摸| e午夜精品久久久久久久| 丰满少妇做爰视频| 999久久久国产精品视频| www.999成人在线观看| 两性夫妻黄色片| 久久综合国产亚洲精品| 性色av一级| 久久久久精品人妻al黑| 中文字幕另类日韩欧美亚洲嫩草| e午夜精品久久久久久久| 99九九在线精品视频| 巨乳人妻的诱惑在线观看| 久久久久久久久久久久大奶| 久久久久久亚洲精品国产蜜桃av| 2021少妇久久久久久久久久久| 天天影视国产精品| 日韩大码丰满熟妇| 国精品久久久久久国模美| 丝袜喷水一区| 日韩av在线免费看完整版不卡| 亚洲国产精品一区三区| 欧美黑人精品巨大| 亚洲成国产人片在线观看| 亚洲专区中文字幕在线| 国产精品偷伦视频观看了| a级毛片黄视频| 99精国产麻豆久久婷婷| 国产成人a∨麻豆精品| 国产一卡二卡三卡精品| 国产成人啪精品午夜网站| 国产野战对白在线观看| 国产极品粉嫩免费观看在线| 美女视频免费永久观看网站| 十八禁人妻一区二区| 国产精品熟女久久久久浪| 午夜福利免费观看在线| 亚洲精品久久午夜乱码| 亚洲精品一二三| 熟女少妇亚洲综合色aaa.| 91成人精品电影| bbb黄色大片| 亚洲精品国产区一区二| 国产精品国产三级专区第一集| 亚洲一区中文字幕在线| 国产成人精品久久久久久| 午夜日韩欧美国产| 国产欧美亚洲国产| 黄片播放在线免费| 欧美激情 高清一区二区三区| 免费久久久久久久精品成人欧美视频| 搡老岳熟女国产| 操美女的视频在线观看| 久久精品国产a三级三级三级| 日本午夜av视频| 久久久精品区二区三区| 久久99精品国语久久久| 97精品久久久久久久久久精品| 高清黄色对白视频在线免费看| 人妻人人澡人人爽人人| 大陆偷拍与自拍| 真人做人爱边吃奶动态| 亚洲中文av在线| 久久综合国产亚洲精品| 国产伦理片在线播放av一区| 成人18禁高潮啪啪吃奶动态图| 久热这里只有精品99| 一级片'在线观看视频| 一个人免费看片子| 一本色道久久久久久精品综合| 好男人电影高清在线观看| 日本午夜av视频| 热re99久久精品国产66热6| 婷婷色麻豆天堂久久| 亚洲一区中文字幕在线| 国产女主播在线喷水免费视频网站| 一区二区三区乱码不卡18| 久久精品人人爽人人爽视色| 高清不卡的av网站| 一二三四社区在线视频社区8| 欧美精品av麻豆av| 精品视频人人做人人爽| 色综合欧美亚洲国产小说| 国产精品麻豆人妻色哟哟久久| 久久久精品国产亚洲av高清涩受| 嫩草影视91久久| 日韩伦理黄色片| 国产一级毛片在线| 香蕉国产在线看| 久久久精品区二区三区| 如日韩欧美国产精品一区二区三区| 国产视频一区二区在线看| 欧美精品人与动牲交sv欧美| 九色亚洲精品在线播放| 中国美女看黄片| 亚洲欧美一区二区三区国产| 美女大奶头黄色视频| 久久精品亚洲熟妇少妇任你| 久久99一区二区三区| 亚洲精品国产av成人精品| 99国产综合亚洲精品| 美女福利国产在线| 在线 av 中文字幕| 亚洲欧美一区二区三区黑人| www日本在线高清视频| 一级毛片黄色毛片免费观看视频| 中文字幕av电影在线播放| 亚洲男人天堂网一区| 久久ye,这里只有精品| 国产主播在线观看一区二区 | 尾随美女入室| 校园人妻丝袜中文字幕| 美女高潮到喷水免费观看| 丁香六月欧美| 久久国产精品大桥未久av| 好男人视频免费观看在线| 午夜福利在线免费观看网站| 真人做人爱边吃奶动态| 国产av精品麻豆| 99九九在线精品视频| 黑丝袜美女国产一区| 亚洲成人手机| 免费观看人在逋| 欧美人与性动交α欧美软件| 交换朋友夫妻互换小说| 午夜激情av网站| 一级,二级,三级黄色视频| 又紧又爽又黄一区二区| 亚洲人成电影观看| 国产无遮挡羞羞视频在线观看| 如日韩欧美国产精品一区二区三区| 亚洲精品中文字幕在线视频| 又大又黄又爽视频免费| 99久久人妻综合| 免费不卡黄色视频| 波多野结衣av一区二区av| xxx大片免费视频| 国产在线观看jvid| 2018国产大陆天天弄谢| 久久久精品免费免费高清| 亚洲精品国产色婷婷电影| 亚洲人成网站在线观看播放| 欧美日韩视频高清一区二区三区二| 一二三四社区在线视频社区8| 国产99久久九九免费精品| 国产欧美日韩精品亚洲av| 亚洲情色 制服丝袜| 亚洲av美国av| 美女福利国产在线| 国产伦人伦偷精品视频| 欧美日韩av久久| 婷婷色麻豆天堂久久| 久久精品久久久久久久性| 欧美亚洲 丝袜 人妻 在线| 热re99久久精品国产66热6| 久9热在线精品视频| 妹子高潮喷水视频| 18禁黄网站禁片午夜丰满| 久久精品国产a三级三级三级| 桃花免费在线播放| 国产免费又黄又爽又色| www.熟女人妻精品国产| 99国产精品免费福利视频| 国产成人免费无遮挡视频| 国产高清不卡午夜福利| 99国产精品一区二区三区| 精品福利永久在线观看| 99热全是精品| 日本色播在线视频| 新久久久久国产一级毛片| 精品欧美一区二区三区在线| 另类亚洲欧美激情| 国产99久久九九免费精品| 色94色欧美一区二区| 国产在视频线精品| 亚洲黑人精品在线| 亚洲av综合色区一区| 最黄视频免费看| 黑人巨大精品欧美一区二区蜜桃| 狂野欧美激情性xxxx| 一区二区日韩欧美中文字幕| 校园人妻丝袜中文字幕| 国产av精品麻豆| 亚洲精品日本国产第一区| 美女大奶头黄色视频| 日韩中文字幕欧美一区二区 | 日韩视频在线欧美| 国产片内射在线| 久久精品国产亚洲av涩爱| 中文字幕av电影在线播放| 99国产综合亚洲精品| 美女国产高潮福利片在线看| 日韩av在线免费看完整版不卡| 婷婷色av中文字幕| 老司机午夜十八禁免费视频| 好男人视频免费观看在线| 国产精品av久久久久免费| 在线 av 中文字幕| 中文欧美无线码| 亚洲国产成人一精品久久久| 一区二区av电影网| 午夜福利视频在线观看免费| 日本猛色少妇xxxxx猛交久久| 亚洲第一青青草原| 久久 成人 亚洲| 你懂的网址亚洲精品在线观看| 午夜激情av网站| 国产一区二区三区av在线| 久久精品国产a三级三级三级| 久久久久国产一级毛片高清牌| 亚洲精品久久成人aⅴ小说| 国产一区二区 视频在线| 男女床上黄色一级片免费看| 啦啦啦视频在线资源免费观看| 精品国产乱码久久久久久男人| 亚洲国产精品成人久久小说| 午夜av观看不卡| www.自偷自拍.com| 日韩av免费高清视频| 亚洲男人天堂网一区| 丝袜美足系列| 伊人亚洲综合成人网| 婷婷成人精品国产| 国产成人欧美在线观看 | 男男h啪啪无遮挡| 亚洲七黄色美女视频| 一级黄色大片毛片| 国产国语露脸激情在线看| 亚洲成人免费av在线播放| 亚洲国产中文字幕在线视频| 欧美日本中文国产一区发布| 日韩免费高清中文字幕av| 1024视频免费在线观看| 久久人人97超碰香蕉20202| 91麻豆av在线| 久久精品国产亚洲av涩爱| 一本久久精品| 免费高清在线观看视频在线观看| 久久精品国产a三级三级三级| 美女扒开内裤让男人捅视频| 在线天堂中文资源库| 国产精品久久久久成人av| 亚洲精品久久久久久婷婷小说| 成年av动漫网址| av又黄又爽大尺度在线免费看| 尾随美女入室| 国产在视频线精品| 大香蕉久久成人网| 亚洲国产精品国产精品| 久久久久精品国产欧美久久久 | 国产成人精品久久久久久| 亚洲中文字幕日韩| 亚洲免费av在线视频| 两个人免费观看高清视频| 丁香六月欧美| 国产精品久久久久久人妻精品电影 | 一级毛片黄色毛片免费观看视频| 秋霞在线观看毛片| 色婷婷av一区二区三区视频| 午夜福利一区二区在线看| 国产成人免费无遮挡视频| 国产成人精品久久二区二区91| 蜜桃国产av成人99| 一本色道久久久久久精品综合| 亚洲,欧美精品.| 天天躁日日躁夜夜躁夜夜| 这个男人来自地球电影免费观看| 亚洲国产精品国产精品| 搡老乐熟女国产| 色网站视频免费| 亚洲专区国产一区二区| 亚洲国产av影院在线观看| 少妇被粗大的猛进出69影院| 王馨瑶露胸无遮挡在线观看| 国产黄色免费在线视频| 国产在线一区二区三区精| 精品一区在线观看国产| 成人亚洲欧美一区二区av| 亚洲精品第二区| 亚洲伊人久久精品综合| 熟女av电影| 精品久久久精品久久久| 国产黄频视频在线观看| 亚洲国产毛片av蜜桃av| 日本av手机在线免费观看| 男女免费视频国产| 欧美成人精品欧美一级黄| 大片电影免费在线观看免费| 亚洲中文av在线| 日韩 亚洲 欧美在线| 久久这里只有精品19| 亚洲视频免费观看视频| 午夜福利影视在线免费观看| 香蕉国产在线看| 国产免费又黄又爽又色| 丁香六月欧美| 麻豆av在线久日| 日本五十路高清| 久久热在线av| 久久精品国产亚洲av高清一级| 欧美成人精品欧美一级黄| 免费久久久久久久精品成人欧美视频| 性高湖久久久久久久久免费观看| 老司机在亚洲福利影院| 亚洲国产av新网站| 国产一卡二卡三卡精品| 高清欧美精品videossex| 男人操女人黄网站| 一区福利在线观看| 王馨瑶露胸无遮挡在线观看| 免费人妻精品一区二区三区视频| 国产一区有黄有色的免费视频| 亚洲精品久久午夜乱码| 亚洲av欧美aⅴ国产| 777米奇影视久久| 大香蕉久久网| 777久久人妻少妇嫩草av网站| 国产精品秋霞免费鲁丝片| 精品一品国产午夜福利视频| 99久久综合免费| 久久99精品国语久久久| 国产又爽黄色视频| 亚洲色图综合在线观看| 国产精品久久久久久人妻精品电影 | 91精品国产国语对白视频| 中国美女看黄片| 午夜福利视频在线观看免费| 国产日韩一区二区三区精品不卡| 亚洲欧美精品自产自拍| 天天躁夜夜躁狠狠躁躁| 久久ye,这里只有精品| 国产亚洲精品久久久久5区| 国产精品久久久久久精品古装| 国产精品人妻久久久影院| 大香蕉久久网| 麻豆乱淫一区二区| 精品久久蜜臀av无| 亚洲,欧美精品.| 在线 av 中文字幕| 国产精品秋霞免费鲁丝片| 久久av网站| 手机成人av网站| 国产一区二区在线观看av| 亚洲成人国产一区在线观看 | 欧美精品一区二区免费开放| 日韩电影二区| 亚洲国产最新在线播放| 久久精品亚洲av国产电影网| 亚洲国产看品久久| av国产久精品久网站免费入址| 香蕉国产在线看| 成人午夜精彩视频在线观看| 婷婷色综合www| 国产极品粉嫩免费观看在线| 国产一卡二卡三卡精品| 热99国产精品久久久久久7| 精品熟女少妇八av免费久了| 91麻豆精品激情在线观看国产 | 男人添女人高潮全过程视频| 色播在线永久视频| 亚洲五月婷婷丁香| av欧美777| 最近手机中文字幕大全| 免费在线观看黄色视频的|