• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Wave Propagation in Functionally Graded Piezoelectric-piezomagnetic Rectangular Rings

    2014-04-14 01:56:22YuchunDuanXiaomingZhangYuqingWangandJiangongYu
    Computers Materials&Continua 2014年15期

    Yuchun DuanXiaoming ZhangYuqing Wang and Jiangong Yu

    1 Introduction

    With the increasing usage in various applications including sensors,actuators and storage devices piezoelectric-piezomagnetic composites(PPC)have received considerable research effort in the past ten years[Achenbach(2000);Sladek,Sladek,Solek and Atluri(2008);Bishay,Sladek,Sladek and Atluri(2012)].For the purpose of design and optimization of PPC transducers,wave propagation in various PPC attracted many researchers.

    Cao[Cao,Shi and Jin(2012)]investigated Lamb waves propagating in the functionally graded piezoelectric-piezomagnetic material plate by employing the power series technique.Wei[Wei and Su(2006)]studied the axisymmetric flexural wave in PPC cylinders by using ‘bar model’.By virture of propagator matrix and state-vectorapproaches,Chen[Chen,Pan and Chen(2007)]presented an analyticaltreatment for the propagation of harmonic waves in PPC multilayered plates.Wu[Wu,Yu and He(2008)]used the orthogonal polynomial approach to investigate the wave propagating characteristics in the non-homogeneous magneto-electro-elastic plates.The polynomial approach was also applied to calculate the guided wave in imhomogeneous magneto-electro-elastic cylindrical plates[Yu and Wu(2009)]and spherical plates[Yu and Ma(2010);Xue,Pan and Zhang(2011)]proposed a simple nonlinear model to investigate the solitary waves in a magneto-electro-elastic circular bar based on the the Jacobi elliptic function expansion method.Using a self-adjoint method,the wave propagation in a magneto-electro-elastic square column was studied by Wei[Wei and Su(2008)].

    Wave propagation in piezoelectric-piezomagnetic periodically layered structures received attentions[Liu,Wei and Fang(2010);Pang,Wang,Liu and Fang(2010);Zhao,Zhong and Pan(2012)]for analyzing the band gaps The penetration depth of the BleusteinGulyaev waves in a functionally graded transversely isotropic electromagneto-elastic half-space was discussed by Li[Li Jin and Qian(2013)].Sun[Sun,Ju,Pan and Li(2011)]and Nie[Nie,Liu,Fang and An(2012)]investigated the effects of the imperfect interface on the SH waves propagating in piezoelectricpiezomagnetic layered structures.The reflection and transmission of plane waves at an imperfectly bonded interface between piezoelectric-piezomagnetic media was discussed by Pang[Pang and Liu(2011)]By using Legendre and Laguerre polynomial approach,Matar[Matar,Gasmi,Zhou,Goueygou and Talbi(2013)]computed propagation constants and mode shapes of elastic waves in layered piezoelectricpiezomagnetic composites.The propagation of SH wave in the layered functionally gradient piezoelectric-piezomagnetic structure was studied by Singh[Singh and Rokne(2013)].

    As a common structure,the ring ultrasonic transducer has been widely used in ocean engineering and medical fields.But few investigations on the wave propagation in ring transducers have been reported.This paper proposed a double orthogonal polynomial series approach to solve the wave propagation problem in a functionally graded piezoelectric-piezomagnetic(FGPP)ring with a rectangular cross section.Two material gradient directions(radial direction and axial direction)are respectively considered.The dispersion curves and the displacement profiles of various FGPP rectangular rings are presented and discussed.The investigating resultscan be used to directthe design and optimization ofthe ring FGPP transducers.In this paper,traction free and open circuit boundary conditions are assumed.

    2 Mathematics and formulation of the problem

    Considering an orthotropic ring with a rectangular cross-section in cylindrical coordinate(rθ,z),as shown in Figure.1.his height inzdirection anddis thickness inrdirection,anda,bdenote the inner and outer radius respectively.The radius to thickness ratio is defined asη=b/(b?a)and the width to height ratio isd/h.Its polarization direction is in therdirection.

    Figure 1:Schematic diagram of a ring with rectangular cross section.

    For the wave propagation considered in this paper,the body forces and electric charges and current densities are assumed to be zero.Thus,the dynamic equation for the ring is governed by

    whereTij,ui,DiandBiare the stress,elastic displacement,electric displacement and magnetic induction components,respectively andρis the density of the material.In this study,quasi-magneto-electro-static assumptioin is made.

    The relationships between the general strain and general displacement components can be expressed as

    whereεij,EiandHiare the strain components,the electric field and the magnetic field;φandψare the electric potential and the magnetic potential components,respectively.

    We introduce the function I(r,z)

    whereCij,eijandqijare the elastic,piezoelectric,and piezomagnetic coefficients respectively;∈ij,gij,andμijare the dielectric,magneto-electric,and magnetic permeability coefficients,respectively.

    In this paper,we consider two different material gradient directions,namely,the radial direction and the axial direction.For FGPP rings that material properties vary in radial direction,we denote them byr-directional FGPP rings.For rings that t material properties vary in axial direction,we denote them bya-directional FGPP rings.For ar-directional FGPP ring,the elastic parameter is dependent onr,and can be fitted into the polynomial series of the radius

    With implicit summation over repeated indices,Cij(r)can be written compactly as

    And other material parameters can be treated in the same way,

    For ana-directional FGPP ring,the material parameters are dependent onzand can be expressed as

    For a free harmonic wave propagating in the circumferential direction of a ring,we assume the displacement,electric potential and the magnetic potential components to be of the form

    whereU(r,z),V(r,z)andW(r,z)represent the amplitude of vibration in ther,θ,zdirections respectively;X(r,z)andY(r,z)represent respectively the amplitudes of electric potential and magnetic potential.kis the magnitude of the wave vector in the propagation direction,andωis the angular frequency.

    Substituting Eqs.(2),(3),(4),(5)/(6)and(7)into Eq.(1),the governing differential equations in terms of the displacement,electric potential and magnetic potential components can be obtained.Here,the case of ther-directional FGPP ring is given:

    where a subscript comma indicates partial derivative.

    To solve the coupled wave equations,U(r,z),V(r,z),W(r,z),X(r,z)andY(r,z)are expanded into products of two Legendre orthogonal polynomial series as

    withPmandPjbeing themth and thejth Legendre polynomial.Theoretically,mandjrun from 0 to∞.However,in practice the summation over the polynomials in Eq.(9)can be truncated at some finite valuesm=Mandj=J,when the effects of higher order terms become negligible.

    Multiplying each equation byQn(r)·Qp(z)·e?jωtwithnandprunning respectively from zero toMand zero toJ,and integrating overzfrom zero tohandrfromatoband taking advantage of the orthonormality of the polynomialsQm(r)andQj(z),Eq.(8)can be reorganized into a form of the system problem:

    Substituting Eq.(12)into Eq.(11d),

    Substituting Eq.(13)into Eq.(12),

    Substituting Eq.(13)and(14)into Eq.(11a),(11b)and(11c),gives:

    3 Numerical results and discussions

    In order to calculate the effective parameters of the FGPP ring,the Voigt-type model is used in this study.For thea-directional FGPP rectangular ring,it can be expressed as

    for ther-directional FGPP rectangular ring

    whereVi(z)/Vi(r)andCidenote the volume fraction of theith material and the corresponding physical property of theith material,respectively,and∑Vi(z)=1/∑Vi(r)=1.So,the properties of the FGPP can be expressed as

    According to Eq.(5)and(6),the gradient profile of the material volume fraction can be expressed as a power series expansion.The coefficients of the power series can be determined using the Mathematica function ‘Fit’.

    Based on the above mathematical formulation,computer programs in terms of the proposed polynomial method have been written using Mathematica to calculate the dispersion curves and the displacement distributions for various FGPP rectangular rings.

    3.1Comparison with the available solution from transfer matrix method

    Because no reference results for the guided waves in FGPP or FG rectangular rings can be found in literature,we consider a homogeneous square steel ring with a very large radius to thickness ratioη=1000 to make a comparison with known results of a straight steel square bar from the semi-analytical finite element method[Hayashi,Song and Rose(2003)].For the steel square bar,CL=5.85 km/s,CT=3.23 km/s andh=d=5.08mm.Here,CLandCTare respectively the longitudinal and the transverse wave velocities.Figure 2 shows the corresponding dispersion curves,where dotted lines are from Hayashi[Hayashi,Song and Rose(2003)]and dashed lines are obtained from the present approach.As can be seen,the results from the polynomial approach agree well with the reference data,which verifies the correctness and the accuracy of the present method.

    3.2Dispersion curves for FGPP rectangular rings

    In this section,we take the Ba2TiO3CoFe2O4FGPP rectangular rings as examples to discuss the wave characteristics.The bottom surface for thea-directional FGPP rectangular ring and the inner surface for ther-directional FGPP rectangular ring are pure Ba2TiO3.The material parameters of the two materials with polarization in the thickness direction are given in Table 1.

    Firstly,we consider four linely FGPP square rings(d/h=1):(a)a-directional FGPP ring withη=10;(b)r-directional FGPP ring withη=10;(c)a-directional FGPP ring withη=2;(d)r-directional FGPP ring withη=2.Their phase velocity dispersion curves are shown in Figure 3.It can be seen that the first two wave modes have no cut-off frequencies.This feature is different from that for an in finite FGPP flat plate,in which the first mode has no cut-off frequencies.In a flat plate,only the thickness direction is a finite dimension,but there are two finite dimensions in a rectangular ring.Furthermore,the radius to thickness ratio has a signi ficant effect on the dispersion curves.With the radius to thickness ratio increasing,the difference between the first mode and the second mode of the FGPP square ring becomes small at the low frequency.The reason is that the ring is more and more close to the square bar with the radius to thickness ratio increasing,and for the square bar,the first two modes is very similar due to the symmetry of the geometry and material distribution.For the FGPP ring with small radius to thickness ratio,the difference between the dispersion curves of thea-directional FGPP ring and the ones of ther-directional FGPP ring is more signi ficant,which results from two reasons:(1)the piezomagnetic effect and piezoelectric effect are different for the FGPP rings with different polarization directions.(2)For the linelyr-directional FGPP ring,the volume fraction of the outside material(CoFe2O4)is higher than that of the inside material(Ba2TiO3),and the difference between the two volume fractions become larger with the radius to thickness ratio decreasing,so that the difference of the strength of the piezomagnetic effect and piezoelectric effect is more notable.

    Figure 2:Phase velocity dispersion curves of the square steel rod;dotted lines:Hayashi’s results,dashed lines:authors’results.

    Table 1: The material properties of the two materials(Cij(109N/m2),∈ij(10?10F/m2),eij(C/m),qij(N/Am),μij(10?6Ns2/C2),ρ(103kg/m3)).

    Figure 3:Phase velocity dispersion curves for the FGPP square rings(black lines,a-directional FGPP ring;red lines,r-directional FGPP ring):(a)η=10,(b)η=2.

    The cross section of the above four FGPP rings is square.Next,two linely FGPP rectangularringswithη=10 are considered:(e)r-directionalFGPP ring withd/h=0.5;(f)a-directional FGPP ring withd/h=2 Figure 4 shows the corresponding phase velocity dispersion curves.We can see that the width to height ratio can also influence the dispersion curves signi ficantly.

    Figure 4:Phase velocity dispersion curves for FGPP rectangular rings:(a)rdirectional FGPP ring with d/h=0.5,(b)a-directional FGPP ring with d/h=2.

    Figure 5:Phase velocity dispersion curves for a-directional FGPP square rings with different radius to thickness ratios:red lines,η=10;green lines,η=5;blue lines,η=3.5;black lines,η=2.

    Figure 6:Phase velocity dispersion curves for a-directional FGPP square rings with different gradient variations with η=10(red lines,linearly gradient variation;blue lines,squarely gradient variation;black lines,cubically gradient variation):(a)mode 1-3;(b)mode 4.

    The above three gradient fields are monotonic.Next,a cosinusoidally FGPP ring and a sinusoidally FGPP ring withη=10 andd/h=1 are considered.The corresponding phase velocity dispersion curves are given in Figure 7.We can see that the dispersion characteristics are different for the two FGPP square rings with different gradient fields.

    3.3Displacement shapes

    In this section,we discuss the wave characteristics through the mechanical displacement profiles.Figures.8 and 9 illustrate the displacement shapes of the second and fifth modes for a linearlya-directional FGPP square ring atkd=180.We can see that most displacements distribute near the bottom edge,namely,the side with more Ba2TiO3.The reason lies in that the body wave speed of Ba2TiO3is lower than that of CoFe2O4.Figures.10 and 11 show the case for a cosinusoidallya-directional FGPP square ring.We can see that that the displacement mostly distribute around the bottom and top sides.That means they mostly distribute aroundz=0 andz=1,where the volume fraction of Ba2TiO3is higher.This phenomenon shows the high frequency wave always propagate on the side with more materials of high wave speed.So,through changing the gradient variation of the FGPP ring,we can to obtain any field distributions that we want.Furthermore,in figures 10 and 11,the displacementwis symmetric and displacementuandvare antisymmetric with respect to thez-axis,which results from the material volume fraction are symmetrically distributed on thez-axis.

    Figure 7:Phase velocity dispersion curves for a-directional FGPP square rings with differentgradientvariationswithη=10(red lines,cosinusoidally gradientvariation;black lines,sinusoidally gradient variation).

    Figure 8:Displacement profiles of the second mode for the linearly a-directional FGPP square ring at kd=180.

    Figure 9:Displacement profiles of the fifth mode for the linearly a-directional FGPP square ring at kd=180.

    Figure 10:Displacement profiles of the second mode for the cosinusoidally adirectional FGPP square ring at kd=180.

    Figure 11:Displacement profiles of the fifth mode for the cosinusoidally adirectional FGPP square ring at kd=180.

    4 Conclusions

    In this paper,wave propagation analysis of a 2-D FGPP rectangular ring is solved by a double orthogonal polynomial series approach.The dispersion curves and displacement distributions of various FGPP rectangular rings are presented and discussed.According to the numerical results,we can draw the following conclusions:(a)Numerical comparison of the dispersion curves with reference solutions shows that the double orthogonal polynomial method is appropriate to solve the guided wave propagation problem in 2-D FGPP structures.

    (b)The radius to thickness ratio and the width to height ratio and the gradient field all have significant influences on the guided wave charateristics.

    (c)High frequency waves propagate predominantly around the side with more material having lower wave speed.

    So,through changing the radius to thickness ratio,the width to height ratio and the gradient variation of the FGPP ring,we can obtain the ring transducers with the dispersion features and field distributions that we want.

    Acknowledgement:The work was supported by the National Natural Science Foundation ofChina(No.11272115)and the ExcellentYouth Foundation ofHe’nan Scientific Committee of China(No.144100510016)and Foundation for Distinguished Young Scholars of Henan Polytechnic University(No.J2013-08)and Research Fund forthe DoctoralProgram ofHenan Polytechnic University(No.B2009-81).

    Achenbach,J.D.(2000):Quantitative nondestructive evaluation.International Journal of Solids and Structures,vol.37,pp.1327.

    Bishay,P.L.;Sladek,J.;Sladek,V.;Atluri,S.N.(2012):Analysis of Functionally Graded Magneto-Electro-Elastic Composites Using Hybrid/Mixed Finite Elements and Node-Wise Material Properties.CmcComputers Materials&Continua,vol.29,no.3,pp.213261

    Cao,X.S.;Shi,J.P.;Jin,F.(2012):Lamb wave propagation in the functionally graded piezoelectric-piezomagnetic material plate.Acta Mechanica,vol.233,no.5,pp.10811091

    Chen,J.Y.;Pan,E.;Chen,H.L.(2007):Wave propagation in magneto-electroelastic multilayered plates.International Journal of Solids and Structures,vol.44,pp.10731085.

    Datta,S.;Hunsinger,B.J.(1978):Analysis of surface waves using orthogonal functions.J.Appl.Phys,vol.9,no.2,pp.75479.

    Hayashi,T.;Song,W.J.;Rose,J.L.(2003):Guided wave dispersion curves for a bar with an arbitrary cross-section,a rod and rail example.Ultrasonics,vol.41,no.3,pp.175-183.

    Li,P.;Jin,F.;Qian,Z.(2013):Propagation of the BleusteinGulyaev waves in a functionally graded transversely isotropic electro-magneto-elastic half-space.European Journal of Mechanics-A/Solids,vol.37,pp.1723.

    Liu,J.;Wei,W.;Fang,D.(2010):Propagation behaviors ofshear horizontal waves in piezoelectric-piezomagnetic periodically layered structures.Acta Mechanica Solida Sinica,vol.23,no.1,pp.77-84.

    Matar,O.B.;Gasmi,N.;Zhou,H.;Goueygou,M.;Talbi,A.(2013):Legendre and Laguerre polynomial approach for modeling of wave propagation in layered magneto-electro-elastic media.The Journal of the Acoustical Society of America,vol.133,no.3,pp.14151424.

    Nie,G.Q.;Liu,J.X.;Fang,X.Q.;An,Z.J.(2012):Shear horizontal(SH)waves propagating in piezoelectricpiezomagnetic bilayer system with an imperfect interface.Acta Mechanica,vol.223,no.9,pp.19992009.

    Pang,Y.;Liu J.X.(2011):Reflection and transmission of plane waves at an imperfectly bonded interface between piezoelectric and piezomagnetic media.European Journal of Mechanics-A/Solids,vol.30,no.5,pp.31740.

    Pang,Y.;Wang,Y.S.;Liu,J.X.;Fang,D.N.(2010):A study of the band structures of elastic wave propagating in piezoelectric/piezomagnetic layered periodic structures.Smart Materials and Structures,vol.19,no.5,pp.055012.

    Singh,B.M.;Rokne,J.(2013):Propagation of SH waves in layered functionally gradient piezoelectric-piezomagnetic structures.Philosophical Magazine,vol.93,no.14,pp.16901700.

    Sladek,J.;Sladek,V.;Solek,P.;Atluri,S.N.(2008):Modeling of intelligent material systems by the MLPG.CmesComputer Modeling in Engineering&Sciences,vol.34,no.3,pp.273-300.

    Sun,W.H.;Ju,G.L.;Pan,J.W.;Li Y.D.(2011):Effects of the imperfect interface and piezoelectric/piezomagnetic stiffening on the SH wave in a multiferroic composite.Ultrasonics,vol.51,no.7,pp.831838.

    Wei,J.;Su,X.Y.(2006):Wave Propagation and Energy Transportation along Cylindrical Piezoelectric Piezomagnetic Material.Acta Scientiarum Naturalium Universitatis Pekinensis,vol.42,pp.310314

    Wei J.P.;Su X.Y.(2008):Steady-state Response of the Wave Propagation in a Magneto-Electro-Elastic Square Column.CmesComputer Modeling in Engineering&Sciences,vol.37,no.1,pp.65-84

    Wu,B.;Yu,J.G.;He,C.F.(2008):Wave propagation in non-homogeneous magneto-electro-elastic plates.Journal of sound and vibration,vol.317,pp.250-264.

    Xue,C.X.;Pan E.;Zhang S.Y.(2011):Solitary waves in a magneto-electroelastic circular bar.Smart Materials and Structures,vol.20,no.10,pp.105010.

    Yu,J.G.;Wu,B.(2009):Circumferential wave in magneto-electro-elastic functionally graded cylindrical curved plates.European Journal of Mechanics A/Solids,vol.28,no.3,pp.560-568

    Yu,J.G.;Ma Q.J.(2010):Wave characteristics in magneto-electro-elastic functionally graded spherical curved plates.Mechanics of Advanced Materials and Structures,vol.17 no.4,pp.287-301.

    Zhao,J.;Zhong,Z.;Pan,Y.(2012):Theoretical study of SH-wave propagation in piezoelectric/piezomagnetic layered periodic structures.The Journal of the Acoustical Society of America,vol.131,no.4,pp.3327-3327.

    Appendix

    The elements of the matrices in Eq.(15)are given by

    色老头精品视频在线观看| 国产探花在线观看一区二区| 亚洲,欧美精品.| 999精品在线视频| 欧美丝袜亚洲另类 | 人妻夜夜爽99麻豆av| 少妇的丰满在线观看| 老司机午夜福利在线观看视频| 成人三级做爰电影| 精品99又大又爽又粗少妇毛片 | 国产亚洲欧美在线一区二区| 露出奶头的视频| 国产精品av久久久久免费| 极品教师在线免费播放| 一个人观看的视频www高清免费观看 | 国产精品综合久久久久久久免费| 夜夜看夜夜爽夜夜摸| av福利片在线观看| 欧美大码av| 非洲黑人性xxxx精品又粗又长| 性色avwww在线观看| 观看美女的网站| 色综合站精品国产| 国产乱人视频| 国产亚洲精品一区二区www| 欧美高清成人免费视频www| 国产一级毛片七仙女欲春2| 两个人的视频大全免费| 天天躁狠狠躁夜夜躁狠狠躁| 国产成人系列免费观看| 美女高潮喷水抽搐中文字幕| 亚洲中文日韩欧美视频| 一级毛片高清免费大全| 在线国产一区二区在线| 免费在线观看日本一区| 欧美国产日韩亚洲一区| 亚洲人与动物交配视频| 国产麻豆成人av免费视频| 黄色片一级片一级黄色片| 欧美3d第一页| 日本三级黄在线观看| 成人一区二区视频在线观看| 亚洲在线观看片| 国产伦精品一区二区三区四那| 91老司机精品| 国产激情久久老熟女| 久久国产精品人妻蜜桃| 久久人妻av系列| 伦理电影免费视频| 国产 一区 欧美 日韩| 怎么达到女性高潮| 无限看片的www在线观看| 亚洲熟女毛片儿| 亚洲乱码一区二区免费版| 两个人的视频大全免费| 人人妻,人人澡人人爽秒播| 12—13女人毛片做爰片一| 成年女人看的毛片在线观看| 亚洲熟女毛片儿| 在线观看66精品国产| 精品福利观看| 欧美日韩瑟瑟在线播放| 又紧又爽又黄一区二区| 变态另类成人亚洲欧美熟女| 日韩欧美精品v在线| 亚洲国产看品久久| 国产99白浆流出| 亚洲专区国产一区二区| 国内精品久久久久精免费| 级片在线观看| 国产精品永久免费网站| 国内久久婷婷六月综合欲色啪| 精品久久久久久久久久久久久| 欧美另类亚洲清纯唯美| 日韩欧美在线二视频| 黄色丝袜av网址大全| 欧美3d第一页| 人妻久久中文字幕网| 亚洲天堂国产精品一区在线| 真实男女啪啪啪动态图| 天堂av国产一区二区熟女人妻| 一本综合久久免费| 黄色日韩在线| ponron亚洲| 九九久久精品国产亚洲av麻豆 | 成人午夜高清在线视频| 天天躁日日操中文字幕| 给我免费播放毛片高清在线观看| 好男人在线观看高清免费视频| 禁无遮挡网站| 免费观看人在逋| 国产精品av久久久久免费| 一夜夜www| 午夜福利视频1000在线观看| aaaaa片日本免费| 亚洲欧美精品综合久久99| 欧美一级a爱片免费观看看| 国产欧美日韩精品一区二区| 少妇的逼水好多| 日日夜夜操网爽| 在线观看舔阴道视频| 无限看片的www在线观看| 手机成人av网站| 老司机深夜福利视频在线观看| 一区二区三区激情视频| 国产不卡一卡二| 日韩三级视频一区二区三区| 91av网站免费观看| 18禁裸乳无遮挡免费网站照片| 欧美成人免费av一区二区三区| 99热这里只有是精品50| 9191精品国产免费久久| 久久国产精品影院| 日韩免费av在线播放| 国产一区在线观看成人免费| 欧美黑人欧美精品刺激| 亚洲七黄色美女视频| 青草久久国产| 免费在线观看亚洲国产| 国产日本99.免费观看| 亚洲欧美精品综合久久99| 国产成人欧美在线观看| 啦啦啦韩国在线观看视频| 国产午夜精品论理片| 女同久久另类99精品国产91| 大型黄色视频在线免费观看| 国产精品综合久久久久久久免费| 女同久久另类99精品国产91| 999久久久国产精品视频| 身体一侧抽搐| 嫩草影视91久久| 在线视频色国产色| 国产成年人精品一区二区| 国产精品九九99| 亚洲欧美激情综合另类| 狂野欧美白嫩少妇大欣赏| 美女 人体艺术 gogo| 一区二区三区国产精品乱码| 国产亚洲精品久久久久久毛片| 99久久精品热视频| 这个男人来自地球电影免费观看| 国产单亲对白刺激| 国产激情偷乱视频一区二区| 欧美日韩综合久久久久久 | 一级毛片高清免费大全| 国产精品亚洲美女久久久| 一进一出抽搐动态| 色噜噜av男人的天堂激情| 久久婷婷人人爽人人干人人爱| 国产精品,欧美在线| 淫秽高清视频在线观看| 亚洲国产精品成人综合色| 亚洲成av人片免费观看| 在线免费观看不下载黄p国产 | 后天国语完整版免费观看| 午夜福利在线观看吧| 日本 欧美在线| 亚洲精华国产精华精| 欧美在线一区亚洲| 亚洲欧美一区二区三区黑人| 极品教师在线免费播放| 国内毛片毛片毛片毛片毛片| 俄罗斯特黄特色一大片| 精品久久久久久久毛片微露脸| 午夜福利免费观看在线| 久久香蕉国产精品| 日本精品一区二区三区蜜桃| 亚洲国产看品久久| 18禁黄网站禁片免费观看直播| 婷婷精品国产亚洲av在线| 色噜噜av男人的天堂激情| 老汉色av国产亚洲站长工具| 观看美女的网站| 久9热在线精品视频| 午夜成年电影在线免费观看| 成人一区二区视频在线观看| 变态另类成人亚洲欧美熟女| 亚洲精品在线观看二区| 男女床上黄色一级片免费看| 国产成人精品无人区| 一进一出抽搐动态| 中文在线观看免费www的网站| 精品久久久久久久久久免费视频| 在线十欧美十亚洲十日本专区| 一区二区三区国产精品乱码| 国产1区2区3区精品| 黄色日韩在线| 亚洲av成人不卡在线观看播放网| 国产视频一区二区在线看| 国产乱人视频| 亚洲中文字幕一区二区三区有码在线看 | 欧美av亚洲av综合av国产av| 婷婷六月久久综合丁香| 久久久久久大精品| 18禁裸乳无遮挡免费网站照片| 色视频www国产| 观看免费一级毛片| 国产精品99久久久久久久久| 国内精品美女久久久久久| 亚洲国产看品久久| 久久久国产欧美日韩av| 欧美午夜高清在线| 亚洲七黄色美女视频| 一级作爱视频免费观看| 国产精品久久电影中文字幕| 免费观看精品视频网站| 国产精品乱码一区二三区的特点| 久久精品91蜜桃| 一级a爱片免费观看的视频| 色综合站精品国产| 欧美成人一区二区免费高清观看 | 亚洲熟女毛片儿| 97人妻精品一区二区三区麻豆| 亚洲国产欧美人成| 国产精品久久久久久人妻精品电影| 国产真实乱freesex| 久久久久精品国产欧美久久久| 香蕉久久夜色| ponron亚洲| 一进一出好大好爽视频| 精品免费久久久久久久清纯| 国产成人一区二区三区免费视频网站| 亚洲av电影不卡..在线观看| 国产伦一二天堂av在线观看| 欧美+亚洲+日韩+国产| 亚洲国产欧洲综合997久久,| 亚洲狠狠婷婷综合久久图片| 国产精品久久视频播放| 成人性生交大片免费视频hd| 亚洲一区高清亚洲精品| 脱女人内裤的视频| 麻豆成人av在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 他把我摸到了高潮在线观看| 一夜夜www| 国产美女午夜福利| 可以在线观看毛片的网站| 久久国产精品人妻蜜桃| 亚洲最大成人中文| 国产乱人视频| 床上黄色一级片| 精品欧美国产一区二区三| 欧美极品一区二区三区四区| 小蜜桃在线观看免费完整版高清| 亚洲成人免费电影在线观看| 午夜福利欧美成人| 男女之事视频高清在线观看| 首页视频小说图片口味搜索| 日日摸夜夜添夜夜添小说| 亚洲 欧美 日韩 在线 免费| 久久婷婷人人爽人人干人人爱| 最近最新免费中文字幕在线| 首页视频小说图片口味搜索| 欧美最黄视频在线播放免费| 国产精品一区二区三区四区免费观看 | 国产精品九九99| 桃红色精品国产亚洲av| 在线播放国产精品三级| 一个人看视频在线观看www免费 | 久久精品人妻少妇| 欧美黑人欧美精品刺激| 俺也久久电影网| 高清在线国产一区| h日本视频在线播放| 巨乳人妻的诱惑在线观看| 偷拍熟女少妇极品色| 国产麻豆成人av免费视频| 九色国产91popny在线| 搞女人的毛片| 日本与韩国留学比较| 亚洲精品国产精品久久久不卡| 十八禁人妻一区二区| 蜜桃久久精品国产亚洲av| 一个人看视频在线观看www免费 | 午夜影院日韩av| 久久久精品欧美日韩精品| av片东京热男人的天堂| 一本精品99久久精品77| 国产精品一区二区三区四区免费观看 | 欧美激情在线99| 可以在线观看的亚洲视频| 国产 一区 欧美 日韩| 成人永久免费在线观看视频| 国产精品香港三级国产av潘金莲| 青草久久国产| 91老司机精品| 国语自产精品视频在线第100页| 一级a爱片免费观看的视频| 午夜福利18| 久久精品国产99精品国产亚洲性色| 中出人妻视频一区二区| 国产精品一区二区精品视频观看| 99精品欧美一区二区三区四区| 最近在线观看免费完整版| 久久久久久久久中文| 精品国产亚洲在线| 国产av不卡久久| 欧美色视频一区免费| 老司机午夜十八禁免费视频| 白带黄色成豆腐渣| 深夜精品福利| 操出白浆在线播放| 好看av亚洲va欧美ⅴa在| 国产一区二区在线观看日韩 | 午夜福利高清视频| 国产一区二区在线av高清观看| 精品无人区乱码1区二区| 国产精品99久久久久久久久| 啦啦啦免费观看视频1| www.www免费av| 天堂影院成人在线观看| 三级国产精品欧美在线观看 | 国产精品野战在线观看| 亚洲av成人av| 怎么达到女性高潮| 一二三四社区在线视频社区8| 国产精品 欧美亚洲| av国产免费在线观看| 99久久精品国产亚洲精品| 国产爱豆传媒在线观看| 精品熟女少妇八av免费久了| ponron亚洲| 一本一本综合久久| 亚洲 欧美 日韩 在线 免费| 青草久久国产| 国内精品美女久久久久久| 这个男人来自地球电影免费观看| 日本成人三级电影网站| 精品久久久久久久末码| av天堂中文字幕网| 一个人免费在线观看电影 | 午夜福利在线在线| 久久久久久大精品| 亚洲男人的天堂狠狠| 日韩中文字幕欧美一区二区| 听说在线观看完整版免费高清| 免费在线观看日本一区| www.999成人在线观看| 久久人妻av系列| 国产精品久久久人人做人人爽| 熟女少妇亚洲综合色aaa.| 国产野战对白在线观看| 国产69精品久久久久777片 | 黑人欧美特级aaaaaa片| 黄色女人牲交| 中文在线观看免费www的网站| 国产主播在线观看一区二区| 国产精品久久电影中文字幕| 九九久久精品国产亚洲av麻豆 | 男女午夜视频在线观看| 国产精品亚洲av一区麻豆| 国产高清视频在线播放一区| 久久久久久久午夜电影| 狂野欧美白嫩少妇大欣赏| 国产av麻豆久久久久久久| 999久久久国产精品视频| 久久中文看片网| 久久久久国内视频| 国产aⅴ精品一区二区三区波| 精品一区二区三区视频在线观看免费| 午夜免费观看网址| 国内精品久久久久久久电影| 免费在线观看日本一区| 日韩人妻高清精品专区| 香蕉丝袜av| 国产av一区在线观看免费| 在线观看66精品国产| 五月玫瑰六月丁香| 午夜激情福利司机影院| 国产午夜精品论理片| 色吧在线观看| 欧美日韩福利视频一区二区| 日韩精品中文字幕看吧| 国产欧美日韩一区二区三| 国产成人一区二区三区免费视频网站| 欧美日韩精品网址| 久久久久久久午夜电影| 免费看日本二区| 全区人妻精品视频| 日韩欧美三级三区| 精品无人区乱码1区二区| 麻豆成人av在线观看| 亚洲熟妇中文字幕五十中出| 久久久久国内视频| 老司机深夜福利视频在线观看| 岛国视频午夜一区免费看| bbb黄色大片| 亚洲欧美日韩东京热| 午夜福利在线在线| 午夜福利免费观看在线| 婷婷丁香在线五月| 午夜福利在线观看免费完整高清在 | 国产精品一区二区三区四区久久| 免费在线观看亚洲国产| h日本视频在线播放| 天堂√8在线中文| 色综合欧美亚洲国产小说| 悠悠久久av| 久久久久久久精品吃奶| 看免费av毛片| 亚洲精品一区av在线观看| 俺也久久电影网| 99精品在免费线老司机午夜| 国产成人系列免费观看| 成人av在线播放网站| 老熟妇仑乱视频hdxx| 亚洲人成电影免费在线| 免费看a级黄色片| 最新在线观看一区二区三区| 国产真人三级小视频在线观看| 精品99又大又爽又粗少妇毛片 | 免费在线观看日本一区| 露出奶头的视频| 欧美乱码精品一区二区三区| 成人午夜高清在线视频| 一二三四在线观看免费中文在| 18禁裸乳无遮挡免费网站照片| 麻豆成人av在线观看| 禁无遮挡网站| 91字幕亚洲| 99久久精品国产亚洲精品| 亚洲国产精品sss在线观看| 色av中文字幕| 美女黄网站色视频| 国产1区2区3区精品| 亚洲性夜色夜夜综合| 不卡av一区二区三区| 亚洲av熟女| 三级男女做爰猛烈吃奶摸视频| 18禁裸乳无遮挡免费网站照片| 欧美日韩黄片免| 亚洲国产色片| 午夜影院日韩av| 久久草成人影院| 午夜a级毛片| 久久午夜综合久久蜜桃| 九色成人免费人妻av| 男女之事视频高清在线观看| 岛国在线观看网站| 黄片大片在线免费观看| 男人舔女人的私密视频| 国产成人欧美在线观看| 久久这里只有精品中国| 国产精品一区二区免费欧美| 久久久国产精品麻豆| 国产精品99久久久久久久久| 国产精品久久视频播放| 1000部很黄的大片| 美女高潮的动态| 亚洲片人在线观看| 久久久久久久久免费视频了| 九九热线精品视视频播放| 国产免费男女视频| 亚洲精品久久国产高清桃花| 精品电影一区二区在线| 欧美丝袜亚洲另类 | 观看免费一级毛片| 亚洲av日韩精品久久久久久密| 国产成+人综合+亚洲专区| 99久久无色码亚洲精品果冻| 日本黄大片高清| 国产麻豆成人av免费视频| 国产三级在线视频| 日韩欧美在线二视频| 深夜精品福利| 国产亚洲精品av在线| 日本a在线网址| 一级黄色大片毛片| 国产淫片久久久久久久久 | 亚洲一区二区三区不卡视频| 日本 欧美在线| 999精品在线视频| 欧美色欧美亚洲另类二区| 国产精品香港三级国产av潘金莲| 久久人妻av系列| 色综合站精品国产| 岛国在线观看网站| 成年人黄色毛片网站| 国产乱人视频| 一卡2卡三卡四卡精品乱码亚洲| 他把我摸到了高潮在线观看| 免费一级毛片在线播放高清视频| 最近最新中文字幕大全免费视频| 成人特级黄色片久久久久久久| bbb黄色大片| 巨乳人妻的诱惑在线观看| 国产综合懂色| 久久久精品欧美日韩精品| 白带黄色成豆腐渣| 久9热在线精品视频| 色在线成人网| 久久午夜综合久久蜜桃| a级毛片a级免费在线| 国内精品一区二区在线观看| 给我免费播放毛片高清在线观看| 999久久久国产精品视频| 亚洲欧美精品综合久久99| 1024香蕉在线观看| 日韩欧美在线乱码| a级毛片在线看网站| 老熟妇仑乱视频hdxx| 精品久久蜜臀av无| 久久久久久久久久黄片| 国产午夜精品论理片| 欧美xxxx黑人xx丫x性爽| 欧美一区二区精品小视频在线| 精品久久蜜臀av无| 五月玫瑰六月丁香| 一个人看视频在线观看www免费 | xxx96com| 亚洲av电影在线进入| 国产精品一区二区三区四区免费观看 | 久9热在线精品视频| 久久国产乱子伦精品免费另类| 国产高清videossex| 久久久国产精品麻豆| 欧美日韩精品网址| 国产美女午夜福利| 最新中文字幕久久久久 | 久久天堂一区二区三区四区| 在线国产一区二区在线| 色精品久久人妻99蜜桃| 成人国产一区最新在线观看| 亚洲国产中文字幕在线视频| 麻豆国产97在线/欧美| 婷婷亚洲欧美| 成人性生交大片免费视频hd| 男女下面进入的视频免费午夜| 一级毛片女人18水好多| 狠狠狠狠99中文字幕| 身体一侧抽搐| 精品午夜福利视频在线观看一区| 亚洲精品美女久久久久99蜜臀| 老司机深夜福利视频在线观看| 国产亚洲精品久久久com| 国产av在哪里看| 中文字幕最新亚洲高清| 国产精品精品国产色婷婷| 国产视频一区二区在线看| aaaaa片日本免费| 婷婷六月久久综合丁香| 看黄色毛片网站| 一个人观看的视频www高清免费观看 | 老汉色av国产亚洲站长工具| 国产精品乱码一区二三区的特点| 久9热在线精品视频| 国产一区在线观看成人免费| 精品久久久久久久久久免费视频| 国产伦人伦偷精品视频| 我的老师免费观看完整版| 久久久久国产一级毛片高清牌| 亚洲av成人av| 曰老女人黄片| 黄色片一级片一级黄色片| 日本 av在线| 真人做人爱边吃奶动态| 午夜福利在线观看吧| 国产精品久久久久久亚洲av鲁大| 级片在线观看| 免费观看人在逋| 国内精品美女久久久久久| 91麻豆av在线| 国产av不卡久久| 亚洲色图av天堂| 非洲黑人性xxxx精品又粗又长| 精品国产美女av久久久久小说| 啦啦啦观看免费观看视频高清| 成人特级av手机在线观看| 国产成+人综合+亚洲专区| 精品欧美国产一区二区三| 亚洲国产精品sss在线观看| 99久久成人亚洲精品观看| 国产精品一区二区三区四区久久| 中文字幕高清在线视频| 日本 欧美在线| 日本五十路高清| 真实男女啪啪啪动态图| 国产精品av久久久久免费| 亚洲中文字幕日韩| 少妇的丰满在线观看| 亚洲熟妇熟女久久| 国产精品一区二区三区四区免费观看 | 久久久国产成人精品二区| 亚洲精品色激情综合| 亚洲va日本ⅴa欧美va伊人久久| 精品熟女少妇八av免费久了| 国产精品久久久人人做人人爽| 欧美高清成人免费视频www| 男人的好看免费观看在线视频| 18禁黄网站禁片免费观看直播| 啦啦啦韩国在线观看视频| 一个人观看的视频www高清免费观看 | 久久久水蜜桃国产精品网| 欧美激情久久久久久爽电影| 黄色片一级片一级黄色片| 免费电影在线观看免费观看| 天天一区二区日本电影三级| 亚洲成人久久爱视频| 国产91精品成人一区二区三区| 香蕉久久夜色| av女优亚洲男人天堂 | 啦啦啦观看免费观看视频高清| 99久久无色码亚洲精品果冻| 日本五十路高清| 日韩大尺度精品在线看网址| 亚洲五月天丁香| 日韩欧美精品v在线| 日日摸夜夜添夜夜添小说| 丝袜人妻中文字幕| 美女免费视频网站| 中文字幕av在线有码专区| 青草久久国产| 日本 av在线| 国产伦一二天堂av在线观看| 国产真实乱freesex|