• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modeling of Hydro-Viscoelastic State of Deformable and Saturated Product During Convective Drying

    2014-04-14 01:56:21LamloumiLHassiniGLecomteNanaMElcafsiandSmith
    Computers Materials&Continua 2014年15期

    R.LamloumiL.HassiniG.L.Lecomte-NanaM.A.Elcafsi and D.Smith

    Nomenclature

    Cpspecific heat capacity Jkg?1K?1

    D hydric diffusivity m2s?1

    E(t) relaxation function MPa

    G(t) Shear modulus MPa

    K(t) Bulk modulus MPa

    RH air relative humidity %

    t time s

    T temperature ?C

    v velocity ms?1

    V volume m3

    X water content(db) kgkg?1

    Greek letters

    αlinear hydro-contraction coefficient(wb)

    βvolumetric hydro-contraction coefficient(db)

    δijKronecker’s delta

    εijtotal strain tensor

    λthermal conductivity Wm?1K?1

    νPoisson’s ratio

    ρdensity kgm3

    σijstress tensor Pa

    Subscripts

    0 initial

    a air

    l liquid

    s solid

    1 Introduction

    The speeding up of industrial drying processes by applying enhanced operating conditions is often limited by the occurrence of cracks in the skin of the product.The cracks may lead to a global failure(ceramics)or simply alter the visual aspect of the product(pasta,vegetables).In order to avoid these defects,the very complex influence of the drying conditions on the internal stresses and deformations of a product during the process must be assessed.

    In recent years different mechanical models have been proposed to describe the stresses within the product during the drying.Several drying models consider an elastic behavior[Jomaa and Puiggali(1991);Arrieche,Corrêa and Sartori(2009)].

    However,the elastic theory is not acceptable for products witch possess the capacity to store and dissipate mechanical energy.The viscoelastic theory is more realistic to describe the history effect and foresee correctly the deformation in many wet products subjected to drying,like:clays,ceramics and food products.The Maxwell constitutive equations were commonly used to express viscoelastic properties[Jomaa and Puiggali(1991);Arrieche,Corrêa and Sartori(2009)][Solomon and Jindal(2007);Qian,Dong,Wang,?zkan and Mao(2010)].

    This work is a contribution to the large task of the modeling of mechanical phenomena occurring inside deformable product during drying processes.Its objective was to propose a comprehensive and rigorous 2-D mathematical description of the hydro-thermo-mechanical state of a deformable and water saturated product during convective drying.The model was implemented using the COMSOL Multiphysics finite-elements solver.The coupled heat and mass transfer equations,mechanical equilibrium equations along with the generalized Maxwell’s rheological behavior law were solved simultaneously on a variable geometrical domain.In that way and unlike in some other works on this subject,the actual deformation of the sample respecting the global equilibrium and boundary constraints,and not an arbitrary one,was applied to solve the heat and mass balances.A long parallelepipedical sample of clay mixture with a square section was chosen as the study case.In order to implement and validate the model,the hydro-viscoelastic properties and the drying kinetics of the product were measured on the facilities of the LETTM laboratory.Simulations of the temporal evolution of mechanical stress at different specific points of the sample were explored and interpreted in terms of the cracking risk of the product.A comparison between the results obtained by viscoelastic and elastic models was performed.Besides,the sample shape evolution during drying was predicted.

    2 Modeling

    2.1Assumptions

    ?The material consisted of non compressible solid(dry matter)and liquid(water)phases,

    ?The liquid vaporized only at the surface of the sample,

    ?The shrinkage was ideal and isotropic,

    ?The material behaved according to Maxwell model,of viscoelasticity with infinitesimal strain,

    ?The deformation was plane over the(x,y)plane.

    2.2Heat and mass transfer equations

    The heat and mass transfer model consisted on the liquid phase diffusion/advection equation(eq.1)and the heat diffusion/advection equation(eq.2).The advective terms due to shrinkage were written using the solid matter velocity(vs)which was the coupling variable between the hydro-thermal and mechanical equations.This velocity was determined by solving simultaneously the mechanical part of the model.The magnitude of hydric shrinkage was described by means of the volumetric dry basis hydro-contraction coefficientβ.

    In general,βdepend on moisture content and temperature,but in linear theory it will be considered as constant and given by the following expression:

    In the case of isotropic shrinkage,βcan be related to the linear wet basis hydrocontraction coefficientα,which is used in the equation 7,as follows:

    where Vsis the dry sample volume and V0is the initial(fully wet)sample volume.Theαvalue was determined experimentally in our laboratory.

    2.3Structural mechanics equations

    The mechanical model consisted mainly on the mechanical equilibrium equation(eq.4)and the viscoelastic behavior equation(eq.5)as appeared in Itaya,Okouchi and Mori(2001);Toujani,Djebali,Hassini,Azzouz and Belghith(2014);Mercier(1996).

    G and K are shear and bulk modulus,respectively,determined from the following expressions:

    E(t)is the relaxation function also called the instantaneous Young modulus andνis the Poisson’s ration.The relaxation expression used here was of the clay witch was determined experimentally by Hammouda and Mihoubi(2013).

    In numerical solid mechanics,these equations are solved not in terms of strain(ε)but in terms of displacements(u)in the x and y directions.The relations between displacement,strain and solid matter velocity are given below.

    The paper claims to deal with deformable product,but the equation 9 postulates small deformation.Indeed,clay mixture sample drying process lasts several hours.The model was written in incremental,that is to say that between two small successive time steps of the numerical resolution,the product can be considered in a small strain state.This explanation was given by Jomaa and Puiggali(1991);Mercier(2005).

    2.4Initial and boundary conditions

    ?The sample was initially at an uniform temperature and water content and was stress free,

    ?The heat and water transfer at the sample surface in contact with air was supposed to be purely convective,

    ?The external sample faces were free of external loading,

    ?The heat and mass transfer and the displacements at the surface in contact with the shelf were considered nil.

    2.5Model implementation

    Because of the symmetry of the problem(see Fig.1),the above described model was solved on a two-dimensional domain spanning over the half(5mmx10mm)of a cross-section of the potato sample.The governing equations as well as initial and boundary conditions were numerically implemented by means the COMSOL Multiphysics finite-elements software(version 3.3a)using both the‘Chemical Engineering’and the ‘Structural mechanics’modules and moving mesh application mode.The computational mesh was defined by means of triangular elements.The direct(UMFPACK)linear system solver was used.

    Figure 1:a-The sample orientation in the drying tunnel and b-the computed domain.

    3 Results

    3.1Hydro-thermal state simulation

    The clay mixture used in this study is a commercial product obtained from BIBLIONTEK Company[Lecomte-Nana,Barre,Nony,Lecomte,and Terracol(2013)].This mixture contains clay RR32,halloysite,vermiculite,clay 24:Sereilhac clay with moisture content dry basis equal to 35%.One of the important applications of such clay mixture is for the processing of boxes devoted to the preservation of heritage and precious objects against fire damage and other degradation(moisture,insects,etc.).

    The clay viscoelastic properties used for the simulation were available in the work of Hammouda and Mihoubi(2013).In this paper,the relaxation function against testing time was represented by the following Prony series:

    where,E(t)is the elastic modulus at any time,E1and E2are the elastic modulus for each Maxwell component,τ1andτ2are relaxation times,and Ecis the equilibrium elastic modulus.The values of these parameters are determined by fitting the experimental relaxation function by equation 11(Table 1).

    Table 1:Values of relaxation parameters.

    In order to validate the model,drying experiments were carried out for different operating condition:different values of temperature,relative humidity and air velocity(see Fig.1).A long clay mixture slab with square section(dimensions:60x10x10 mm)was chosen as a testing material.

    The drying tunnel(designed and constructed in the LETTM laboratory,Faculté des Sciencesde Tunis)was of vertical type with full control of the drying air parameters(the layout of the dryer is given in a previous paper[Hassini,Azzouz,Peczalski and Belghith(2007)].Simulations are run for various drying conditions.

    The experimental and simulated temporal-evolution of the sample mean moisture content and center point temperature are presented on Fig.2.Others curves confirmed the model validation were performed but not presented here.There was a good agreement between the experimental and simulated results,especially as concerns the core temperature.For all drying conditions,the relative difference between the experimental drying time and the simulated one is less than 10%,which is quite satisfactory.The slight misfit observed could be attributed in one part to measurements errors(especially in the mass record due to the support vibration generated by the airflow and in the temperature record due to the imprecision of thermocouple positioning at the centre of the sample),and in the other part to the simplifying hypothesis of the model(especially ideal isotropic shrinkage).

    The sample temperature profile exhibited a small plateau at a value corresponding to the wet-bulb temperature of the hot air witch indicated the existing of a constant drying rate phase in the considered drying process.

    The moisture content distributions within the sample after drying times of 900s and 7200s are presented on Fig.3.For all iso-lines plots in this paper,the external rectangular frame of the plots represents the initial sample contour while the internal curved frame represents the current slab contour.As expected,it could be observed that,at the beginning of the process,the water content gradient was much stronger at the top surface than at the bottom of the sample.At the end of drying,the moisture content became uniform throughout the domain and reached the equilibrium value with the ambient air.It should be noted that a non-uniform distribution of the moisture content during the drying process will generate internal stress and strain what will be analyzed in the next section.The temperature distributions within the sample at drying times of 900s and 7200s are presented on Fig.4.It could be observed that the temperature inside the sample was practically uniform during all the process,and therefore the internal diffusion of water was the limiting phenomena for water removal for this process.

    Figure 2:Mean moisture content and center material temperature versus time.

    Figure 3:The moisture content distributions within the sample at 900s and 7200 of drying.(T a=80?C,v a=1.5 m/s,RH=20%)

    Figure 4:The temperature distributions within the sample at 900s and 7200s(T a=80?C,v a=1.5 m/s,RH=20%)

    3.2Mechanical state simulation

    The distribution of mechanical stress within the sample at drying times of 900s and 7200s are presented respectively on Figs.5 and 6 where case(a)depicts the normal stressσxxin the x direction at 900s,(b)the normal stressσyyin the y direction and case(c)the shear stressσxyin the(x,y)plane These profiles,as well as all the others presented later in this paper,were determined for a(x,y)plane at the middle length of the sample.Conventionally,the positive and negative values of the stress correspond to the tensile and compressive stresses,respectively.

    According to our results,at the beginning of the drying process(t=900s)the superficialsample layer(in contactwith hotair)wasin traction while the core ofthe sample wasin compression,asa consequence ofthe mechanicalequilibrium.Atthe middle of the process(t=7200s)the superficial sample layer was in compression and the core of the sample was in traction,indicating that the stress changed its sign during the drying course.At the end of drying,the stress relaxed to zero(Fig.7).This phenomenon of stress reversal was demonstrated by some authors when a viscoelastic model was adopted[Perré and Passard(2004);Banaszak and Kowalski(2005);Rémond,Passard and Perré(2007);Khalfaoui,Chemkhi and Zagrouba(2013)].

    Figure 7 shown that,the stress level raised rapidly at the beginning of drying,(because of the increase of the moisture gradient),passed by a maximum(corresponding to the beginning of the falling rate period)and decreased thereafter to reach a weak second maximum of the opposite sign and then return to zero,when the moisture gradient tended to zero.

    According to Fig.6,the maximum stress was located on the sample face in contact with air.This was due to the high hydric shrinkage in this region and indicated that the risk of cracking affected only this face.However,these cracks,if they existed,could not expand into the inner part of the sample because it was in compression.It is also interesting to note that the normal stress in the x direction at the upper sample surface was lower than the normal stress on the lateral surface,so that the cracks were more likely to appear at the lateral surface of the sample.

    Fig.8 allows us to compare the evolution of elastic and viscoelastic stress with time.Indeed,at the beginning of the process the profiles are similar and reach their maxima at the almost the same time.The values of stress calculated by the viscoelastic model were lower than those obtained by the elastic model.This last result is similar to that found by Kowalski and Rajewska(2002)in the case of a clay cylindricalsample dried convectively.However,Khalfaoui,Chemkhiand Zagrouba(2013)demonstrated that the viscoelastic stress was greater than the elastic stress for a parallelepipedical clay sample.

    Figure 5:Normal and Shear stress distribution(a-σxx,b-σyy,c-σxy)at t=900 of drying.(T a=80?C,v a=1.5 m/s,RH=20%)

    Figure 7:Stress in the x and y directions versus time.

    Figure 8:Evolution of stress in the y direction simulated by viscoelastic and elastic models during drying.

    As concerns the sample shape evolution during drying,At the beginning of the process,the simulated sample shape showed concave curvatures and at the end of the process,the simulated sample shape turned out to be rectangular and similar to the original one.This result agreed reasonably with the experimental observations.In the case of a long sample of potato with a square section considered as elastic material and dried convectively,Perré and May,(2001)found that the simulated shapes presented slight concave curvatures all over the drying process.However,according to the theoretical results reported by Yang,Sakai,and Watanable(2001)concerning a cylindrical potato sample and admitting an elasto-plastic behavior,the sample shape remained cylindrical and similar to the original one in the first stage of drying while in the second stage of drying the sample shape became convex.

    4 Conclusion

    An internal drying model coupling heat and mass transport and mechanical behavior witch considered viscoelastic has been developed and numerically implemented with the COMSOL software.It was applied to convective drying of a deformable product saturated with water.The test case was a long parallelepipedical sample of mixture clay dried convectively in a vertical tunnel.

    The hydro-thermal part of the model was validated performing experimental measurements in a laboratory hot air dryer.The model was then used to simulate the internal mechanical stresses and the sample shape evolution during drying.A stress reversal phenomenon due to the viscous effect was exhibited.This phenomenon could not be shown when a simpler elastic model was adopted.Besides,a cracking risk in the superficial layer of the sample was demonstrated.The sample shape was also predicted with reasonable accuracy,all over the process.

    Arrieche,L.S.;Corrêa,R.G.;Sartori,D.J.M.(2009):Drying stresses and strains in a spherical food model.Computers and Chemical Engineering,vol.33,pp.1805-1813.

    Banaszak,J.;Kowalski,S.J.(2005):Theoretical and experimental analysis of stresses and fractures in clay like materials during drying.Chemical Engineering and Processing,vol.44,pp.497-503.

    Chemkhi,S.;Zagrouba,F.;Bellagi,A.(2004):Mathematical model for drying of highly shrinkage media.Drying Technology,vol.22,pp.1023-1039.

    Hammouda,I.;Mihoubi,D.(2013):Modelling of drying induced stress of clay:elastic and viscoelastic behaviours.Mech Time-Depend Mater.MechanicsofTime-Dependent Materials,vol.18,pp.97-111.

    Hassini,L.;Azzouz,S.;Peczalski,R.;Belghith,A.(2007):Estimation of potato moisture diffusivity from convective drying kinetics with correction for shrinkage.Journal of Food Engineering,vol.79,pp.47-56.

    Itaya,Y.;Okouchi,K.;Mori,S.(2001):Effect of heating modes on internal strain-stress formation during drying of molded ceramics.Drying Technology,vol.19,pp.1491-1504.

    Jomaa,W.;Puiggali,J.R.(1991):Drying of shrinkage materials:modelling with shrinkage velocity.Drying Technology,vol.9,pp.1271-1293.

    Kaur,L.;Singh,N.;Sodhi,N.S.;Gujral,H.S.(2002):Some properties of potatoes and their starches.I.Cooking,textural and rheological properties of potatoes.Food Chemistry,vol.79,pp.177-181.

    Khalfaoui,K.;Chemkhi,S.;Zagrouba,F.(2013):Modeling and stress analysis during drying of a deformable and saturated porous medium.Drying Technology,vol.31,pp.1124-1137.

    Kowalski,S.J.(2010):Control of mechanical processes in drying.Theory and experiment.Chemical Engineering science,vol.65,pp.890-899.

    Kowalski,S.J.;Rajewska,K.(2002):Drying-induced stresses in elastic and visco-elastic saturated materials.ChemicalEngineeringScience,vol.57,pp.3883-3892.

    Kowalski,S.J.;Rajewska,K.;Rybicki,A.(2005):Stresses generated during convective and microwave drying.Drying Technology,vol.23,pp.1875-1893

    Lecomte-Nana,G.L.;Barre,O.;Nony,C.;Lecomte,G.;Terracol,T.(2013):Innovative clay-cellulosic biosourced composite:Formulation and processing.Ceramic Engineering and Science Proceedings,vol.33,pp.219-232.

    Mercier,F.(1996):Séchage de gel d’alumine:Ma?trise de la texture de supports de catalyseurs.Thèse,Université de Bordeaux I.

    Musielak,G.(2001):Possibility of clay damage during drying.Drying Technology,vol.19,pp.645-1659.

    Peczalski,R.;Falgon,D.;Julien,A.;Boyer,J.C.Vidal-Sallé,E.(2005):Impact of density gradients on the stress level within a green ceramic compact during drying.Drying Technology,vol.23,pp.71-82.

    Perré,P.;May,B.K.(2001):A mathematical drying model that account for the coupling between transfers and solid mechanics.Case of highly deformable products.Drying Technology,vol.19,pp.1629-1643.

    Perré,P.;Passard,J.(2004):A physical and mathematical model able to predict the stress field in wood over a wide range of drying conditions.Drying Technology,vol.22,pp.27-34.

    Qian,L.;Dong,L.;Wang,L.J.;?zkan,N.;Mao,Z.H.(2010):Dynamic viscoelastic properties of sweet potato studied by dynamic mechanical analyzer.Carbohydrate Polymers,vol.79,pp.520-525.

    Rémond,R.;Passard,J.;Perré,P.(2007):The effectoftemperature and moisture content on the mechanical behaviour of wood:a comprehensive model applied to drying and bending.European Journal of Mechanics,vol.26,pp.558-572.

    Solomon,W.K.;Jindal,V.K.(2007):Modeling changes in rheological properties of potatoes during storage under constant and variable conditions.LWT,vol.40,pp.170-178.

    Toujani,M.;Djebali,R.;Hassini,L.;Azzouz,S.;Belghith,A.(2014):Hydrothermo-viscoelastic Based Finite Element Modeling of Apple Convective Drying Process.CMES,vol.98,no.5,pp.469-485.

    Yang,H.;Sakai,N.;Watanable,M.(2001):Drying Model with non-isotropic shrinkage deformation undergoing simultaneous heat and mass transfer.Drying Technology,vol.19,pp.441-1460.

    久久精品91蜜桃| 国产一区二区激情短视频| 午夜福利欧美成人| 国产爱豆传媒在线观看| 亚洲最大成人中文| 中文字幕久久专区| 深夜精品福利| 他把我摸到了高潮在线观看| 久久人人精品亚洲av| 又紧又爽又黄一区二区| 中文在线观看免费www的网站| 少妇的丰满在线观看| 99热6这里只有精品| 久99久视频精品免费| 男人的好看免费观看在线视频| 18美女黄网站色大片免费观看| 午夜福利视频1000在线观看| 一本久久中文字幕| 亚洲av免费高清在线观看| 亚洲第一欧美日韩一区二区三区| 欧美乱色亚洲激情| 久久国产乱子伦精品免费另类| 亚洲国产欧美人成| 在线观看免费午夜福利视频| 午夜精品一区二区三区免费看| 老司机在亚洲福利影院| 国产精品av视频在线免费观看| 国产精品一及| 十八禁人妻一区二区| 特大巨黑吊av在线直播| 无限看片的www在线观看| 一区二区三区高清视频在线| 变态另类丝袜制服| 精品欧美国产一区二区三| 欧美国产日韩亚洲一区| 久久国产精品影院| 18禁国产床啪视频网站| 男女视频在线观看网站免费| 日本在线视频免费播放| 变态另类成人亚洲欧美熟女| 亚洲激情在线av| 欧美zozozo另类| 成年免费大片在线观看| 亚洲欧美日韩东京热| 国产男靠女视频免费网站| 九色成人免费人妻av| 午夜福利视频1000在线观看| 校园春色视频在线观看| 午夜视频国产福利| 不卡一级毛片| 免费电影在线观看免费观看| 亚洲国产精品成人综合色| 欧美色视频一区免费| 18禁裸乳无遮挡免费网站照片| 国产伦一二天堂av在线观看| 国产精品电影一区二区三区| 精品国内亚洲2022精品成人| 午夜视频国产福利| 国产精品电影一区二区三区| 国产97色在线日韩免费| 国产视频内射| 少妇人妻精品综合一区二区 | 日日摸夜夜添夜夜添小说| 亚洲国产精品久久男人天堂| 亚洲精品乱码久久久v下载方式 | 亚洲精品亚洲一区二区| 人人妻,人人澡人人爽秒播| 色在线成人网| or卡值多少钱| 亚洲成人久久爱视频| 精品国内亚洲2022精品成人| 三级国产精品欧美在线观看| 岛国视频午夜一区免费看| 性色avwww在线观看| 国产av一区在线观看免费| h日本视频在线播放| 最新中文字幕久久久久| 69人妻影院| 成年女人毛片免费观看观看9| 在线观看舔阴道视频| 此物有八面人人有两片| 国产一区二区在线av高清观看| 久久久国产成人免费| 日韩大尺度精品在线看网址| 午夜福利在线观看免费完整高清在 | 少妇熟女aⅴ在线视频| 村上凉子中文字幕在线| 国产精品自产拍在线观看55亚洲| 无人区码免费观看不卡| av专区在线播放| 又紧又爽又黄一区二区| 欧美又色又爽又黄视频| 国内少妇人妻偷人精品xxx网站| 欧美乱色亚洲激情| 欧美激情久久久久久爽电影| 特级一级黄色大片| 无限看片的www在线观看| 内射极品少妇av片p| 免费无遮挡裸体视频| 九九在线视频观看精品| 一级黄色大片毛片| 老司机深夜福利视频在线观看| 国产精品99久久久久久久久| 搞女人的毛片| 久久久久久久久中文| 国产毛片a区久久久久| 老熟妇仑乱视频hdxx| 国产一区二区在线av高清观看| 亚洲人成电影免费在线| 国产欧美日韩精品一区二区| 亚洲一区二区三区色噜噜| 亚洲国产欧洲综合997久久,| 最近在线观看免费完整版| 亚洲avbb在线观看| 国产精品一区二区三区四区免费观看 | 色精品久久人妻99蜜桃| 国产精品久久电影中文字幕| 又紧又爽又黄一区二区| 日本精品一区二区三区蜜桃| 1024手机看黄色片| 国产av麻豆久久久久久久| 午夜福利在线在线| 偷拍熟女少妇极品色| 少妇的丰满在线观看| 婷婷亚洲欧美| 婷婷六月久久综合丁香| 一边摸一边抽搐一进一小说| 国产色爽女视频免费观看| av在线蜜桃| 成年女人永久免费观看视频| 国产视频内射| www日本在线高清视频| 日本 av在线| 一边摸一边抽搐一进一小说| 中文字幕久久专区| 亚洲av成人不卡在线观看播放网| 综合色av麻豆| 欧美黄色淫秽网站| 9191精品国产免费久久| 亚洲国产精品合色在线| 欧美色视频一区免费| 青草久久国产| 51国产日韩欧美| 校园春色视频在线观看| 人妻丰满熟妇av一区二区三区| 香蕉久久夜色| 国产高潮美女av| av欧美777| 琪琪午夜伦伦电影理论片6080| 18禁美女被吸乳视频| 91久久精品国产一区二区成人 | 熟女少妇亚洲综合色aaa.| 天堂网av新在线| 欧美激情久久久久久爽电影| 午夜免费成人在线视频| 男女床上黄色一级片免费看| 久久6这里有精品| av女优亚洲男人天堂| 国产 一区 欧美 日韩| 国产黄片美女视频| 日韩 欧美 亚洲 中文字幕| 国产精品女同一区二区软件 | 内地一区二区视频在线| 51国产日韩欧美| a在线观看视频网站| 18禁裸乳无遮挡免费网站照片| 青草久久国产| 久久精品综合一区二区三区| 成人无遮挡网站| 欧美性猛交╳xxx乱大交人| 国产三级黄色录像| 久久99热这里只有精品18| 亚洲精品成人久久久久久| 日本成人三级电影网站| 国产精品乱码一区二三区的特点| 成人精品一区二区免费| 少妇的丰满在线观看| 毛片女人毛片| 国产日本99.免费观看| 国产淫片久久久久久久久 | 亚洲av成人精品一区久久| 国产69精品久久久久777片| 蜜桃亚洲精品一区二区三区| 精品久久久久久久久久免费视频| 国产精品乱码一区二三区的特点| 一区二区三区高清视频在线| 亚洲成人中文字幕在线播放| 宅男免费午夜| 国产高清有码在线观看视频| 欧美乱妇无乱码| e午夜精品久久久久久久| 色尼玛亚洲综合影院| 美女被艹到高潮喷水动态| 女同久久另类99精品国产91| 丁香欧美五月| 国产一区二区在线av高清观看| 日本 欧美在线| 色尼玛亚洲综合影院| 日韩欧美 国产精品| 性色av乱码一区二区三区2| 日韩欧美国产在线观看| 好男人电影高清在线观看| 久久6这里有精品| 亚洲在线观看片| 欧美日本亚洲视频在线播放| 国产精品 国内视频| 成人欧美大片| www日本黄色视频网| 桃红色精品国产亚洲av| 国产亚洲精品综合一区在线观看| 国产精品香港三级国产av潘金莲| 欧美乱妇无乱码| 国产精品亚洲美女久久久| 一进一出好大好爽视频| 午夜激情欧美在线| 亚洲av二区三区四区| 变态另类丝袜制服| 老司机福利观看| 成年女人看的毛片在线观看| 亚洲狠狠婷婷综合久久图片| 亚洲avbb在线观看| 国产高清视频在线播放一区| 最近最新中文字幕大全免费视频| 欧美另类亚洲清纯唯美| 亚洲av五月六月丁香网| 国产成年人精品一区二区| 亚洲成人久久爱视频| 婷婷精品国产亚洲av在线| 国产不卡一卡二| 美女高潮喷水抽搐中文字幕| 亚洲欧美日韩东京热| 18+在线观看网站| 免费在线观看影片大全网站| 欧美一区二区国产精品久久精品| 非洲黑人性xxxx精品又粗又长| 校园春色视频在线观看| 欧美最黄视频在线播放免费| 九色国产91popny在线| 日本黄色视频三级网站网址| 成人国产一区最新在线观看| 国产高清激情床上av| а√天堂www在线а√下载| e午夜精品久久久久久久| 香蕉久久夜色| 九九久久精品国产亚洲av麻豆| 午夜免费激情av| 丰满人妻熟妇乱又伦精品不卡| 美女被艹到高潮喷水动态| 亚洲 欧美 日韩 在线 免费| www日本黄色视频网| 午夜亚洲福利在线播放| 熟女少妇亚洲综合色aaa.| 亚洲欧美日韩东京热| 亚洲精品亚洲一区二区| 亚洲熟妇中文字幕五十中出| 午夜福利在线观看吧| 国产精品永久免费网站| 色综合婷婷激情| 中文亚洲av片在线观看爽| 热99在线观看视频| 极品教师在线免费播放| 青草久久国产| 欧美另类亚洲清纯唯美| 久久精品亚洲精品国产色婷小说| 欧美+亚洲+日韩+国产| 亚洲成人中文字幕在线播放| 黄片小视频在线播放| 成人午夜高清在线视频| 日本撒尿小便嘘嘘汇集6| 国内精品久久久久精免费| 亚洲一区二区三区色噜噜| 久久精品综合一区二区三区| 色视频www国产| 手机成人av网站| 色吧在线观看| 精品一区二区三区视频在线 | 日本免费一区二区三区高清不卡| 欧美性猛交黑人性爽| 免费在线观看亚洲国产| 欧美精品啪啪一区二区三区| 亚洲美女视频黄频| 亚洲av免费高清在线观看| 成人精品一区二区免费| 亚洲国产精品999在线| 久久亚洲真实| 欧美一级a爱片免费观看看| 此物有八面人人有两片| 51午夜福利影视在线观看| 欧洲精品卡2卡3卡4卡5卡区| 精品国产超薄肉色丝袜足j| 丰满乱子伦码专区| 亚洲第一欧美日韩一区二区三区| 三级男女做爰猛烈吃奶摸视频| www.999成人在线观看| 老司机午夜十八禁免费视频| 久久久久国产精品人妻aⅴ院| 丰满的人妻完整版| 国产精品嫩草影院av在线观看 | 国产成人福利小说| 美女高潮的动态| 欧美最新免费一区二区三区 | 久久精品夜夜夜夜夜久久蜜豆| 免费看十八禁软件| 国产av麻豆久久久久久久| 在线视频色国产色| 日韩高清综合在线| 麻豆一二三区av精品| 亚洲国产精品sss在线观看| 欧美xxxx黑人xx丫x性爽| 啦啦啦韩国在线观看视频| 欧美日本亚洲视频在线播放| 母亲3免费完整高清在线观看| 啦啦啦观看免费观看视频高清| 亚洲精品在线观看二区| 亚洲黑人精品在线| 欧美大码av| 好男人电影高清在线观看| 制服丝袜大香蕉在线| 精品久久久久久久久久久久久| 精品不卡国产一区二区三区| 色综合亚洲欧美另类图片| 午夜老司机福利剧场| 亚洲男人的天堂狠狠| 一个人看的www免费观看视频| 一a级毛片在线观看| 欧美激情在线99| 麻豆国产av国片精品| 欧美中文综合在线视频| 欧美+日韩+精品| 中文字幕av成人在线电影| 舔av片在线| 亚洲av电影不卡..在线观看| 99久久九九国产精品国产免费| 亚洲精品一区av在线观看| 欧美日韩中文字幕国产精品一区二区三区| 午夜精品在线福利| 韩国av一区二区三区四区| 大型黄色视频在线免费观看| 国产精品日韩av在线免费观看| 黄色片一级片一级黄色片| 精品国内亚洲2022精品成人| 三级国产精品欧美在线观看| 最近视频中文字幕2019在线8| 热99re8久久精品国产| 国产伦在线观看视频一区| 男人舔女人下体高潮全视频| 搡老妇女老女人老熟妇| 老司机午夜福利在线观看视频| 在线十欧美十亚洲十日本专区| 在线免费观看的www视频| 国内精品久久久久久久电影| h日本视频在线播放| 久久久久久久午夜电影| 校园春色视频在线观看| 神马国产精品三级电影在线观看| eeuss影院久久| 免费观看的影片在线观看| 国产探花在线观看一区二区| 亚洲精品亚洲一区二区| 99国产综合亚洲精品| 老司机在亚洲福利影院| 激情在线观看视频在线高清| 国产真人三级小视频在线观看| 亚洲国产精品成人综合色| 中文在线观看免费www的网站| 久久精品人妻少妇| 男女视频在线观看网站免费| 啦啦啦观看免费观看视频高清| 亚洲美女黄片视频| 久久久久九九精品影院| 国产精品99久久久久久久久| 97超视频在线观看视频| 国产单亲对白刺激| 亚洲成人久久性| 一个人观看的视频www高清免费观看| 看片在线看免费视频| 久久99热这里只有精品18| 一级黄片播放器| 中文亚洲av片在线观看爽| 免费大片18禁| 午夜精品一区二区三区免费看| 国产真人三级小视频在线观看| 精品熟女少妇八av免费久了| 免费av不卡在线播放| 国产精品自产拍在线观看55亚洲| 国产在视频线在精品| 无遮挡黄片免费观看| 成年人黄色毛片网站| 亚洲国产精品合色在线| 欧美一区二区国产精品久久精品| 99久久成人亚洲精品观看| 男女午夜视频在线观看| 亚洲av免费高清在线观看| 国产毛片a区久久久久| 综合色av麻豆| 99热这里只有是精品50| 3wmmmm亚洲av在线观看| 欧美日韩福利视频一区二区| 亚洲av二区三区四区| av在线天堂中文字幕| 日韩大尺度精品在线看网址| 搡女人真爽免费视频火全软件 | 老司机午夜十八禁免费视频| 亚洲电影在线观看av| 亚洲欧美日韩卡通动漫| 日韩欧美在线乱码| 国产伦精品一区二区三区视频9 | 熟女少妇亚洲综合色aaa.| 亚洲国产高清在线一区二区三| 99热只有精品国产| 很黄的视频免费| av天堂中文字幕网| 亚洲无线在线观看| 99热这里只有是精品50| 一区福利在线观看| 黄色片一级片一级黄色片| 欧美三级亚洲精品| 国产成人福利小说| x7x7x7水蜜桃| 欧美不卡视频在线免费观看| 国内揄拍国产精品人妻在线| 麻豆国产av国片精品| 在线十欧美十亚洲十日本专区| 亚洲,欧美精品.| 日本撒尿小便嘘嘘汇集6| 九九在线视频观看精品| 一个人免费在线观看电影| 一区二区三区国产精品乱码| 精品国产美女av久久久久小说| 色视频www国产| 一进一出抽搐gif免费好疼| 欧美xxxx黑人xx丫x性爽| 熟妇人妻久久中文字幕3abv| 成年女人永久免费观看视频| 久久人妻av系列| 亚洲国产精品999在线| 亚洲成av人片免费观看| 国产熟女xx| 高清日韩中文字幕在线| 精品无人区乱码1区二区| 婷婷精品国产亚洲av| 久久久精品欧美日韩精品| 亚洲avbb在线观看| 国产一级毛片七仙女欲春2| 一个人免费在线观看电影| 中文字幕高清在线视频| 日韩欧美三级三区| 日本黄色片子视频| 法律面前人人平等表现在哪些方面| 一本久久中文字幕| 可以在线观看毛片的网站| 在线视频色国产色| 久久天躁狠狠躁夜夜2o2o| 欧美高清成人免费视频www| 日韩欧美一区二区三区在线观看| xxxwww97欧美| 色老头精品视频在线观看| 男女床上黄色一级片免费看| 亚洲精品456在线播放app | 国产精品 国内视频| 中文字幕高清在线视频| 久久99热这里只有精品18| 最新在线观看一区二区三区| 国产精品国产高清国产av| 国产av不卡久久| 欧美国产日韩亚洲一区| 日本免费一区二区三区高清不卡| 中国美女看黄片| 岛国在线观看网站| 一个人免费在线观看的高清视频| 99久久成人亚洲精品观看| 欧美av亚洲av综合av国产av| 美女 人体艺术 gogo| 1000部很黄的大片| 成年人黄色毛片网站| 成人特级黄色片久久久久久久| 亚洲精品影视一区二区三区av| 18+在线观看网站| 久久中文看片网| 亚洲欧美精品综合久久99| 久久精品人妻少妇| 亚洲最大成人手机在线| 激情在线观看视频在线高清| a级毛片a级免费在线| 日本一本二区三区精品| 18禁黄网站禁片免费观看直播| 成人无遮挡网站| 国产高清三级在线| 亚洲乱码一区二区免费版| 色精品久久人妻99蜜桃| 亚洲人成网站高清观看| 男人舔奶头视频| 母亲3免费完整高清在线观看| 老司机福利观看| 久久精品人妻少妇| 日本a在线网址| 精品久久久久久成人av| 亚洲av二区三区四区| 欧美午夜高清在线| 久久久久九九精品影院| 天堂网av新在线| 免费看a级黄色片| 久久久久九九精品影院| 九色国产91popny在线| 亚洲国产精品sss在线观看| 亚洲五月婷婷丁香| 欧美高清成人免费视频www| 亚洲美女视频黄频| 操出白浆在线播放| 在线十欧美十亚洲十日本专区| 女生性感内裤真人,穿戴方法视频| 蜜桃亚洲精品一区二区三区| 国产高清视频在线播放一区| 国产精品 国内视频| 亚洲国产日韩欧美精品在线观看 | 精品一区二区三区视频在线 | 宅男免费午夜| 精品午夜福利视频在线观看一区| 亚洲一区二区三区色噜噜| 欧美性猛交╳xxx乱大交人| 国产 一区 欧美 日韩| 日本与韩国留学比较| 亚洲精华国产精华精| 美女被艹到高潮喷水动态| 欧美在线黄色| 亚洲人成电影免费在线| 又黄又爽又免费观看的视频| 91麻豆精品激情在线观看国产| 国产亚洲av嫩草精品影院| 日韩欧美在线乱码| 亚洲18禁久久av| 国产成人啪精品午夜网站| 日韩欧美国产一区二区入口| 亚洲av免费高清在线观看| 又紧又爽又黄一区二区| 亚洲av熟女| 免费看光身美女| 亚洲av一区综合| 午夜日韩欧美国产| 中文字幕人妻丝袜一区二区| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 午夜久久久久精精品| 热99在线观看视频| 亚洲国产中文字幕在线视频| 国产一区二区在线观看日韩 | 香蕉久久夜色| 国产三级黄色录像| 国产欧美日韩精品一区二区| 国产私拍福利视频在线观看| 国产av一区在线观看免费| 久久这里只有精品中国| 欧美极品一区二区三区四区| 人人妻人人澡欧美一区二区| 18禁黄网站禁片午夜丰满| 欧美日韩黄片免| 免费人成视频x8x8入口观看| 国产探花极品一区二区| 久久久国产精品麻豆| 一区二区三区国产精品乱码| 19禁男女啪啪无遮挡网站| 天堂网av新在线| 香蕉av资源在线| 精品午夜福利视频在线观看一区| 亚洲精品亚洲一区二区| 青草久久国产| 日本成人三级电影网站| 亚洲黑人精品在线| 国产亚洲精品一区二区www| 国产精品日韩av在线免费观看| 美女被艹到高潮喷水动态| 亚洲精品粉嫩美女一区| 国产精品电影一区二区三区| 天堂√8在线中文| 中文在线观看免费www的网站| 成人国产综合亚洲| 欧美日韩乱码在线| 在线十欧美十亚洲十日本专区| 亚洲av熟女| 波野结衣二区三区在线 | 欧美成人免费av一区二区三区| 一区福利在线观看| 亚洲人成网站在线播| 最新中文字幕久久久久| 蜜桃久久精品国产亚洲av| www.色视频.com| 午夜久久久久精精品| 九九久久精品国产亚洲av麻豆| 成熟少妇高潮喷水视频| eeuss影院久久| 99热这里只有精品一区| 一区福利在线观看| 亚洲精品乱码久久久v下载方式 | 中文字幕精品亚洲无线码一区| 午夜福利高清视频| 成人性生交大片免费视频hd| 久久久久久人人人人人| tocl精华| 两个人的视频大全免费| 久9热在线精品视频| 国产爱豆传媒在线观看| 精品无人区乱码1区二区| 欧美日本亚洲视频在线播放| 久久精品国产99精品国产亚洲性色| 97人妻精品一区二区三区麻豆| 成熟少妇高潮喷水视频| 国产高清激情床上av| 最新美女视频免费是黄的| 激情在线观看视频在线高清| 18美女黄网站色大片免费观看| 欧美三级亚洲精品| 熟女人妻精品中文字幕| 午夜福利18| 亚洲久久久久久中文字幕| 一a级毛片在线观看| 久久国产精品人妻蜜桃|