• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modeling of Hydro-Viscoelastic State of Deformable and Saturated Product During Convective Drying

    2014-04-14 01:56:21LamloumiLHassiniGLecomteNanaMElcafsiandSmith
    Computers Materials&Continua 2014年15期

    R.LamloumiL.HassiniG.L.Lecomte-NanaM.A.Elcafsi and D.Smith

    Nomenclature

    Cpspecific heat capacity Jkg?1K?1

    D hydric diffusivity m2s?1

    E(t) relaxation function MPa

    G(t) Shear modulus MPa

    K(t) Bulk modulus MPa

    RH air relative humidity %

    t time s

    T temperature ?C

    v velocity ms?1

    V volume m3

    X water content(db) kgkg?1

    Greek letters

    αlinear hydro-contraction coefficient(wb)

    βvolumetric hydro-contraction coefficient(db)

    δijKronecker’s delta

    εijtotal strain tensor

    λthermal conductivity Wm?1K?1

    νPoisson’s ratio

    ρdensity kgm3

    σijstress tensor Pa

    Subscripts

    0 initial

    a air

    l liquid

    s solid

    1 Introduction

    The speeding up of industrial drying processes by applying enhanced operating conditions is often limited by the occurrence of cracks in the skin of the product.The cracks may lead to a global failure(ceramics)or simply alter the visual aspect of the product(pasta,vegetables).In order to avoid these defects,the very complex influence of the drying conditions on the internal stresses and deformations of a product during the process must be assessed.

    In recent years different mechanical models have been proposed to describe the stresses within the product during the drying.Several drying models consider an elastic behavior[Jomaa and Puiggali(1991);Arrieche,Corrêa and Sartori(2009)].

    However,the elastic theory is not acceptable for products witch possess the capacity to store and dissipate mechanical energy.The viscoelastic theory is more realistic to describe the history effect and foresee correctly the deformation in many wet products subjected to drying,like:clays,ceramics and food products.The Maxwell constitutive equations were commonly used to express viscoelastic properties[Jomaa and Puiggali(1991);Arrieche,Corrêa and Sartori(2009)][Solomon and Jindal(2007);Qian,Dong,Wang,?zkan and Mao(2010)].

    This work is a contribution to the large task of the modeling of mechanical phenomena occurring inside deformable product during drying processes.Its objective was to propose a comprehensive and rigorous 2-D mathematical description of the hydro-thermo-mechanical state of a deformable and water saturated product during convective drying.The model was implemented using the COMSOL Multiphysics finite-elements solver.The coupled heat and mass transfer equations,mechanical equilibrium equations along with the generalized Maxwell’s rheological behavior law were solved simultaneously on a variable geometrical domain.In that way and unlike in some other works on this subject,the actual deformation of the sample respecting the global equilibrium and boundary constraints,and not an arbitrary one,was applied to solve the heat and mass balances.A long parallelepipedical sample of clay mixture with a square section was chosen as the study case.In order to implement and validate the model,the hydro-viscoelastic properties and the drying kinetics of the product were measured on the facilities of the LETTM laboratory.Simulations of the temporal evolution of mechanical stress at different specific points of the sample were explored and interpreted in terms of the cracking risk of the product.A comparison between the results obtained by viscoelastic and elastic models was performed.Besides,the sample shape evolution during drying was predicted.

    2 Modeling

    2.1Assumptions

    ?The material consisted of non compressible solid(dry matter)and liquid(water)phases,

    ?The liquid vaporized only at the surface of the sample,

    ?The shrinkage was ideal and isotropic,

    ?The material behaved according to Maxwell model,of viscoelasticity with infinitesimal strain,

    ?The deformation was plane over the(x,y)plane.

    2.2Heat and mass transfer equations

    The heat and mass transfer model consisted on the liquid phase diffusion/advection equation(eq.1)and the heat diffusion/advection equation(eq.2).The advective terms due to shrinkage were written using the solid matter velocity(vs)which was the coupling variable between the hydro-thermal and mechanical equations.This velocity was determined by solving simultaneously the mechanical part of the model.The magnitude of hydric shrinkage was described by means of the volumetric dry basis hydro-contraction coefficientβ.

    In general,βdepend on moisture content and temperature,but in linear theory it will be considered as constant and given by the following expression:

    In the case of isotropic shrinkage,βcan be related to the linear wet basis hydrocontraction coefficientα,which is used in the equation 7,as follows:

    where Vsis the dry sample volume and V0is the initial(fully wet)sample volume.Theαvalue was determined experimentally in our laboratory.

    2.3Structural mechanics equations

    The mechanical model consisted mainly on the mechanical equilibrium equation(eq.4)and the viscoelastic behavior equation(eq.5)as appeared in Itaya,Okouchi and Mori(2001);Toujani,Djebali,Hassini,Azzouz and Belghith(2014);Mercier(1996).

    G and K are shear and bulk modulus,respectively,determined from the following expressions:

    E(t)is the relaxation function also called the instantaneous Young modulus andνis the Poisson’s ration.The relaxation expression used here was of the clay witch was determined experimentally by Hammouda and Mihoubi(2013).

    In numerical solid mechanics,these equations are solved not in terms of strain(ε)but in terms of displacements(u)in the x and y directions.The relations between displacement,strain and solid matter velocity are given below.

    The paper claims to deal with deformable product,but the equation 9 postulates small deformation.Indeed,clay mixture sample drying process lasts several hours.The model was written in incremental,that is to say that between two small successive time steps of the numerical resolution,the product can be considered in a small strain state.This explanation was given by Jomaa and Puiggali(1991);Mercier(2005).

    2.4Initial and boundary conditions

    ?The sample was initially at an uniform temperature and water content and was stress free,

    ?The heat and water transfer at the sample surface in contact with air was supposed to be purely convective,

    ?The external sample faces were free of external loading,

    ?The heat and mass transfer and the displacements at the surface in contact with the shelf were considered nil.

    2.5Model implementation

    Because of the symmetry of the problem(see Fig.1),the above described model was solved on a two-dimensional domain spanning over the half(5mmx10mm)of a cross-section of the potato sample.The governing equations as well as initial and boundary conditions were numerically implemented by means the COMSOL Multiphysics finite-elements software(version 3.3a)using both the‘Chemical Engineering’and the ‘Structural mechanics’modules and moving mesh application mode.The computational mesh was defined by means of triangular elements.The direct(UMFPACK)linear system solver was used.

    Figure 1:a-The sample orientation in the drying tunnel and b-the computed domain.

    3 Results

    3.1Hydro-thermal state simulation

    The clay mixture used in this study is a commercial product obtained from BIBLIONTEK Company[Lecomte-Nana,Barre,Nony,Lecomte,and Terracol(2013)].This mixture contains clay RR32,halloysite,vermiculite,clay 24:Sereilhac clay with moisture content dry basis equal to 35%.One of the important applications of such clay mixture is for the processing of boxes devoted to the preservation of heritage and precious objects against fire damage and other degradation(moisture,insects,etc.).

    The clay viscoelastic properties used for the simulation were available in the work of Hammouda and Mihoubi(2013).In this paper,the relaxation function against testing time was represented by the following Prony series:

    where,E(t)is the elastic modulus at any time,E1and E2are the elastic modulus for each Maxwell component,τ1andτ2are relaxation times,and Ecis the equilibrium elastic modulus.The values of these parameters are determined by fitting the experimental relaxation function by equation 11(Table 1).

    Table 1:Values of relaxation parameters.

    In order to validate the model,drying experiments were carried out for different operating condition:different values of temperature,relative humidity and air velocity(see Fig.1).A long clay mixture slab with square section(dimensions:60x10x10 mm)was chosen as a testing material.

    The drying tunnel(designed and constructed in the LETTM laboratory,Faculté des Sciencesde Tunis)was of vertical type with full control of the drying air parameters(the layout of the dryer is given in a previous paper[Hassini,Azzouz,Peczalski and Belghith(2007)].Simulations are run for various drying conditions.

    The experimental and simulated temporal-evolution of the sample mean moisture content and center point temperature are presented on Fig.2.Others curves confirmed the model validation were performed but not presented here.There was a good agreement between the experimental and simulated results,especially as concerns the core temperature.For all drying conditions,the relative difference between the experimental drying time and the simulated one is less than 10%,which is quite satisfactory.The slight misfit observed could be attributed in one part to measurements errors(especially in the mass record due to the support vibration generated by the airflow and in the temperature record due to the imprecision of thermocouple positioning at the centre of the sample),and in the other part to the simplifying hypothesis of the model(especially ideal isotropic shrinkage).

    The sample temperature profile exhibited a small plateau at a value corresponding to the wet-bulb temperature of the hot air witch indicated the existing of a constant drying rate phase in the considered drying process.

    The moisture content distributions within the sample after drying times of 900s and 7200s are presented on Fig.3.For all iso-lines plots in this paper,the external rectangular frame of the plots represents the initial sample contour while the internal curved frame represents the current slab contour.As expected,it could be observed that,at the beginning of the process,the water content gradient was much stronger at the top surface than at the bottom of the sample.At the end of drying,the moisture content became uniform throughout the domain and reached the equilibrium value with the ambient air.It should be noted that a non-uniform distribution of the moisture content during the drying process will generate internal stress and strain what will be analyzed in the next section.The temperature distributions within the sample at drying times of 900s and 7200s are presented on Fig.4.It could be observed that the temperature inside the sample was practically uniform during all the process,and therefore the internal diffusion of water was the limiting phenomena for water removal for this process.

    Figure 2:Mean moisture content and center material temperature versus time.

    Figure 3:The moisture content distributions within the sample at 900s and 7200 of drying.(T a=80?C,v a=1.5 m/s,RH=20%)

    Figure 4:The temperature distributions within the sample at 900s and 7200s(T a=80?C,v a=1.5 m/s,RH=20%)

    3.2Mechanical state simulation

    The distribution of mechanical stress within the sample at drying times of 900s and 7200s are presented respectively on Figs.5 and 6 where case(a)depicts the normal stressσxxin the x direction at 900s,(b)the normal stressσyyin the y direction and case(c)the shear stressσxyin the(x,y)plane These profiles,as well as all the others presented later in this paper,were determined for a(x,y)plane at the middle length of the sample.Conventionally,the positive and negative values of the stress correspond to the tensile and compressive stresses,respectively.

    According to our results,at the beginning of the drying process(t=900s)the superficialsample layer(in contactwith hotair)wasin traction while the core ofthe sample wasin compression,asa consequence ofthe mechanicalequilibrium.Atthe middle of the process(t=7200s)the superficial sample layer was in compression and the core of the sample was in traction,indicating that the stress changed its sign during the drying course.At the end of drying,the stress relaxed to zero(Fig.7).This phenomenon of stress reversal was demonstrated by some authors when a viscoelastic model was adopted[Perré and Passard(2004);Banaszak and Kowalski(2005);Rémond,Passard and Perré(2007);Khalfaoui,Chemkhi and Zagrouba(2013)].

    Figure 7 shown that,the stress level raised rapidly at the beginning of drying,(because of the increase of the moisture gradient),passed by a maximum(corresponding to the beginning of the falling rate period)and decreased thereafter to reach a weak second maximum of the opposite sign and then return to zero,when the moisture gradient tended to zero.

    According to Fig.6,the maximum stress was located on the sample face in contact with air.This was due to the high hydric shrinkage in this region and indicated that the risk of cracking affected only this face.However,these cracks,if they existed,could not expand into the inner part of the sample because it was in compression.It is also interesting to note that the normal stress in the x direction at the upper sample surface was lower than the normal stress on the lateral surface,so that the cracks were more likely to appear at the lateral surface of the sample.

    Fig.8 allows us to compare the evolution of elastic and viscoelastic stress with time.Indeed,at the beginning of the process the profiles are similar and reach their maxima at the almost the same time.The values of stress calculated by the viscoelastic model were lower than those obtained by the elastic model.This last result is similar to that found by Kowalski and Rajewska(2002)in the case of a clay cylindricalsample dried convectively.However,Khalfaoui,Chemkhiand Zagrouba(2013)demonstrated that the viscoelastic stress was greater than the elastic stress for a parallelepipedical clay sample.

    Figure 5:Normal and Shear stress distribution(a-σxx,b-σyy,c-σxy)at t=900 of drying.(T a=80?C,v a=1.5 m/s,RH=20%)

    Figure 7:Stress in the x and y directions versus time.

    Figure 8:Evolution of stress in the y direction simulated by viscoelastic and elastic models during drying.

    As concerns the sample shape evolution during drying,At the beginning of the process,the simulated sample shape showed concave curvatures and at the end of the process,the simulated sample shape turned out to be rectangular and similar to the original one.This result agreed reasonably with the experimental observations.In the case of a long sample of potato with a square section considered as elastic material and dried convectively,Perré and May,(2001)found that the simulated shapes presented slight concave curvatures all over the drying process.However,according to the theoretical results reported by Yang,Sakai,and Watanable(2001)concerning a cylindrical potato sample and admitting an elasto-plastic behavior,the sample shape remained cylindrical and similar to the original one in the first stage of drying while in the second stage of drying the sample shape became convex.

    4 Conclusion

    An internal drying model coupling heat and mass transport and mechanical behavior witch considered viscoelastic has been developed and numerically implemented with the COMSOL software.It was applied to convective drying of a deformable product saturated with water.The test case was a long parallelepipedical sample of mixture clay dried convectively in a vertical tunnel.

    The hydro-thermal part of the model was validated performing experimental measurements in a laboratory hot air dryer.The model was then used to simulate the internal mechanical stresses and the sample shape evolution during drying.A stress reversal phenomenon due to the viscous effect was exhibited.This phenomenon could not be shown when a simpler elastic model was adopted.Besides,a cracking risk in the superficial layer of the sample was demonstrated.The sample shape was also predicted with reasonable accuracy,all over the process.

    Arrieche,L.S.;Corrêa,R.G.;Sartori,D.J.M.(2009):Drying stresses and strains in a spherical food model.Computers and Chemical Engineering,vol.33,pp.1805-1813.

    Banaszak,J.;Kowalski,S.J.(2005):Theoretical and experimental analysis of stresses and fractures in clay like materials during drying.Chemical Engineering and Processing,vol.44,pp.497-503.

    Chemkhi,S.;Zagrouba,F.;Bellagi,A.(2004):Mathematical model for drying of highly shrinkage media.Drying Technology,vol.22,pp.1023-1039.

    Hammouda,I.;Mihoubi,D.(2013):Modelling of drying induced stress of clay:elastic and viscoelastic behaviours.Mech Time-Depend Mater.MechanicsofTime-Dependent Materials,vol.18,pp.97-111.

    Hassini,L.;Azzouz,S.;Peczalski,R.;Belghith,A.(2007):Estimation of potato moisture diffusivity from convective drying kinetics with correction for shrinkage.Journal of Food Engineering,vol.79,pp.47-56.

    Itaya,Y.;Okouchi,K.;Mori,S.(2001):Effect of heating modes on internal strain-stress formation during drying of molded ceramics.Drying Technology,vol.19,pp.1491-1504.

    Jomaa,W.;Puiggali,J.R.(1991):Drying of shrinkage materials:modelling with shrinkage velocity.Drying Technology,vol.9,pp.1271-1293.

    Kaur,L.;Singh,N.;Sodhi,N.S.;Gujral,H.S.(2002):Some properties of potatoes and their starches.I.Cooking,textural and rheological properties of potatoes.Food Chemistry,vol.79,pp.177-181.

    Khalfaoui,K.;Chemkhi,S.;Zagrouba,F.(2013):Modeling and stress analysis during drying of a deformable and saturated porous medium.Drying Technology,vol.31,pp.1124-1137.

    Kowalski,S.J.(2010):Control of mechanical processes in drying.Theory and experiment.Chemical Engineering science,vol.65,pp.890-899.

    Kowalski,S.J.;Rajewska,K.(2002):Drying-induced stresses in elastic and visco-elastic saturated materials.ChemicalEngineeringScience,vol.57,pp.3883-3892.

    Kowalski,S.J.;Rajewska,K.;Rybicki,A.(2005):Stresses generated during convective and microwave drying.Drying Technology,vol.23,pp.1875-1893

    Lecomte-Nana,G.L.;Barre,O.;Nony,C.;Lecomte,G.;Terracol,T.(2013):Innovative clay-cellulosic biosourced composite:Formulation and processing.Ceramic Engineering and Science Proceedings,vol.33,pp.219-232.

    Mercier,F.(1996):Séchage de gel d’alumine:Ma?trise de la texture de supports de catalyseurs.Thèse,Université de Bordeaux I.

    Musielak,G.(2001):Possibility of clay damage during drying.Drying Technology,vol.19,pp.645-1659.

    Peczalski,R.;Falgon,D.;Julien,A.;Boyer,J.C.Vidal-Sallé,E.(2005):Impact of density gradients on the stress level within a green ceramic compact during drying.Drying Technology,vol.23,pp.71-82.

    Perré,P.;May,B.K.(2001):A mathematical drying model that account for the coupling between transfers and solid mechanics.Case of highly deformable products.Drying Technology,vol.19,pp.1629-1643.

    Perré,P.;Passard,J.(2004):A physical and mathematical model able to predict the stress field in wood over a wide range of drying conditions.Drying Technology,vol.22,pp.27-34.

    Qian,L.;Dong,L.;Wang,L.J.;?zkan,N.;Mao,Z.H.(2010):Dynamic viscoelastic properties of sweet potato studied by dynamic mechanical analyzer.Carbohydrate Polymers,vol.79,pp.520-525.

    Rémond,R.;Passard,J.;Perré,P.(2007):The effectoftemperature and moisture content on the mechanical behaviour of wood:a comprehensive model applied to drying and bending.European Journal of Mechanics,vol.26,pp.558-572.

    Solomon,W.K.;Jindal,V.K.(2007):Modeling changes in rheological properties of potatoes during storage under constant and variable conditions.LWT,vol.40,pp.170-178.

    Toujani,M.;Djebali,R.;Hassini,L.;Azzouz,S.;Belghith,A.(2014):Hydrothermo-viscoelastic Based Finite Element Modeling of Apple Convective Drying Process.CMES,vol.98,no.5,pp.469-485.

    Yang,H.;Sakai,N.;Watanable,M.(2001):Drying Model with non-isotropic shrinkage deformation undergoing simultaneous heat and mass transfer.Drying Technology,vol.19,pp.441-1460.

    全区人妻精品视频| 少妇人妻一区二区三区视频| 99在线人妻在线中文字幕| a级毛片在线看网站| 国产成人欧美在线观看| 久久久久久久久中文| 三级国产精品欧美在线观看 | 操出白浆在线播放| 国产欧美日韩精品一区二区| 小说图片视频综合网站| 男女下面进入的视频免费午夜| 国内毛片毛片毛片毛片毛片| 夜夜夜夜夜久久久久| 国产探花在线观看一区二区| 久久久久久九九精品二区国产| 男女做爰动态图高潮gif福利片| 日本免费a在线| 可以在线观看的亚洲视频| 亚洲在线自拍视频| 国产一级毛片七仙女欲春2| 九九久久精品国产亚洲av麻豆 | 成人精品一区二区免费| 亚洲精品一区av在线观看| 亚洲国产欧美人成| 别揉我奶头~嗯~啊~动态视频| 久久国产精品人妻蜜桃| 在线a可以看的网站| 国产又色又爽无遮挡免费看| 久久亚洲真实| 一本精品99久久精品77| 午夜两性在线视频| 亚洲精品美女久久久久99蜜臀| 又大又爽又粗| 久久久久精品国产欧美久久久| 欧美日韩精品网址| 日本 av在线| 国产成人精品久久二区二区91| 最新在线观看一区二区三区| 亚洲欧美日韩东京热| 午夜影院日韩av| 久久久精品欧美日韩精品| 18禁黄网站禁片午夜丰满| 真实男女啪啪啪动态图| 一区二区三区高清视频在线| 亚洲无线在线观看| 国产97色在线日韩免费| 岛国在线观看网站| 丰满的人妻完整版| 欧美xxxx黑人xx丫x性爽| 99热这里只有精品一区 | 久久久精品欧美日韩精品| 热99re8久久精品国产| 美女被艹到高潮喷水动态| 悠悠久久av| 十八禁网站免费在线| 久久性视频一级片| 国产1区2区3区精品| 亚洲专区国产一区二区| 色在线成人网| 亚洲国产精品成人综合色| 特大巨黑吊av在线直播| 亚洲中文字幕日韩| 亚洲精品粉嫩美女一区| 97超级碰碰碰精品色视频在线观看| 韩国av一区二区三区四区| 午夜福利在线在线| 成人午夜高清在线视频| 丰满人妻熟妇乱又伦精品不卡| 日本成人三级电影网站| 国产欧美日韩精品亚洲av| 后天国语完整版免费观看| 国产高清videossex| 一级黄色大片毛片| 亚洲激情在线av| 俺也久久电影网| 两个人看的免费小视频| 成人特级黄色片久久久久久久| 亚洲,欧美精品.| 男插女下体视频免费在线播放| 国产aⅴ精品一区二区三区波| 99视频精品全部免费 在线 | 欧美高清成人免费视频www| 日本五十路高清| 俄罗斯特黄特色一大片| 亚洲国产精品久久男人天堂| 在线观看舔阴道视频| 成人国产综合亚洲| 午夜福利在线在线| 午夜免费观看网址| 日本a在线网址| 青草久久国产| 色av中文字幕| 国产亚洲精品综合一区在线观看| 日韩精品中文字幕看吧| 日韩欧美国产一区二区入口| 色吧在线观看| 免费看美女性在线毛片视频| 亚洲色图 男人天堂 中文字幕| 午夜激情福利司机影院| 天堂影院成人在线观看| 免费在线观看视频国产中文字幕亚洲| 少妇的逼水好多| 又爽又黄无遮挡网站| 精品一区二区三区av网在线观看| 美女高潮的动态| 日韩有码中文字幕| 制服丝袜大香蕉在线| 国产精品av视频在线免费观看| 熟女电影av网| 成人永久免费在线观看视频| 老司机福利观看| 精品一区二区三区av网在线观看| 黄色 视频免费看| 日韩三级视频一区二区三区| 欧美丝袜亚洲另类 | 99精品欧美一区二区三区四区| 香蕉国产在线看| 日日夜夜操网爽| 成人国产一区最新在线观看| 亚洲性夜色夜夜综合| 成人鲁丝片一二三区免费| 超碰成人久久| 亚洲,欧美精品.| 99精品久久久久人妻精品| 午夜日韩欧美国产| 日韩 欧美 亚洲 中文字幕| 天天躁日日操中文字幕| 人妻丰满熟妇av一区二区三区| ponron亚洲| 国产一区二区三区在线臀色熟女| 99久国产av精品| 欧美日韩精品网址| 成年女人永久免费观看视频| 日本黄色片子视频| av天堂中文字幕网| 亚洲精品美女久久av网站| 可以在线观看的亚洲视频| 中文资源天堂在线| 国产欧美日韩一区二区三| 真人一进一出gif抽搐免费| 国产成人精品久久二区二区免费| 美女大奶头视频| 亚洲av熟女| 国产精品永久免费网站| 久久久久久人人人人人| 亚洲七黄色美女视频| 国产成人啪精品午夜网站| 欧美三级亚洲精品| 叶爱在线成人免费视频播放| 成熟少妇高潮喷水视频| 亚洲成人久久性| 露出奶头的视频| 亚洲欧美激情综合另类| 在线观看66精品国产| 十八禁网站免费在线| 免费在线观看亚洲国产| 变态另类成人亚洲欧美熟女| 久久精品综合一区二区三区| 99热这里只有精品一区 | 啪啪无遮挡十八禁网站| 精品久久久久久久人妻蜜臀av| 久久国产乱子伦精品免费另类| 一个人观看的视频www高清免费观看 | АⅤ资源中文在线天堂| 亚洲av电影在线进入| 国产精品久久视频播放| 伦理电影免费视频| 一二三四在线观看免费中文在| 久久久久亚洲av毛片大全| 国产精品久久久久久精品电影| 亚洲狠狠婷婷综合久久图片| 免费在线观看亚洲国产| 天堂网av新在线| 黄色成人免费大全| 亚洲成人中文字幕在线播放| 18禁美女被吸乳视频| 国产美女午夜福利| 小蜜桃在线观看免费完整版高清| 大型黄色视频在线免费观看| 国产一区二区在线av高清观看| 日韩高清综合在线| 国产成人av激情在线播放| 国产高潮美女av| 日本a在线网址| 久久久久久久久免费视频了| 97人妻精品一区二区三区麻豆| 十八禁人妻一区二区| 一区二区三区国产精品乱码| 国产精品一及| 最新在线观看一区二区三区| 成人av一区二区三区在线看| 日本 欧美在线| 中文字幕久久专区| 在线永久观看黄色视频| 国产97色在线日韩免费| 久久久久久人人人人人| 这个男人来自地球电影免费观看| 亚洲无线观看免费| 丰满人妻一区二区三区视频av | 国内久久婷婷六月综合欲色啪| 日本免费一区二区三区高清不卡| 麻豆av在线久日| 99久久精品一区二区三区| 搡老岳熟女国产| 亚洲色图 男人天堂 中文字幕| 老司机深夜福利视频在线观看| 88av欧美| 国产久久久一区二区三区| 国产爱豆传媒在线观看| 黄片大片在线免费观看| 国产乱人伦免费视频| 变态另类丝袜制服| 在线播放国产精品三级| 日韩欧美精品v在线| 午夜福利视频1000在线观看| 岛国在线观看网站| 叶爱在线成人免费视频播放| 99热精品在线国产| 草草在线视频免费看| 热99re8久久精品国产| 一二三四在线观看免费中文在| 露出奶头的视频| 天堂影院成人在线观看| 在线观看一区二区三区| 国产成人aa在线观看| 免费无遮挡裸体视频| 国产精品九九99| 欧洲精品卡2卡3卡4卡5卡区| 国产成人系列免费观看| 亚洲人成电影免费在线| 免费无遮挡裸体视频| 久久久久久大精品| 看免费av毛片| 欧美黄色片欧美黄色片| 丰满人妻熟妇乱又伦精品不卡| 久久久久亚洲av毛片大全| 男插女下体视频免费在线播放| 熟妇人妻久久中文字幕3abv| 成人特级av手机在线观看| 欧洲精品卡2卡3卡4卡5卡区| 精华霜和精华液先用哪个| 欧美日韩福利视频一区二区| 亚洲中文字幕一区二区三区有码在线看 | 中文字幕最新亚洲高清| 啦啦啦免费观看视频1| 亚洲国产色片| 精品福利观看| 日本免费a在线| 国产精品电影一区二区三区| 欧美黄色片欧美黄色片| 伦理电影免费视频| 热99在线观看视频| 亚洲第一欧美日韩一区二区三区| 男女午夜视频在线观看| 三级毛片av免费| 日本黄色视频三级网站网址| 麻豆av在线久日| 又黄又粗又硬又大视频| 精品久久久久久久毛片微露脸| 国产高清videossex| 亚洲欧美日韩无卡精品| 夜夜夜夜夜久久久久| 99久久久亚洲精品蜜臀av| 男女视频在线观看网站免费| 欧美日韩瑟瑟在线播放| 亚洲九九香蕉| 国产成人精品久久二区二区免费| 亚洲精品美女久久av网站| 国产精品永久免费网站| 热99在线观看视频| 成年女人毛片免费观看观看9| 一进一出抽搐gif免费好疼| 日本 欧美在线| 搞女人的毛片| 黄色视频,在线免费观看| 亚洲人成网站高清观看| 丰满人妻一区二区三区视频av | 免费在线观看日本一区| 欧美黑人欧美精品刺激| 99热这里只有精品一区 | 操出白浆在线播放| 99久久久亚洲精品蜜臀av| 成人无遮挡网站| 久久精品亚洲精品国产色婷小说| 黄色视频,在线免费观看| 精品国内亚洲2022精品成人| 香蕉av资源在线| 特大巨黑吊av在线直播| 精华霜和精华液先用哪个| 很黄的视频免费| 身体一侧抽搐| 欧美乱妇无乱码| 精品福利观看| 亚洲av熟女| 在线观看舔阴道视频| 床上黄色一级片| 久久热在线av| 亚洲av美国av| 男女那种视频在线观看| 国产私拍福利视频在线观看| 欧美国产日韩亚洲一区| 久久婷婷人人爽人人干人人爱| 性欧美人与动物交配| 国产三级中文精品| 亚洲成人久久爱视频| 亚洲精品在线美女| 欧美成狂野欧美在线观看| 网址你懂的国产日韩在线| 国内毛片毛片毛片毛片毛片| 国产伦一二天堂av在线观看| 亚洲九九香蕉| 国产精品99久久久久久久久| 久久中文字幕一级| 欧美乱色亚洲激情| 久久中文字幕一级| 特级一级黄色大片| 男女之事视频高清在线观看| 亚洲欧美日韩东京热| 国产精品av久久久久免费| 99国产精品99久久久久| 欧美日韩中文字幕国产精品一区二区三区| 亚洲av中文字字幕乱码综合| 亚洲精品粉嫩美女一区| 99久久精品一区二区三区| www.999成人在线观看| 99久久成人亚洲精品观看| 亚洲国产看品久久| 熟女少妇亚洲综合色aaa.| 亚洲自拍偷在线| 国内精品久久久久久久电影| 亚洲精品一区av在线观看| 热99re8久久精品国产| 午夜视频精品福利| 欧美日韩一级在线毛片| 久久久久久九九精品二区国产| 精品欧美国产一区二区三| 国产亚洲av高清不卡| a级毛片在线看网站| 亚洲国产精品合色在线| 日韩欧美免费精品| 国产精品99久久久久久久久| 亚洲精品中文字幕一二三四区| 成人永久免费在线观看视频| 亚洲欧美一区二区三区黑人| 曰老女人黄片| 久久亚洲真实| 又紧又爽又黄一区二区| 男人的好看免费观看在线视频| 国产精品98久久久久久宅男小说| 欧美xxxx黑人xx丫x性爽| 国产乱人伦免费视频| cao死你这个sao货| 三级男女做爰猛烈吃奶摸视频| 欧美zozozo另类| 不卡av一区二区三区| 国内久久婷婷六月综合欲色啪| 国产主播在线观看一区二区| svipshipincom国产片| 色噜噜av男人的天堂激情| 色综合欧美亚洲国产小说| 亚洲欧美日韩无卡精品| 成人三级做爰电影| 99久久精品热视频| 男女那种视频在线观看| 九色成人免费人妻av| 国产成人av激情在线播放| 99精品欧美一区二区三区四区| 国产精品一区二区免费欧美| 天堂动漫精品| 可以在线观看毛片的网站| 亚洲精品美女久久久久99蜜臀| 国内精品久久久久精免费| 99精品欧美一区二区三区四区| 两个人看的免费小视频| 99在线人妻在线中文字幕| 国产激情欧美一区二区| 色综合站精品国产| 中文资源天堂在线| 欧美成人性av电影在线观看| 一二三四在线观看免费中文在| 中国美女看黄片| 国产精品亚洲一级av第二区| tocl精华| 国产三级中文精品| 久久久国产成人精品二区| 亚洲国产精品sss在线观看| 久久久久国产一级毛片高清牌| 日韩欧美精品v在线| 99久久综合精品五月天人人| 国产蜜桃级精品一区二区三区| 国产av一区在线观看免费| 色综合亚洲欧美另类图片| 在线播放国产精品三级| 男女床上黄色一级片免费看| 精品国内亚洲2022精品成人| 亚洲狠狠婷婷综合久久图片| 日韩国内少妇激情av| 听说在线观看完整版免费高清| 看黄色毛片网站| 国产一区二区三区在线臀色熟女| 两性午夜刺激爽爽歪歪视频在线观看| 两个人视频免费观看高清| 日韩精品中文字幕看吧| 欧美xxxx黑人xx丫x性爽| 中文亚洲av片在线观看爽| 亚洲成av人片免费观看| 久久精品人妻少妇| 性欧美人与动物交配| 国产真人三级小视频在线观看| 成人亚洲精品av一区二区| 国产蜜桃级精品一区二区三区| 亚洲欧洲精品一区二区精品久久久| 欧美午夜高清在线| 久久久精品大字幕| 综合色av麻豆| 亚洲va日本ⅴa欧美va伊人久久| 亚洲欧美日韩卡通动漫| 三级男女做爰猛烈吃奶摸视频| 美女cb高潮喷水在线观看 | 国产成人一区二区三区免费视频网站| 男女午夜视频在线观看| 99热这里只有精品一区 | 欧美日韩亚洲国产一区二区在线观看| 久久精品国产清高在天天线| 看免费av毛片| 叶爱在线成人免费视频播放| h日本视频在线播放| 桃红色精品国产亚洲av| 国产高清视频在线播放一区| 日本黄色片子视频| 婷婷六月久久综合丁香| 国产精品永久免费网站| 亚洲精品美女久久av网站| 色综合婷婷激情| 少妇裸体淫交视频免费看高清| 岛国在线观看网站| 禁无遮挡网站| 久久精品人妻少妇| 精品日产1卡2卡| 一进一出好大好爽视频| 怎么达到女性高潮| 国产精品精品国产色婷婷| 757午夜福利合集在线观看| 在线观看午夜福利视频| 999久久久国产精品视频| 欧美丝袜亚洲另类 | 欧美最黄视频在线播放免费| 俄罗斯特黄特色一大片| 国产精品1区2区在线观看.| 毛片女人毛片| 好男人电影高清在线观看| 美女cb高潮喷水在线观看 | 桃色一区二区三区在线观看| 一区福利在线观看| 国产在线精品亚洲第一网站| 亚洲狠狠婷婷综合久久图片| 亚洲色图av天堂| 免费观看的影片在线观看| 国产高清视频在线播放一区| 国产单亲对白刺激| 欧美午夜高清在线| 小蜜桃在线观看免费完整版高清| 亚洲av熟女| 亚洲中文字幕日韩| 精品无人区乱码1区二区| 人人妻人人澡欧美一区二区| 国内久久婷婷六月综合欲色啪| 国产欧美日韩精品亚洲av| 国产亚洲精品av在线| 亚洲七黄色美女视频| 久久香蕉精品热| 欧美日韩一级在线毛片| 美女免费视频网站| xxx96com| 嫩草影院精品99| 欧美激情久久久久久爽电影| 国产亚洲精品久久久com| 神马国产精品三级电影在线观看| 人妻久久中文字幕网| 日韩欧美三级三区| 韩国av一区二区三区四区| 一夜夜www| 欧美日韩综合久久久久久 | 黄色成人免费大全| 国产成人aa在线观看| 丁香欧美五月| 最新美女视频免费是黄的| 欧美性猛交黑人性爽| 免费在线观看视频国产中文字幕亚洲| 黄片大片在线免费观看| 女人高潮潮喷娇喘18禁视频| 久久久久精品国产欧美久久久| 亚洲精品国产精品久久久不卡| 熟妇人妻久久中文字幕3abv| 日本一二三区视频观看| 国产三级在线视频| 高清在线国产一区| 淫秽高清视频在线观看| 国产精品99久久99久久久不卡| 欧美成狂野欧美在线观看| 欧美日本亚洲视频在线播放| 欧美大码av| 亚洲av电影在线进入| 网址你懂的国产日韩在线| 国产真实乱freesex| 美女大奶头视频| xxx96com| 制服丝袜大香蕉在线| 亚洲成人免费电影在线观看| e午夜精品久久久久久久| 国产免费av片在线观看野外av| 国产av麻豆久久久久久久| 两个人视频免费观看高清| 国产99白浆流出| 桃色一区二区三区在线观看| 久久中文看片网| 成人精品一区二区免费| 亚洲国产欧美一区二区综合| 大型黄色视频在线免费观看| 国产久久久一区二区三区| 亚洲中文av在线| 国产精品一区二区三区四区免费观看 | 国产成人av教育| 亚洲国产看品久久| 一级毛片精品| 久久久久久久精品吃奶| 欧美一区二区精品小视频在线| 色av中文字幕| 国产三级黄色录像| 亚洲av五月六月丁香网| 操出白浆在线播放| 久久婷婷人人爽人人干人人爱| 成人精品一区二区免费| 国产精品久久视频播放| 99国产极品粉嫩在线观看| 精品久久久久久久久久久久久| 欧美一区二区国产精品久久精品| 国产精品1区2区在线观看.| 热99re8久久精品国产| 国产伦精品一区二区三区视频9 | 国产黄片美女视频| 在线免费观看不下载黄p国产 | 看黄色毛片网站| 久久天躁狠狠躁夜夜2o2o| 大型黄色视频在线免费观看| 亚洲第一电影网av| 一个人免费在线观看的高清视频| 黑人巨大精品欧美一区二区mp4| 午夜激情福利司机影院| 午夜免费观看网址| 欧美乱色亚洲激情| 亚洲欧美日韩高清专用| 最新中文字幕久久久久 | 国产高清视频在线观看网站| 少妇熟女aⅴ在线视频| 精品久久久久久成人av| 中文字幕人妻丝袜一区二区| 又黄又爽又免费观看的视频| 精品熟女少妇八av免费久了| 久久亚洲精品不卡| 国产亚洲精品综合一区在线观看| 俺也久久电影网| 天天躁狠狠躁夜夜躁狠狠躁| 精品一区二区三区av网在线观看| 亚洲av熟女| 大型黄色视频在线免费观看| 国产人伦9x9x在线观看| 欧美日韩乱码在线| 久久久久久人人人人人| 国内久久婷婷六月综合欲色啪| 亚洲狠狠婷婷综合久久图片| 动漫黄色视频在线观看| 亚洲精品456在线播放app | 无限看片的www在线观看| 中亚洲国语对白在线视频| 国产三级中文精品| xxx96com| 久久久久久久精品吃奶| 国产精品久久久久久亚洲av鲁大| 真实男女啪啪啪动态图| 成人午夜高清在线视频| 国产三级中文精品| 两个人看的免费小视频| 国产成人精品无人区| 日本免费一区二区三区高清不卡| 在线播放国产精品三级| 制服丝袜大香蕉在线| 午夜视频精品福利| 亚洲欧洲精品一区二区精品久久久| 免费大片18禁| 欧美一区二区精品小视频在线| 亚洲第一电影网av| 我要搜黄色片| 1000部很黄的大片| www.熟女人妻精品国产| 叶爱在线成人免费视频播放| 12—13女人毛片做爰片一| 国产精品永久免费网站| 制服丝袜大香蕉在线| ponron亚洲| 中文在线观看免费www的网站| 少妇裸体淫交视频免费看高清| 日韩欧美 国产精品| 天堂影院成人在线观看| 日日干狠狠操夜夜爽| 好男人电影高清在线观看| xxx96com| 母亲3免费完整高清在线观看| 精品人妻1区二区| 免费在线观看日本一区| 欧美成人一区二区免费高清观看 | 午夜久久久久精精品| 制服丝袜大香蕉在线| 国产乱人视频| 国产在线精品亚洲第一网站|