• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Solving the Cauchy Problem of the Nonlinear Steady-state Heat Equation Using Double Iteration Process

    2014-04-14 07:01:06WeichungYeihIYaoChanChiaMingFanJiangJhyChangandCheinShanLiu

    Weichung YeihI-Yao ChanChia-Ming FanJiang-Jhy Chang and Chein-Shan Liu

    1 Introduction

    In this paper,the nonlinear steady-state heat equation is studied.The nonlinearity occurs from the fact that the heat conduction coefficient is temperature-dependent.There are many applications for this kind of materials.For example,the nanofluid[Mintsa,Roy,Nguyen and Doucet(2009)],single-walled carbon nanotubes[Hone,Whitney,Piskotiand A.Zettl(1999)]and porous silicon[Gesele,Linsmeier,Drach,Fricke and Arens-Fischer(1997)]have been used and they all have temperature dependent conductivity.To deal with the problems for this kind of materials numerically,one can use the Kirchhoff transformation to convert the nonlinear governing equation into a linear one[Bialecki and Nowak(1981)].In the existing literatures,most researchers focused on the standard boundary value problem.Only limited literatures deal with the inverse problems.Cannon(1967)studied the steady-state heat equation subject to the boundary condition:Neumann boundary condition on the whole boundary and Dirichlet boundary condition on part of the boundary.Ingham and Yuan(1993)solved the inverse problem of determining the unknown temperature-dependent thermal conductivity and temperature distribution by prescribing the temperature boundary condition on the whole boundary and several interior points.To authors’best knowledge,the inverse Cauchy problem(seeking the temperature distribution subject to the Dirichlet data and Neumann data on part of the boundary and no information on the remaining)for this nonlinear elliptic type equation has rarely been investigated.In the following,we will give a brief review for the development of solvers of nonlinear algebraic equations especially for ill-posed system.

    Nonlinear problems are often encountered in science and engineering.Many phenomena are modeled as nonlinear equations.For numerical calculations,after discretization a set of nonlinear algebraic equation is constructed.To solve nonlinear algebraic equations,there exist many well-developed methods.The most well known method is the so-called Newton-Raphson method[Tjalling(1955)](also known as the Newton method)where the iteration process is written as:

    where x denotes the unknown vector.It is known that the Newton-Raphson method converges very fast.However,when the system is large the inverse of the Jacobian matrix will become impossible.In addition,if the Jacobian matrix is very ill-conditioned it is non-trivial to have accurate estimate for its inverse.This may result in numerical instability for the Newton’s method.It means that for the inverse problems which are known for their ill-posedness using the Newton’s method will yield inaccurate answers.

    Therefore,for nonlinear ill-posed problems other alternatives are suggested.In the Landweber[Landweber(1951)]iteration method,the direction of BTF is used and the iteration is written as:

    However,the Landweber iteration method may not overcome the ill-posed behaviors for some systems and the Tikhonov’s regularization method[Tikhonov&Arsenin(1977)]is usually adopted.However,for conventional Tikhonov’s regularization method,to determine the optimal regularization parameter requires a lot of computation efforts such as the L-curve method[Hanson(1992)]or the discrepancy principles[Morozov(1984,1966)].An easier method to determine the regularization method has been proposed by Liu and Kuo(2011).

    Other alternatives to tackle the ill-posed problems are derived from the evolution dynamics.For example,the fictitious time integration method(FTIM)was proposed by Liu and Atluri(2008)where the direction F is chosen.Similarly,the dynamic Jacobian inverse free method(DJIFM)proposed by Ku,Yeih and Liu(2011)has adopted the direction F multiplying with a modification factor to ensure that the trajectory of the unknown vector lies on the manifold.The exponentially convergent scalar homotopy method(ECSHA)adopts the direction of BTF which is very similar to the Landweber iteration method.However,ECSHA multiplies the direction of evolution by a modification factor which ensures that the trajectory of the unknown vector lies on the manifold.Several literatures using ECSHA to deal with ill-posed problems can be found,such as Chan and Fan(2013)and Chan,Fan and Yeih(2011).Liu and Atluri(2011a)proposed to use a direction mixed by F and BTF.Following this work,Yeih,Ku,Liu and Chan(2013)found the optimal direction mixed by many known directions.

    However,all the above-mentioned methods adopt a specific known direction.From numerical experience,selecting a specific direction will encounter slow convergence for some cases.Recently,Yeih,Chan,Ku,Fan and Guan(2014)has proposed a double iteration process to tackle the ill-posed problem in which for each step the direction of evolution is determined from an inner iteration process and this direction does not keep a same format such as F or BTF.Theoretically speaking,this method tries to find a direction as close B?1F as possible and avoid numerical instability at the same time.

    In this paper,we investigate the nonlinear ill-posed inverse problem:the Cauchy inverse problem of the nonlinear steady-state heat equation.The double iteration process will be used.Aside from this section,the following sections will be arranged.In Section 2,mathematical backgrounds will be given.In Section 3,six numerical examples will be illustrated to show the validity of this method.In the final section,a brief conclusion will be given based on the findings in previous sections.

    2 Mathematical backgrounds

    2.1 Problem formulation

    The nonlinear steady-state heat equation for a 2D compact region is written as:

    wherekis the temperature-dependent heat conduction coefficient andTis the temperature.There are several kinds of boundary conditions:

    The inverse Cauchy problem is somewhat different from the standard boundary value problem.Overprescribed Cauchy data are given on part of the boundary,for example Dirichlet and Neumann boundary conditions or Dirichlet and Robin boundary conditions are both given on part of the boundary.Meanwhile,on the remaining part of boundary no information is given.Inverse Cauchy problems are known as an ill-posed system.To solve this ill-posed system numerically,a robust and sound solver is necessary to overcome the numerical instability.

    It is worth to mention here that by using a new variable

    Eq.(3)will be transformed into a Laplace equation while the boundary conditions in eqs.(4)-(5)are still linear with respect to the variableψand Eq.(6)will become nonlinear.This technique is known as the Kirchhoff transformation.After solving the boundary value problems of the new variableψ,the inverse Kirchhoff transformation is then adopted to obtain the solution for the physical quantityT.In this paper,we do not adopt the Kirchhoff transformation technique and keep the original partial differential equation system nonlinear.

    2.2 Multiquadric radial basis functions

    Assume the physical quantity we concern can be expressed by the radial basis functions as:

    where xiis the position vector ofi-th observation point,sjis the position vector of thej-th source point,ˉris the radial distance between xiand sj,andcjis the undetermined coefficient.φis the radial basis function and in this paper the multiquadric radial basis function is selected as:

    in whichcis a shape parameter and the value ofcis 1.5 throughout this paper.The value ofcinfluences the results of inverse Cauchy problems.However,if the value ofcis appropriate,the influence is not significant as mentioned later in example 1.The optimal selection ofcis not within the scope of this article and is left as an open problem.

    More details of the multiquadric radial basis function can refer to[Hardy(1990)].Substituting the expression in eq.(8)into eq.(3)to eq.(6)for the inverse Cauchy problem,we will construct a system of nonlinear algebraic equations for unknown coefficientcj.Unfortunately this nonlinear algebraic equation system is ill-posed such that conventional numerical solvers fail due to the numerical instability.One can easily observe that the leading matrix for the radial basis functions is a full matrix which usually makes the ill-posed nature worse.

    2.3 Residual norm based algorithm

    The following derivation can be found in many related articles such as[Liu and Atluri(2012);Liu and Atluri(2011b)].Let us begin with a nonlinear algebraic system written as:

    To solve this nonlinear algebraic equation system,an equivalent scalar equation can be written as

    Let us construct a space-time manifold as:

    where x0is the initial guess andQ(t)satisfies thatQ(t)>0,Q(0)=1,and it is a monotonically increasing function oftwithQ(∞)=∞.

    In order to keep the trajectory of the solution x on the manifold,the following consistency equation should be satisfied:

    whereλis the proportional constant.After some manipulations,the evolution equation of x can be found as

    where v=Bu.Now let us consider the evolution of the residual vector as:

    Substituting equation(15)into equation(16),it follows

    Using the forward Euler scheme,we can discretize equation(17)as:

    Now let us use the forward Euler scheme on equation(15),we can obtain the following equation

    For a selected value ofr,we can rewrite equation(21)as an iteration formula[Liu and Atluri(2011b)]:

    In the above equation,the relaxation parameter is used to make the iteration stabler.In a recent published paper[Liu(2013)],Liu further found the optimal value ofrneeds to satisfy the following relationship to guarantee the trajectory of x remain on the manifold:

    2.4 Modified Tikhonov’s regularization method

    The details of the following descriptions can be found in[Liu(2012)].Considering the following linear algebraic system as:

    We use the following preconditioner written as:

    and apply this preconditioner to equation(24)then we will obtain

    with that B+B=In,i.e.,B+is the pseudo-inverse.

    It is quite interesting to find that the regularized equation in equation(26)is very similar to that of the conventional Tikhonv’s regularization method.However,in equation(26)the regularization parameterˉαappears in the both sides of equation while for the conventional Tikhonov’s regularization method it appears only in the left-hand side.

    Liu(2012)proposed that one can use equation(26)to formulate an iteration process as:

    The convergence criterion of the iteration process for equation(27)can be set as:kup+1?upk≤?where?is a preselected small tolerance.Liu also provided a theoretical proof of the convergence as the following theorem states:

    [Theorem 1]For Eq.(27)withˉα>0 the iterative sequence upconverges to the true solution utruemonotonically.

    Although the convergence of the sequence is guaranteed,in computation reality to reach the final numerical convergence it may take too many steps such that it becomes not economic at all.It means that if one tries to find the solution of an ill-posed linear system,a lot of computation effort will be paid for the iteration process(equation(27))and sometimes it makes this iteration not economic at all.This algorithm needs to be further examined while it is used to solve the best direction u such that Bu-F=0.Since for each step in the iteration process stated in equation(22)for solving the nonlinear problem,this linear algebraic equation Bu-F=0 needs to be done if one tries to find the optimal direction.However,to find the solution of this linear problem may cost too many iteration steps for iteration process equation(27).Remember that we are not really interested in finding the best direction we only want to find an appropriate u such thata0is between 1 and 4.Therefore,we can check this criterion for each step of the inner iteration(equation(27))and terminate the inner iteration when the value ofa0is less than a prescribed critical valueac.Of course,it may still take too many steps to leta0being less than this prescribed critical valueacfor a severely ill-posed system.It is set that if the number of iteration steps for the inner loop exceeds a preselected maximum number Imax,we then stop the inner loop as well as the outer loop.It means that to find an appropriate direction of evolution using the proposed algorithm already becomes not economic and the whole process should be terminated.If the values ofacand Imaxare selected appropriately,the numerical results are acceptable as shown in the next section.

    2.5 Double iteration process

    Based on the abovementioned backgrounds,a double iteration process has been proposed[Yeih,Chan,Ku,Fan and Guan(2014)]and stated as the followings.

    According to our numerical experiences,the value ofacis suggested to in the range from 2 to 4.Once the value ofacis less than 2,to seek the appropriate direction in the inner loop then consumes too many iteration steps.The value ofimaxactually depends on the selection ofac.If the value ofacis between 2 and 4,the value ofimaxis suggested to be in the range of 30,000 to 80,000 according to our numerical experiences.The selection ofεdepends on the system we want to solve.If the system is a well-posed system,the value ofεcan be very small such as 10?7.

    (b) Ifp=Imax, terminates the whole process.

    End of Inner Iteration

    If RMSEe£ or (b) is true then the outer iteration process stops; otherwise continue.

    End of Outer Iteration Process.

    However,if the system is an ill-posed system the value ofεshould not be very big and usually 10?3or 10?4is appropriate.It should be mentioned here that actually for an ill-posed system the value ofεcan be set as a small value for DIP since this tight convergence criterion cannot be reached and the whole DIP will be terminated due to the number of the inner iteration steps exceeds the maximum value Imax.It means the selection ofεis not critical at all.The value ofˉαneeds to be larger than the smallest eigenvalue of BTB which varies step by step.In calculation reality,a big enough value is selected.However,ifˉαis too big the iteration process for eq.(27)becomes slow.

    3 Numerical examples

    3.1 Example 1

    After the weights of radial basis functions are obtained,a set of 313 uniformly distributed points and 41 boundary points are used to construct the temperature distribution contour.The value ofacis 2,the value ofˉαis 0.0001,the converge criterionε=0.001 and the maximum iteration steps for the inner loop Imax=30,000.The initial guesses for the unknown weights of the radial basis functions are all 0.01.

    Figure 1:Distribution of source points for the radial basis functions in example 1.

    Figure 2:The root mean square errors versus the number of iteration steps for the outer loop in example 1.

    Figure 3:The profiles of a0 for both cases in example 1.

    Figure 5:Comparisons between the exact solution and numerical solutions using 0%and 5%random error noise data.

    Figure 6:Relative absolute error contours for the case using 5%random error data.

    In figure 2,the root mean square errors(RMSEs)for both cases are plotted with respect to the number of iteration steps for the outer loop.It can be observed that for both cases the RMSEs are not less than the convergence criterionε=0.001 before terminations.We further check the values ofa0for both cases as shown in figure 3.One can find that for the case using data without any noise the value ofa0exceeds the critical valueac=2 after 15 steps and for the case using data with maximum 5%absolute relative random errors the value ofa0exceeds the critical valueac=2 after 7 steps.It means that for both cases,the double iteration process terminates because searching for the appropriate direction becomes not economic.In figure 4,we examine the total accumulate iteration steps for the inner loops for both cases.It can be found that for both cases the final accumulated steps for the inner loop are less than 105steps.Since the most time-consuming step in the double iteration process occurs in the inner iteration loop,we can find that our proposed method indeed save computation efforts.Nevertheless,we still need to check whether or not the solution is acceptable.In figure 5,it can be seen that for the case using 0%error data the solution perfectly matches the exact solution while for the case using 5%absolute relative random error data the solution deviates from the exact solution a little bit.From figure 6,we can understand how the relative absolute error percentage distribution for the case using 5%absolute relative random error data is.It can be found the maximum absolute relative error percentage is about 2.4%.This result is quite good for the inverse Cauchy problem,especially the case we are studying now is nonlinear.Before closing this example,we use the parameters in this example and change the value of shape parametercfor the MQ radial basis functions and examine the maximum relative error for all representation points for eachc.The range ofcis from 0.5 to 20,and the increment incis 0.05.The absolute relative random error up to 5%is added in Cauchy data.The result is shown in figure 7 and one can see that within this range the maximum relative error for eachcis less than 12%.Actually,if the value ofcis less than 0.5,the maximum absolute relative error is very large(up to 300%or more).From this figure,one also can find that ifcis in this range the influence ofcis not significant.Therefore,in all cases studied in this article the value ofcis set as 1.5.

    Figure 7:The maximum relative absolute error percentage for the case using 5%random error versus the shape parameter c.

    3.2 Example 2

    Two Cauchy problems are investigated here:for the first problem the Cauchy data are prescribed for the outer circle and no information is prescribed for the inner circle,for the second problem the Cauchy data are prescribed for the inner circle and no information is prescribed for the outer circle.For each Cauchy problem,the numerical solutions are obtained using data without any noise and data with maximum 5%relative absolute random errors.The value ofacis 3.5,the value ofˉαis 0.0001,the converge criterionε=0.0001 and the maximum iteration steps for the inner loop Imax=50,000.The initial guesses for the unknown weights of the radial basis functions are all 0.01.

    The numerical results for both cases are illustrated in figures 9 and 10,respectively.It can be found that the numerical results using data without any noise are better than that using data with maximum 5%absolute relative random errors.Basically,no much difference can be found in both cases.The accuracies for both cases are very similar.The performances of the double iteration process are tabulated in table 1.The CPU times in this table represents the performances using Pentium?dualcore CPU E5200 at 2.50 GHz operating frequency.One can find out that due to the nonlinearity,as using data with maximum 5%absolute relative random error the maximum absolute relative error percentages are about 10%for both cases.In addition,from figures 8 and 9,one can find that the error tends to be larger near the boundary without information.Although the maximum relative error percentages for both cases are similar,it still can be told that using Cauchy data on the outer circle is better than using Cauchy data on the inner circle from the contour plots in figures 9 and 10.

    Figure 8:Source point setup for example 2.

    Figure 9:The temperature distribution for the Cauchy problem using data on the outer circle boundary.

    Table 1:Performance of double iteration process for example 2.

    3.3 Example 3

    In this example,a square region defined by{(x,y)|0≤x≤1;0≤y≤1}is considered.The temperature-dependent thermal conductivity isk(T)=exp(T).The temperature-dependent thermal conductivity now is nonlinear with respect to the temperature and it is very interesting to see what it will influence the numerical algorithm.The exact solution is designed as:T(x,y)=log(xy+5).Totally 100 points(25 points for each side and points are not placed at the corners)are arranged on the boundary and 169 uniformly distributed interior points accompanied with boundary points are used to be source points.After the weights are obtained,841 uniformly distributed interior points accompanied with boundary points are used to yield the temperature distribution.Cauchy data are given on the boundaries:y=0 andx=0.Two cases are examined:Cauchy data without any noise and Cauchy data with maximum 5%random relative absolute errors.The value ofacis 3.5,the value ofˉαis 0.001,the converge criterionε=0.0001 and the maximum iteration steps for the inner loop Imax=50,000.The initial guesses for the unknown weights of the radial basis functions are all 0.01.

    Figure 10:The temperature distribution for the Cauchy problem using data on the inner circle boundary.

    The numerical solutions are illustrated in figure 11.Although it looks like that the temperature contour for the solution using Cauchy data with 5%random error seems not so close to the exact solution,the maximum absolute error percentage for all points is only 1.4677 percent.The reason why it looks so comes from that the difference between two adjacent contour lines is 0.01 which is very small.The computational CPU time for data without error is 20.063 sec and for data with maximum 5%absolute relative random error is 10.547 sec.The final RMSE for data without error is 0.0051742671 and for data with maximum 5%absolute relative random error is 0.019615273.Once again,one can see that for both cases they do not meet the convergence criterion for RMSE.However,after the process terminates the results are still acceptable.

    Figure 11:The temperature distribution for example 3.

    3.4 Example 4

    The result is sketched in figure 12.Compare this with figure 5,one can find out that using conventional Cauchy data seems better than using nonlinear Cauchy data(eq.(4)and eq.(6))under the same noise level.The reason should come from the nonlinearity which may enlarge the errors in data during calculation.

    Figure 12:The temperature distribution for using Dirichlet and nonlinear Robin conditions as Cauchy data.

    3.5 Example 5

    The value ofacis 3.5,the value ofˉαis 0.001,the converge criterionε=0.05 and the maximum iteration steps for the inner loop Imax=80,000.The initial guesses for the unknown weights of the radial basis functions are all 0.01.

    Figure 13:Source point setup for example 5.

    Figure 14:The temperature distributions for example 5.

    The numerical results are shown in figure 14.It can be seen that the numerical results match the exact solution very well.The maximum absolute relative error percentage is less than 7 percent.

    In this example,the DIP terminates due to the convergence criterionε=0.05 has been achieved for both cases with 0%and 5%maximum absolute relative random error in Cauchy data.

    3.6 Example 6

    Figure 15:Numerical results:(a)Numerical solution for the forward problem;(b)numerical solution for the inverse Cauchy problem;(c)the absolute relative error percentage contour.

    In the above five numerical examples,the numerical solutions are compared with analytical solutions.In real engineering problems,the so-called analytical solution may not exist.Therefore,the performance of DIP for inverse Cauchy problems without the analytical solution is quite interesting.In this example,the domain is a circular domain with radius equal to 1.The center of this circular domain is at(5,5).The parameters used are:ˉα=0.0001,ac=2.0,Imax=30000,ε=0.0001.The weights for the radial basis functions are set as 0.01 initially.The setup for boundary points,interior points and representation points are the same as that in example 1.

    The forward problem is first studied.The Dirichlet data is given as:T(ˉθ)=10+cosˉθon the boundary whereˉθis the angle for the cylindrical coordinate system measuring from the center of the circular domain.The numerical solution for the forward problem is given in figure 15(a).

    4 Conclusions

    In this study,the double iteration process is used to deal with the Cauchy inverse problem of a nonlinear heat conduction equation.The double iteration process seeks for the appropriate evolution direction by using the MTRM for the inner loop.In order to avoid consuming too much computation time,once the direction satisfy the criteriona0

    Bialecki,R.;Nowak,A.J.;(1981):Boundary value problems in heat conduction with nonlinear material and boundary conditions.Appl.Math.Modelling,vol.5,pp.416-21.

    Cannon,J.R.(1967):Determination of the unknown coefficientk(u)in the equa-tion ?k(u)?u=0 from overspecified boundary data.Math.Anal.Appl.,vol.18,pp.112-14.

    Chan,H.F.;Fan,C.M.(2013):The modified collocation Trefftz method and exponentially convergent scalar homotopy algorithm for the inverse boundary determination problem for the biharmonic equation.Journal of Mechanics,vol.29,pp.363-372.

    Chan,H.F.;Fan,C.M.;Yeih,W.(2011):Solution of inverse boundary optimization problem by Trefftz method and exponentially convergent scalar homotopy algorithm.CMC:Computers,Materials,&Continua,vol.24,pp.125-142.

    Gesele,G.;Linsmeier,J.;Drach,V.;Fricke,J.;Arens-Fischer,R.(1997):Temperature-dependent thermal conductivity of porous silicon.Journal of Physics D:Applied Physics,vol.30,no.21,p.2911.

    Hansen,P.C.(1992):Analysis of discrete ill-posed problems by means of the L-curve.SIAM Rev.,vol.34,pp.561-580.

    Hardy,R.L.(1990):Theory and applications of the multiquadric-biharmonic method.Computers and Mathematics with Applications,vol.19,no.8/9,pp.163–208,.

    Hone,J.;Whitney,M.;Piskoti,C.;Zettl,A.(1999):Thermal conductivity of single-walled carbon nanotubes.Physical Review B,vol.59,no.4,pp.2514-2516.

    Ingham,D.B.;Yuan,Y.(1993):The solution of a nonlinear inverse problem in heat transfer.IMA Journal of Applied Mathematics,vol.50,pp.113-132.

    Ku,C.-Y.;Yeih,W.(2012):Dynamical Newton-like methods with adaptive stepsize for solving nonlinear algebraic equations.CMC:Computers,Materials,&Continua,vol.31,pp.173-200.

    Ku,C.-Y.;Yeih,W.;Liu,C.-S.(2011):Dynamical Newton-like methods for solving ill-conditioned systems of nonlinear equations with applications to boundary value problems.CMES:Computer Modeling in Engineering&Sciences,vol.76,pp.83-108.

    Landweber,L.(1951):An iteration formula for Fredholm integral equations of the first kind.Amer.J.Math,vol.73,pp.615–624.

    Liu,C.-S.(2013):An Optimal Preconditioner with an Alternate Relaxation Parameter Used to Solve Ill-posed Linear Problems.CMES:Computer Modeling in Engineering&Sciences,vol.92,pp.241-269.

    Liu,C.-S.(2012):Optimally generalized regularization methods for solving linear inverse problems.CMC:Computers,Materials,&Continua,vol.29,pp.103-127.

    Liu,C.-S.;Atluri,S.N.(2008):A novel time integration method for solving a large system of non-linear algebraic equations.CMES:Computer Modeling inEngineering&Sciences,vol.31,pp.71-83.

    Liu,C.-S.;Atluri,S.N.(2011a):An iterative algorithm for solving a system of nonlinear algebraic equations,F(x)=0,using the system of ODEs with an optimum in˙x=λ?αF+(1?α)BTF?;Bij=?Fi/?xj.CMES:Computer Modeling in Engineering&Sciences,vol.73,pp.395-431.

    Liu,C.-S.;Atluri,S.N.(2011b):Simple"residual-norm"based algorithms,for the solution of a large system of non-linear algebraic equations,which converge faster than the Newton’s method.CMES:Computer Modeling in Engineering&Sciences,vol.71,pp.279-304.

    Liu,C.-S.;Atluri,S.N.(2012):An iterative method using an optimal descent vector,for solving an ill-conditioned systemBX=b,better and faster than the conjugate gradient method.CMES:Computer Modeling in Engineering&Sciences,vol.80,pp.275-298.

    Liu,C.-S;Kuo,C.-L.(2011):A dynamic Tikhonov regularization method for solving nonlinear ill-posed problems.CMES:Computer Modeling in Engineering&Sciences,vol.76,No.2,pp.109-132.

    Mintsa,H.A.;Roy,G.;Nguyen,C.T.;Doucet,D.(2009):New temperature dependent thermal conductivity data for water-based nanofluids.International Journal of Thermal Sciences,vol.48,no.2,pp.367-371.

    Morozov,V.A.(1966):On regularization of ill-posed problems and selection of regularization parameter.J.Comp.Math.Phys.,vol.6,pp.170-175.

    Morozov,V.A.(1984):Methods forSolving Incorrectly Posed Problems.Springer,New York.

    Tikhonov,A.N.;Arsenin,V.Y.(1977):Solution of Ill-posed Problems.Washington:Winston&Sons.

    Tjalling,J.Y.(1955):Historical development of the Newton-Raphson method.SIAM Review,vol.37,pp.531–551.

    Yeih,W.;Ku,C.-Y.;Liu,C.-S.;Chan,I.-Y.(2013):A scalar homotopy method with optimal hybrid search directions for solving nonlinear algebraic equations.CMES:Computer Modeling in Engineering&Sciences,vol.90,pp.255-282.

    Yeih,W.;Chan,I.-Y.;Ku,C.-Y.;Fan,C.-M.;Guan,P.-C(2014):A double iteration process for solving the nonlinear algebraic equations,especially for illposed nonlinear algebraic equations.CMES:Computer Modeling in Engineering&Sciences,vol.99,no.2,pp.123-149.

    五月玫瑰六月丁香| 免费在线观看成人毛片| 直男gayav资源| 很黄的视频免费| 内地一区二区视频在线| netflix在线观看网站| 亚洲国产精品合色在线| 国产午夜福利久久久久久| 欧美日本亚洲视频在线播放| 国产精品,欧美在线| 嫩草影院精品99| 免费人成视频x8x8入口观看| 国产精品美女特级片免费视频播放器| 两人在一起打扑克的视频| 久久久久精品国产欧美久久久| 欧美最黄视频在线播放免费| 9191精品国产免费久久| 人妻夜夜爽99麻豆av| 少妇人妻一区二区三区视频| 一二三四社区在线视频社区8| 免费大片18禁| 日韩亚洲欧美综合| 又爽又黄无遮挡网站| 国产 一区 欧美 日韩| 色5月婷婷丁香| 欧美日韩黄片免| 亚洲精品成人久久久久久| 99在线人妻在线中文字幕| 久久6这里有精品| 一本一本综合久久| 免费看日本二区| 99热精品在线国产| 久久精品91蜜桃| 91av网一区二区| 长腿黑丝高跟| a在线观看视频网站| 国产视频内射| 国产欧美日韩精品一区二区| 亚洲电影在线观看av| 亚洲精品成人久久久久久| 少妇裸体淫交视频免费看高清| 在线免费观看不下载黄p国产 | 国产aⅴ精品一区二区三区波| 国产精品一区二区三区四区免费观看 | 99国产极品粉嫩在线观看| 久久中文看片网| 制服丝袜大香蕉在线| 成年人黄色毛片网站| 一卡2卡三卡四卡精品乱码亚洲| 美女被艹到高潮喷水动态| 在线a可以看的网站| 波多野结衣高清无吗| 欧美午夜高清在线| av视频在线观看入口| 午夜精品久久久久久毛片777| 久久伊人香网站| 欧美日韩国产亚洲二区| 老熟妇仑乱视频hdxx| 国产蜜桃级精品一区二区三区| 九色成人免费人妻av| 性插视频无遮挡在线免费观看| 51国产日韩欧美| 尤物成人国产欧美一区二区三区| 日韩国内少妇激情av| ponron亚洲| 亚洲av.av天堂| 午夜亚洲福利在线播放| 夜夜夜夜夜久久久久| 精品国内亚洲2022精品成人| 亚洲国产高清在线一区二区三| 在线观看一区二区三区| 在线观看美女被高潮喷水网站 | 久久久精品大字幕| 国内精品一区二区在线观看| 97人妻精品一区二区三区麻豆| 久久精品综合一区二区三区| 欧美成人一区二区免费高清观看| 高清在线国产一区| 亚洲精品一卡2卡三卡4卡5卡| 午夜影院日韩av| 国产成人福利小说| 美女 人体艺术 gogo| 99久国产av精品| 日日夜夜操网爽| 国产老妇女一区| 18禁黄网站禁片免费观看直播| a级毛片免费高清观看在线播放| 青草久久国产| 国产综合懂色| 伊人久久精品亚洲午夜| eeuss影院久久| 久久中文看片网| 亚洲av第一区精品v没综合| 久99久视频精品免费| 久久人妻av系列| 成年版毛片免费区| 国产伦精品一区二区三区视频9| 美女xxoo啪啪120秒动态图 | 国产精品永久免费网站| 日韩欧美在线二视频| 国产免费男女视频| 最好的美女福利视频网| 久久久久久久久大av| 嫩草影院精品99| 日韩有码中文字幕| 成人美女网站在线观看视频| 欧美日韩黄片免| 他把我摸到了高潮在线观看| 亚洲黑人精品在线| 欧美3d第一页| 亚洲av中文字字幕乱码综合| 1000部很黄的大片| 色噜噜av男人的天堂激情| 欧美性感艳星| 国产日本99.免费观看| 久久久久久久午夜电影| www.www免费av| 内地一区二区视频在线| 国产精品1区2区在线观看.| 精品久久久久久,| 国产一区二区三区在线臀色熟女| 久99久视频精品免费| 久久国产精品人妻蜜桃| 亚洲中文字幕日韩| 高清日韩中文字幕在线| 日韩欧美精品免费久久 | 日日摸夜夜添夜夜添av毛片 | 99国产极品粉嫩在线观看| 床上黄色一级片| 桃红色精品国产亚洲av| 国产aⅴ精品一区二区三区波| 看十八女毛片水多多多| 久久精品国产自在天天线| 偷拍熟女少妇极品色| bbb黄色大片| 女人被狂操c到高潮| 国产伦一二天堂av在线观看| 国内少妇人妻偷人精品xxx网站| 久久精品影院6| 桃红色精品国产亚洲av| 国产色婷婷99| 欧美一区二区精品小视频在线| 亚洲18禁久久av| 毛片一级片免费看久久久久 | 亚洲av一区综合| 美女 人体艺术 gogo| av专区在线播放| 人妻夜夜爽99麻豆av| 亚洲精品色激情综合| 亚洲精品影视一区二区三区av| 91麻豆av在线| 亚洲av五月六月丁香网| 少妇被粗大猛烈的视频| 欧美激情在线99| 国产高清三级在线| av在线观看视频网站免费| 两个人视频免费观看高清| 午夜久久久久精精品| 日韩免费av在线播放| 俄罗斯特黄特色一大片| 真实男女啪啪啪动态图| 日韩精品青青久久久久久| 69人妻影院| 午夜久久久久精精品| 精品人妻偷拍中文字幕| 天天躁日日操中文字幕| 中文字幕高清在线视频| 日韩欧美一区二区三区在线观看| 简卡轻食公司| 欧美日韩瑟瑟在线播放| 欧美日韩中文字幕国产精品一区二区三区| 黄色丝袜av网址大全| 成人av一区二区三区在线看| 黄色视频,在线免费观看| 精品99又大又爽又粗少妇毛片 | 丰满的人妻完整版| 欧美色欧美亚洲另类二区| 国产白丝娇喘喷水9色精品| 男女床上黄色一级片免费看| 99久国产av精品| 亚洲国产高清在线一区二区三| 淫秽高清视频在线观看| 欧美极品一区二区三区四区| 夜夜看夜夜爽夜夜摸| 噜噜噜噜噜久久久久久91| 成熟少妇高潮喷水视频| 999久久久精品免费观看国产| 国产一区二区三区在线臀色熟女| 亚洲在线自拍视频| 精品国产三级普通话版| 两人在一起打扑克的视频| 免费av不卡在线播放| 少妇的逼好多水| 老司机午夜福利在线观看视频| 亚洲第一区二区三区不卡| 久久久精品欧美日韩精品| 亚洲avbb在线观看| 久久欧美精品欧美久久欧美| 欧美成人a在线观看| 国产伦精品一区二区三区四那| 精品人妻视频免费看| 最后的刺客免费高清国语| 小蜜桃在线观看免费完整版高清| 97超视频在线观看视频| 亚洲人与动物交配视频| 国产精品亚洲一级av第二区| 亚洲av第一区精品v没综合| 亚洲av成人精品一区久久| 久久久久亚洲av毛片大全| 嫩草影院入口| 一个人看视频在线观看www免费| 高清日韩中文字幕在线| 人妻久久中文字幕网| 麻豆久久精品国产亚洲av| 超碰av人人做人人爽久久| 国产aⅴ精品一区二区三区波| av中文乱码字幕在线| 最后的刺客免费高清国语| 国产精品不卡视频一区二区 | 欧美国产日韩亚洲一区| 天天一区二区日本电影三级| 一级a爱片免费观看的视频| 欧美性猛交╳xxx乱大交人| 亚洲国产精品成人综合色| 亚洲一区高清亚洲精品| 欧美乱色亚洲激情| 一级a爱片免费观看的视频| 性插视频无遮挡在线免费观看| 国产色爽女视频免费观看| 亚洲成人免费电影在线观看| 色综合亚洲欧美另类图片| 免费搜索国产男女视频| 久久午夜福利片| 婷婷丁香在线五月| 小说图片视频综合网站| 一个人免费在线观看的高清视频| 日本一本二区三区精品| 亚洲美女视频黄频| 性欧美人与动物交配| 亚洲精品在线美女| 精品久久久久久久末码| 久久精品国产亚洲av涩爱 | 少妇的逼水好多| 香蕉av资源在线| 日本撒尿小便嘘嘘汇集6| 亚洲人成网站在线播放欧美日韩| 岛国在线免费视频观看| 久久久久免费精品人妻一区二区| 久久精品影院6| 国产精品久久久久久久久免 | 在线观看午夜福利视频| 伦理电影大哥的女人| a级毛片免费高清观看在线播放| 成熟少妇高潮喷水视频| 岛国在线免费视频观看| 日日摸夜夜添夜夜添av毛片 | 欧美色视频一区免费| 亚洲欧美日韩东京热| 亚洲国产欧美人成| 久久久精品大字幕| 国产精品免费一区二区三区在线| 国产v大片淫在线免费观看| 午夜福利高清视频| 亚洲最大成人手机在线| 成人永久免费在线观看视频| 国产极品精品免费视频能看的| 如何舔出高潮| 欧美激情国产日韩精品一区| 日韩欧美国产一区二区入口| 超碰av人人做人人爽久久| 色视频www国产| 亚洲国产精品合色在线| 亚洲成人中文字幕在线播放| 91在线精品国自产拍蜜月| 99热这里只有精品一区| 欧美精品啪啪一区二区三区| 久久精品久久久久久噜噜老黄 | 欧美日本亚洲视频在线播放| 51午夜福利影视在线观看| 欧美日韩亚洲国产一区二区在线观看| 九九在线视频观看精品| 久久久久久久久久黄片| av黄色大香蕉| 在线观看一区二区三区| 人妻久久中文字幕网| 神马国产精品三级电影在线观看| 一进一出抽搐动态| 91久久精品电影网| 午夜精品在线福利| 精品一区二区三区视频在线观看免费| www.www免费av| 天天一区二区日本电影三级| or卡值多少钱| 色综合婷婷激情| 亚洲国产欧洲综合997久久,| 直男gayav资源| 18禁黄网站禁片免费观看直播| 非洲黑人性xxxx精品又粗又长| 动漫黄色视频在线观看| 性插视频无遮挡在线免费观看| 欧美激情国产日韩精品一区| 一级毛片久久久久久久久女| 国产伦一二天堂av在线观看| 成人特级av手机在线观看| 男女那种视频在线观看| 久久精品国产清高在天天线| 日韩欧美在线二视频| 一个人观看的视频www高清免费观看| 男女那种视频在线观看| 亚洲av免费在线观看| 亚洲精品乱码久久久v下载方式| 色在线成人网| 亚洲成a人片在线一区二区| 亚洲第一区二区三区不卡| 日本 欧美在线| 亚洲欧美日韩东京热| av在线天堂中文字幕| 亚洲三级黄色毛片| 国产av不卡久久| 国产高清三级在线| 亚洲自偷自拍三级| 久久久久久久亚洲中文字幕 | 欧美国产日韩亚洲一区| 色噜噜av男人的天堂激情| 女人被狂操c到高潮| 亚洲精品在线观看二区| 精品人妻熟女av久视频| 亚洲第一区二区三区不卡| 精品久久久久久久末码| 少妇高潮的动态图| 丝袜美腿在线中文| h日本视频在线播放| 亚洲七黄色美女视频| 日日摸夜夜添夜夜添av毛片 | 国产日本99.免费观看| 91字幕亚洲| 亚洲欧美日韩高清专用| 91久久精品电影网| 欧美xxxx性猛交bbbb| 日本黄大片高清| 国产亚洲精品久久久com| 在线天堂最新版资源| 中国美女看黄片| 网址你懂的国产日韩在线| 欧美激情在线99| 亚洲va日本ⅴa欧美va伊人久久| 欧美一区二区亚洲| 免费看光身美女| 日本免费a在线| 欧美+日韩+精品| 中文字幕熟女人妻在线| 在线播放无遮挡| 90打野战视频偷拍视频| 亚洲成av人片在线播放无| 欧美性猛交黑人性爽| 99久久精品一区二区三区| 亚洲av成人av| 免费观看精品视频网站| 丰满乱子伦码专区| 亚洲午夜理论影院| 在线观看美女被高潮喷水网站 | 午夜福利免费观看在线| 亚洲午夜理论影院| 国产黄色小视频在线观看| 好看av亚洲va欧美ⅴa在| 我要看日韩黄色一级片| 好看av亚洲va欧美ⅴa在| 18禁在线播放成人免费| 免费看光身美女| 日本a在线网址| 内射极品少妇av片p| 国产精品女同一区二区软件 | 91av网一区二区| 成年女人毛片免费观看观看9| 最好的美女福利视频网| 亚洲欧美精品综合久久99| 亚洲成人中文字幕在线播放| 亚洲不卡免费看| 婷婷六月久久综合丁香| 又爽又黄a免费视频| 国产蜜桃级精品一区二区三区| 别揉我奶头 嗯啊视频| 国产免费av片在线观看野外av| av黄色大香蕉| 免费高清视频大片| 啦啦啦韩国在线观看视频| 麻豆国产97在线/欧美| av专区在线播放| 亚洲无线在线观看| 亚洲无线观看免费| 69av精品久久久久久| 少妇熟女aⅴ在线视频| 69人妻影院| 欧美激情久久久久久爽电影| 午夜老司机福利剧场| 成人特级黄色片久久久久久久| 美女cb高潮喷水在线观看| 国产一级毛片七仙女欲春2| 国产欧美日韩一区二区精品| 91午夜精品亚洲一区二区三区 | 熟妇人妻久久中文字幕3abv| 国产高清有码在线观看视频| av福利片在线观看| 一本一本综合久久| 国产三级中文精品| 蜜桃亚洲精品一区二区三区| 一区福利在线观看| 又爽又黄a免费视频| 久久久久久久久久黄片| 看片在线看免费视频| 欧美性猛交黑人性爽| 久久久久免费精品人妻一区二区| 久久久久久久精品吃奶| 一级黄色大片毛片| 真人一进一出gif抽搐免费| 免费在线观看影片大全网站| 亚洲欧美激情综合另类| 18禁黄网站禁片免费观看直播| 亚洲久久久久久中文字幕| 丰满的人妻完整版| 精品国内亚洲2022精品成人| 俄罗斯特黄特色一大片| 757午夜福利合集在线观看| 天天躁日日操中文字幕| 国产一区二区三区视频了| 国产精品美女特级片免费视频播放器| av福利片在线观看| 国产欧美日韩一区二区精品| 午夜福利在线在线| 欧美成人免费av一区二区三区| 久久精品久久久久久噜噜老黄 | 国产精品久久久久久久电影| 99精品久久久久人妻精品| 神马国产精品三级电影在线观看| 精品午夜福利视频在线观看一区| 九九久久精品国产亚洲av麻豆| 久久人妻av系列| 精品久久久久久久久av| 成人永久免费在线观看视频| 精品久久久久久久末码| 亚洲中文字幕一区二区三区有码在线看| 99精品久久久久人妻精品| av中文乱码字幕在线| 色综合欧美亚洲国产小说| 国产主播在线观看一区二区| 18美女黄网站色大片免费观看| 亚洲经典国产精华液单 | 国产精品野战在线观看| 国产极品精品免费视频能看的| 一级毛片久久久久久久久女| 亚洲经典国产精华液单 | av中文乱码字幕在线| 国产精品久久久久久久久免 | 老司机福利观看| 亚洲激情在线av| 啦啦啦韩国在线观看视频| 乱人视频在线观看| 国产精品国产高清国产av| a在线观看视频网站| 久久久久久九九精品二区国产| 国产中年淑女户外野战色| av国产免费在线观看| 精品人妻一区二区三区麻豆 | 好男人电影高清在线观看| 99热这里只有是精品在线观看 | 啦啦啦韩国在线观看视频| 欧美性猛交╳xxx乱大交人| 99久久九九国产精品国产免费| 18禁裸乳无遮挡免费网站照片| 国产高清视频在线播放一区| 国产单亲对白刺激| 我的女老师完整版在线观看| 波多野结衣巨乳人妻| 国产伦人伦偷精品视频| 国产亚洲精品久久久久久毛片| 好男人在线观看高清免费视频| 亚洲精品在线观看二区| 亚洲avbb在线观看| 天堂√8在线中文| 在线播放无遮挡| 久久亚洲真实| 每晚都被弄得嗷嗷叫到高潮| 一级av片app| 国产精品久久久久久精品电影| 国产精品电影一区二区三区| 搡老妇女老女人老熟妇| 成人特级黄色片久久久久久久| 美女 人体艺术 gogo| 在线观看一区二区三区| 免费人成在线观看视频色| 免费大片18禁| 在线天堂最新版资源| 午夜激情福利司机影院| 久久这里只有精品中国| av专区在线播放| а√天堂www在线а√下载| 国产精品亚洲一级av第二区| 一级黄片播放器| 亚洲美女视频黄频| a级一级毛片免费在线观看| 午夜亚洲福利在线播放| 精品一区二区三区视频在线观看免费| 国产亚洲欧美98| 免费av毛片视频| 少妇的逼水好多| 91久久精品国产一区二区成人| 国内精品美女久久久久久| 亚洲一区高清亚洲精品| 黄片小视频在线播放| 9191精品国产免费久久| 日韩欧美精品免费久久 | 欧美高清性xxxxhd video| 国产精品一区二区三区四区久久| 内射极品少妇av片p| 免费观看的影片在线观看| 中文字幕av成人在线电影| 如何舔出高潮| 国产国拍精品亚洲av在线观看| 亚洲va日本ⅴa欧美va伊人久久| 国产亚洲精品久久久com| 国产三级在线视频| 又爽又黄a免费视频| or卡值多少钱| 在线观看免费视频日本深夜| 亚洲人成伊人成综合网2020| 亚洲综合色惰| netflix在线观看网站| 久久亚洲真实| 国产三级中文精品| 尤物成人国产欧美一区二区三区| 亚洲狠狠婷婷综合久久图片| 亚洲专区国产一区二区| 免费在线观看成人毛片| 高清日韩中文字幕在线| 欧美日韩国产亚洲二区| 久久九九热精品免费| 亚洲国产精品sss在线观看| 国产又黄又爽又无遮挡在线| 亚洲性夜色夜夜综合| 在线观看66精品国产| 国内精品久久久久久久电影| 91麻豆精品激情在线观看国产| netflix在线观看网站| 日韩高清综合在线| 亚洲美女黄片视频| av福利片在线观看| 中文字幕精品亚洲无线码一区| 黄色女人牲交| 亚洲成av人片在线播放无| 日韩高清综合在线| 亚洲自拍偷在线| 男女那种视频在线观看| 日本a在线网址| 成人av一区二区三区在线看| 欧美高清性xxxxhd video| a级毛片免费高清观看在线播放| 免费av不卡在线播放| 免费在线观看亚洲国产| 在线免费观看的www视频| 内射极品少妇av片p| 欧美色视频一区免费| 久久精品久久久久久噜噜老黄 | 久久人人精品亚洲av| 国产综合懂色| 天美传媒精品一区二区| 日韩欧美 国产精品| 成人亚洲精品av一区二区| 国产三级黄色录像| .国产精品久久| 亚洲人成伊人成综合网2020| 97超视频在线观看视频| 欧美精品啪啪一区二区三区| 日韩 亚洲 欧美在线| 黄色女人牲交| 成人永久免费在线观看视频| 麻豆成人午夜福利视频| 国产伦精品一区二区三区视频9| netflix在线观看网站| 毛片女人毛片| 男女下面进入的视频免费午夜| 亚洲av中文字字幕乱码综合| 最后的刺客免费高清国语| 深夜a级毛片| 窝窝影院91人妻| 午夜福利在线观看吧| 亚洲美女黄片视频| 欧美最黄视频在线播放免费| 精品久久久久久久末码| 午夜福利18| 亚洲在线观看片| 亚洲黑人精品在线| 亚洲真实伦在线观看| 亚洲av成人精品一区久久| 99国产精品一区二区蜜桃av| 久久精品人妻少妇| 男女那种视频在线观看| 亚洲国产精品成人综合色| 午夜免费成人在线视频| 午夜精品一区二区三区免费看| 日韩av在线大香蕉| 亚洲精品一区av在线观看| 亚洲av成人精品一区久久| 啪啪无遮挡十八禁网站| 日本五十路高清| 成人美女网站在线观看视频| 一个人观看的视频www高清免费观看| 亚洲 国产 在线| 国产 一区 欧美 日韩| 日本免费a在线| 日本免费一区二区三区高清不卡| 国产av一区在线观看免费| 亚洲av一区综合| 国产乱人视频| 亚洲人成网站高清观看| 亚洲黑人精品在线|