• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Double Iteration Process for Solving the Nonlinear Algebraic Equations,Especially for Ill-posed Nonlinear Algebraic Equations

    2014-04-14 07:01:02WeichungYeihIYaoChanChengYuKuChiaMingFanandPaiChenGuan

    Weichung YeihI-Yao ChanCheng-Yu KuChia-Ming Fan and Pai-Chen Guan

    1 Introduction

    The engineering or physical problems are sometimes modeled as nonlinear equations.After discretization,a system of nonlinear algebraic equations is then needed to be solved.Unlike the linear algebraic equation system,there exist not many solvers for the nonlinear algebraic equation system.Among these nonlinear equation solvers,they can be categorized into two folds:iteration and evolution dynamics.

    For the group of iteration,most well-known methods are Newton’s method[T-jalling(1955)]and Landweber iteration method[Landweber(1951)].The former one is very efficient for solving nonlinear equation however it is not appropriate to adopt this method for the ill-posed system since the inverse of Jacobian matrix is not easy to obtain.The later one is less efficient than the Newton’s method while dealing with the well-posed problem but is more stable when dealing with the ill-posed problem.However,the Landweber iteration method cannot deal with severely ill-posed system and most of times the Tikhonov’s regularization method[Tikhonov and Arsenin(1977)]is required.

    For the group of evolution dynamics,a system of the first order ordinary differential equations of the unknowns is constructed and the trajectory of the unknown will approach to the fixed point of this ODE system which is the solution of the original algebraic equation system[Ramm(2007)].The homotopy method[Billups(2002)],the scalar homotopy method[Liu,Yeih,Kuo and Atluri(2009)],the fictitious time integration method[Ku,Yeih,Liu and Chi(2009)]and so on can be categorized in this group.

    No matter the iteration method or the evolution dynamic method is adopted,the unknown vector changes according to some known direction for most methods.For example,the Newton’s method uses the direction of B?1F where the superscript‘-1’denotes the inverse of a matrix,Landweber iteration method and the exponentially convergent scalar homotopy algorithm(ECSHA)[Chan,Fan and Yeih(2011)]use the direction of BTF.The fictitious time integration method(FTIM)and the dynamic Jacobian inverse free method(DJIFM)[Ku,Yeih and Liu(2011)]adoptthe direction of F.Liu[Liu and Atluri(2011a)]proposed to use two directions at the same time and he found the optimal combination of these two directions.[Yeih,Ku,Liu and Chan(2013)]extended this idea and answered the question for finding the optimal combination for multiple directions.All these methods adopt one or a combination of multiple known directions,however,generally speaking adopting a known direction or a combination of multiple known direction cannot guarantee it will be the best one for all problems.Later in the article,it will be found that theoretically the optimal direction will be the direction of B?1F if the inverse of the Jacobian matrix does exist.However,for the ill-posed problem or some special cases the inverse of the Jacobian matrix does not exist or cannot be found in the numerical sense the optimal searching direction used in the iteration process or evolution dynamics method is then not proposed to authors’best knowledge.To overcome the ill-posed nature,the abovementioned alternatives such as the Landweber iteration,the fictitious time integration method and so on adopt other directions than the direction of B?1F such that the numerical process will be stabler.The problem is these methods show slow convergence rate which makes solving the nonlinear ill-posed problem become not economic in numerical sense.Especially when the large scale problem is encountered,computation effort to deal with the ill-posed nature then becomes awful and not acceptable for engineers.

    The method proposed here combine two recent developed methods:the residual norm based algorithm and the modified Tikhonov’s regularization method.The followings give a brief review of these two methods.Recently,the residual norm based algorithm(RNBA)has been proposed to deal with the nonlinear algebraic equation system.[Liu and Atluri(2012);Liu and Atluri(2011b)]The RNBA basically is a type of the scalar homotopy method[Liu,Yeih,Kuo and Atluri(2009)]where the trajectory of the unknown vector is required to lie on the space-time manifold.The RNBA constructs an iteration process from the evolution dynamics when the evolution direction u is selected.Later,Liu(2013)reported that the value of the relaxation parameter in RNBA has an optimal value.The modified Tikhonov’s regularization method(MTRM)[Liu(2012)]proposed an iteration to solve the solution for an ill-posed linear system.In the same paper,Liu also proposed a generalized Tikhnov’s regularization method(GTRM)to solve the ill-posed linear system.The MTRM is very similar to conventional Tikhonov’s regularization method which adds a regularization parameter in the diagonal line of the leading coefficient matrix while the GTRM adds regularization parameters in the diagonal line and the determination for these regularization parameters depend on the equilibrate matrix concept.

    In this article,we develop a novel double iteration process to deal with the nonlinear algebraic equation systems.For outer iteration process,the evolution path of the unknown vector follows the searching direction determined from the inner iteration process and the process requires the path falls on the space-time manifold such that the convergence rate can be guaranteed.To determine the searching direction,we solve a linear algebraic equation system:BTBu=BTF.For a well-posed problem,it can be easily proved that the direction u for the above problem is B?1F.However,for the ill-posed problem the above linear system cannot be solved due to the ill-posed nature.We adopt the modified Tikhonov’s regularization method(MTRM)[Liu(2012)]to iteratively approach the solution for the above linear sys-tem.However,for ill-posed problems to really find the solution of u may require too many iteration steps for the modified Tikhonov’s regularization method which makes the whole numerical process not economic at all.Therefore,we propose that the inner iteration process should stop while the direction u already makes the value ofa0being smaller than the prescribed critical valueac(it should be smaller than 4 to guarantee the path falls on the manifold)or while the number of the iteration steps for the current inner iteration process exceeds the prescribed maximum tolerance value says Imax.The former criterion loosen the problem for solving BTBu=BTF exactly(for which the value ofa0should be one exactly)by finding an approximated direction such thata0

    2 Mathematical backgrounds

    2.1 Residual Norm Based Algorithm(RNBA)

    The following derivation can be found in many related articles such as[Liu and Atluri(2012);Liu and Atluri(2011b)].Let us begin with a nonlinear algebraic system written as:

    where F denotes the residual vector and x denotes the unknown vector.To solve this nonlinear algebraic equation system,we formulate an equivalent scalar equation written as

    It is obvious that solving equation(1)is equivalent to solving equation(2)and vice versa.Now let us construct a space-time manifold as:

    where x0is the initial guess andQ(t)satisfies thatQ(t)>0,Q(0)=1,and it is a monotonically increasing function oftwithQ(∞)=∞.

    In order to keep the trajectory of the solution x on the manifold,the following consistency equation should be satisfied:

    whereλis the proportional constant.After some manipulations,we can obtain the evolution equation of x as

    where v=Bu.Now let us consider the evolution of the residual vector as:

    Substituting equation(6)into equation(7),we then obtain:

    Using the forward Euler scheme,we can discretize equation(8)as:

    Consequently,an algebraic equation forβis obtained as:

    Now let us use the forward Euler scheme on equation(6),we can obtain the following equation

    For a selected value ofr,we can rewrite equation(12)as an iteration formula[Liu and Atluri(2011b)]:

    In the above equation,the relaxation parameter is used to make the iteration stabler.In a recent published paper,Liu(2013)further found the value ofrneeds to satisfy the following relationship to guarantee the trajectory of x remains on the manifold:

    3 Modified Tikhonov’s Regularization Method(MTRM)

    The regularization technique is well-known for dealing with an ill-posed system.There exist many literatures mentioning the regularization technique.For readers’convenience,the following references can provide a conceptual understanding for the regularization technique.[Lin,Chen and Wang(2011);Wang,Chen and Ling(2012);Fu,Chen and Zhang(2012)]

    The details of the following descriptions can be found in[Liu(2012)].Considering the following linear algebraic system as:

    and we use the following preconditioner written as:

    where B+is the pseudo-inverse with B+B=I.

    and apply this preconditioner to equation(15)then we will obtain

    It is quite interesting to find that the regularized equation in equation(17)is very similar to that of the conventional Tikhonv’s regularization method.However,in equation(17)the regularization parameter appears in the both sides of equation while for the conventional Tikhonov’s regularization method it appears only in the left-hand side.

    Liu(2012)proposed that one can use equation(17)to formulate an iteration process as:

    The convergence criterion of the iteration process for equation(18)can be set as:kup+1?upk≤?where?is a preselected small tolerance.Liu also provided a theoretical proof of the convergence as the following theorem states:

    [Theorem 1]For Eq.(18)withˉα>0 the iterative sequence upconverges to the true solution utruemonotonically.

    Although the convergence of the sequence is guaranteed,in computation reality to reach the final numerical convergence it may takes too many steps such that it becomes not economic at all.It means that if one tries to find the solution of an ill-posed linear system,a lot of computation effort will be paid for the iteration process(equation(18))and sometimes it makes this iteration not economic at all.This algorithm needs to be further examine while it is used to solve the best direction u such that Bu-F=0 since for each step in the iteration process stated in equation(13)for solving the nonlinear problem this linear algebraic equation Bu-F=0 needs to be done if one tries to find the optimal direction.However,to find the solution of this linear problem may cost too many iteration steps for iteration process equation(18).Remember that we are not really interested in finding the best direction we only want to find an appropriate u such thata0is between 1 and 4.Therefore,we can check this criterion for each step of the inner iteration(equation(18))and terminate the inner iteration as the value ofa0is less than a prescribed critical valueac.Of course,it may take too many steps to leta0being less than this prescribed critical valueac.We say that if the number of iteration steps for the inner loop exceeds a preselected maximum number Imax,we then stop the inner loop as well as the outer loop.It means that to find an appropriate direction of evolution using the proposed algorithm already becomes not economic and the whole process should be terminated.

    4 Double Iteration Process(DIP)

    Based on the abovementioned theoretical backgrounds,we proposed a double iteration process as the followings.

    Double Iteration Process(DIP):

    Give initial guessx0

    Outer Iteration:

    Fork=0,1,2,… Repeat

    Calculate the residual vectorFk(xk) and the Jacobian matrixBk(xk)

    Inner Iteration:

    (b) Ifp=Imax, terminates the whole process.

    End of Inner Iteration

    If RMSEe£ or (b) is true then the outer iteration process stops; otherwise continue.

    End of Outer Iteration Process.

    It is worth mentioned here that the initial guess in the inner iteration uses the descent direction.Actually,one can select other alternatives such asu0=0.How the initial guess for the inner iteration process influences the accuracy and efficiency of DIP leaves as an open question and in this article we use the initial guess as mentioned above.The DIP can be summarized in the flow chart in Fig.1.

    Figure 1:The flow chart of DIP.

    From the abovementioned double iteration process,we can find that the proposed method does not really try to solve the linear algebraic equationBu-F=0since it is expected that for the ill-posed system it may take too many iteration steps to accomplish this for the inner iteration and it definitely costs too much.In order to avoid using much computation effort,we say once the value ofa0is less than the prescribed valueacwe claim that the appropriate direction has been found already.Of course we need to remind ourselves that whileacapproaches to one the inner iteration takes more and more steps.And we expect that to find an appropriate direction may still require unreasonably many steps so we say that once the iteration steps exceed that maximum value Imaxwe can stop the whole process since it becomes not economic for further searching.The appropriate values ofac,ˉαand Imaxinfluence the convergence speed a lot and how to choose them leaves as an open question.

    According to our numerical experiences,the value ofacis suggested to in the range from 2.5 to 4.Once the value ofacis less than 2.5,to seek the appropriate direction in the inner loop then consumes too many iteration steps.The value ofimaxactually depends on the selection ofac.If the value ofacis between 2.5 and 4,the value ofimaxis suggested to be in the range of 30,000 to 80,000 according to our numerical experiences.The selection ofεdepends on the system we want to solve.If the system is a well-posed system,the value ofεcan be very small such as 10?7.However,if the system is an ill-posed system the value ofεshould not be very big and usually 10?3or 10?4is appropriate.It should be mentioned here that actually for an ill-posed system the value ofεcan be set as a small value for DIP since this tight convergence criterion cannot be reached and the whole DIP will be terminated due to the number of the inner iteration steps exceeds the maximum value Imax.It means the selection ofεis not critical at all.The value ofˉαneeds to be larger than the smallest eigenvalue of BTB which varies step by step.In calculation reality,a big enough value is selected.However,ifˉαis too big the iteration process for eq.(18)becomes slow.

    5 Numerical Examples

    [Example1]In this example,we consider an almost linear problem[Brown(1973)]:

    Figure 2:The RMSE versus the number of steps for the outer loop in example 1.

    Figure 3:The value of a0never exceeds ac.

    [Example 2]In this problem,we consider the following simple system:

    Figure 4:The absolute error for the k-th component in the solution vector x.

    Figure 5:Trajectory for the solution using the Newton method.

    Figure 6:RMSE versus the number of iteration steps for the outer loop in example 2.

    Figure 7:The value of a0 never exceeds the critical value ac=2.0.

    Figure 8:The trajectory of the solution for the double iteration method.

    This is an interesting example because the iteration for Newton’s method fails when the initial guess is selected as(3,5)as shown in Fig.5.As the trajectory approaches tox1=3.5192 during the iteration,it happensx2≈0.0.It then is found that the Jacobian matrix now is nearly singular.This leads the trajectory of(x1,x2)oscillates at the axis forx1=3.5192 as shown in Fig.5.It means that the conventional Newton method fails for this case.We now use the double iteration process to solve this problem with the initial guess is set as(x1,x2)=(3,5).The parameters used for the double iteration process areˉα=10,ac=2.0,Imax=30000 andε=10?6.It is found from Fig.6 that the process terminates after 31 steps for the outer loop.We check the plot ofa0as shown in Fig.7 and we find out thata0never exceeds the critical valueac=2.0 which once more shows that our method really can guarantee the trajectory of the solution vector falls on the manifold.The trajectory of the solution is shown in Fig.8.

    [Example 3]A classical example of an ill-posed problem is the nonlinear Fredholm integral equation of the first kind which is well known as a nonlinear ill-posed problem.The problem we consider is written as:

    where A andˉβare constants.We let A=1 andˉβ=3 in the followings.We give data for Acos(ˉβs)in the regions∈[0,1]by equally dividing the region into 200 segments,that means totally 201 data points are used.The data has disturbed by maximum 5%relative error.Therefore,we also use these 201 points as the integration quadrature points and the trapezoidal rule is used for integration.

    and Manzhirov(2007)].The initial guess are given asx(t)=10.0 fort∈[0,1]and the following parameters are used:ˉα=0.1,ac=2.5,Imax=30000 andε=10?3.The reason why the value ofεis not very small in comparison with the previous two examples is that this problem is ill-posed in nature and therefore the convergence criterion can be larger.From Fig.9,one can find that after 30 steps for the outer loop the solution converges to the requirement.It can be found from Fig.10 that the numerical solution is acceptable for an ill-posed problem with maximum 5%relative absolute random error in data.The relative absolute random error percentage(RAREP)for a given dataxgiven(from numerical calculation or prescribed value)is defined as:

    The proposed method shows excellent noise resistance for the ill-posed nonlinear problem.

    [Example 4]The following problem appeared in[Chan and Fan(2013)].Here we consider a boundary detection problem with the governing equation is the biharmonic equation.The boundary enclosing the computational domain is defined by

    Figure 9:RMSE versus number of iteration steps for the outer loop in example 3.

    Figure 10:The solution of a Fredholm integral equation of the first kind.

    the parametric equation:

    For 0≤θ≤π,we prescribe four boundary data as

    Forπ<θ≤2π,only the Dirichlet boundary data is given but the geometry or the lower part is missing.We assume that the designed field property is written as:

    To recover the missing boundary and solve the field quantity at the same time makes this problem becomes a nonlinear ill-posed inverse problem.To solve this problem,we adopt the same discretization method used in[Chan and Fan(2013)],that means the modified Trefftz collocation method is used.Forthe known boundary,totally 60 points are arranged and 40 points are used for the unknown boundary and the initial guess of the missing boundary is a half circle.The characteristic length used in this problem is 3.0 and the order for the basis is 24.That means totally we have 98 Trefftz basis functions,for more details please refer to[Chan and Fan(2013)].The parameters used for double iteration process are:ˉα=10,ac=2.5,Imax=50000 andε=10?3.It can be found from Fig.11 that the RMSE never reaches the requirement and the whole process terminates for the number of iteration steps for the inner loop is equal to 22.The reported CPU time is 106.69 sec using the Pentium?dual core CPU E5200 at 2.5GHz.The accumulated steps for the inner loop are 70659 steps.We further examine the plot ofa0as shown in Fig.12,the value ofa0exceeds the critical valueacand it seems that further seeking an appropriate vector u becomes numerically uneconomic.However,we can find in Fig.13 that the recovering shape for the missing boundary is already acceptable.The proposed method can automatically stop while further reducing the norm of residual vector becomes difficult and stops at that time still yield acceptable result.

    Figure 11:RMSE versus the number of iteration step for the outer loop in example 4.

    Figure 12:The value of a0 exceeds ac in example 4.

    Figure 13:The recovery of missing boundary.(-.-:known boundary;-.-:initial guess for the unknown boundary;-+-:exact unknown boundary;-+-:recovery of missing boundary using data with maximum 1%relative error)

    [Example 5]In the following,an inverse problem is given as:

    where ? is the interested domain.

    The field quantityuand the conductivityσis both unknown.The boundary values of the field quantity and conductivity are given as boundary conditions:

    where Γ is the boundary enclosed the interested domain.The domain we consider is a square region andx∈[0,1]andy∈[0,1].The designed exact solutions for the field quantity and the conductivity are given as

    We use finite difference to discretize the domain by using a 31 by 31 mesh.Maximum 5%relative random errors are added in the data both in the surface field quantity as well as the surface conductivity.The parameters used for the double iteration process are:ˉα=0.1,ac=2.5,Imax=30000 andε=10?5.It reports that the process terminates for the number of steps for the outer loop is equal to 22 and the RMSE is lower than the requirement.The solutions for the field quantity and the conductivity are shown in Fig.14(a)and(b),respectively.The absolute error of the field quantity is illustrated in Fig.15(a)while the relative error of the conductivity is illustrated in Fig.15(b).The absolute error(AE)is de fined as:

    whereunumis the numerical solution andutrueis the analytic solution.

    From these figures,we can say that the current approach gives accurate result and this method has good noise resistance.

    [Example 6]In the following,a nonlinear inverse Cauchy problem for a quasi-linear PDE is considered as:

    in a square region withx∈[0,1]andy∈[0,1].

    The Cauchy boundary conditions are given onx=0 andx=1 while no boundary data are given ony=0 andy=1.Maximum 2%relative random errors are added into 30×30 mesh for the domain and boundary.It means we have 120 boundary points and 780 inner points.Parameters used for the double iteration process are:ˉα=0.01,ac=3.5,Imax=50000 andε=10?4.The initial guess for the weight of each radial basis function is equal to 0.001.After we obtain the weights for each radial basis functions,we use total 60x60 mesh to represent the solution.The contours for the exact solution and numerical solution are given in Fig.16.Although this result is not so well as previous examples,for an ill-posed nonlinear system like this problem it is acceptable.The relative error percentage contour plot is illustrated in Fig.17 and one can see that the maximum relative error percentage is about 5%while the maximum error in the boundary data is 2%which indicates that nonlinearity of the system may amplify the error.It should be mentioned here that in this case the process is terminated because the number of steps of inner loop exceeds Imax=50000.

    Figure 14:Numerical solutions for(a)the field quantity(b)the conductivity.(-+-:the exact solution;—:numerical solution)

    Figure 15:Error distribution:(a)absolute error for the field quantity;(b)absolute relative error for the conductivity.

    Figure 16:Comparison between the exact solution and the numerical solution.

    Figure 17:The absolute relative error percentage contour plot for example 6.

    6 Conclusions

    In this paper,a novel double iteration process for solving the nonlinear ill-posed system is proposed.The appropriate direction of evolution is determined from the inner loop which is based on the modified Tikhonov’s regularization method.In order to avoid consuming too much computation effort,the whole process will be terminated when the number of iteration steps for the inner loop exceeds the maximum prescribed value.In such a case,it is said to further seek for the appropriate direction of evolution is computationally uneconomic and thus one should stop whole process.However,from numerical results we can observe that the numerical result is still acceptable.In other words,the proposed method is efficient and robust for solving the nonlinear ill-posed systems.Six examples are given to illustrate the validity for the proposed method.

    Acknowledgement:The authors would like to express their thanks to H.F.Chan and C.L.Kuo for providing information and related source codes for our modification in example 4 and example 5.

    Billups,S.C.(2002):A homotopy-based algorithm for mixed complementarity problems.SIAM J.Optim.,vol.12 pp.583-605.

    Brown,K.M.(1973):Computer oriented algorithms for solving systems of simultaneous nonlinear algebraic equations.In Numerical Solution of Systems of Nonlinear Algebraic Equations,Byrne,G.D.and Hall C.A.Eds.,pp.281-348,Academic Press,New York.

    Chan,H.F.;Fan,C.M.(2013):The modified collocation Trefftz method and exponentially convergent scalar homotopy algorithm for the inverse boundary determination problem for the biharmonic equation.Journal of Mechanics,vol.29,pp.363-372.

    Chan,H.F.;Fan,C.M.;Yeih,W.(2011):Solution of inverse boundary optimization problem by Trefftz method and exponentially convergent scalar homotopy algorithm.CMC:Computers,Materials,&Continua,vol.24,pp.125-142.

    Fu,Z.J.;Chen,W.;Zhang,C.Z.(2012):Boundary particle method for Cauchy inhomogeneous potential problems.Inverse Problems in Science and Engineering,vol.20,no.2,pp.189-207.

    Ku,C-Y;Yeih,W(2012):Dynamical Newton-like methods with adaptive stepsize for solving nonlinear algebraic equations.CMC:Computers,Materials,&Continua,vol.31,pp.173-200.

    Ku,C-Y;Yeih,W;Liu,C-S(2011):Dynamical Newton-like methods for solving ill-conditioned systems of nonlinear equations with applications to boundary value problems.CMES:Computer Modeling in Engineering&Sciences,vol.76,pp.83-108.

    Ku,C.-Y.;Yeih,W.;Liu,C.-S;Chi,C.C.(2009):Applications of the fictitious time integration method using a new time-like function.CMES:Computer Modeling in Engineering&Sciences,vol.43,pp.173-190.

    Landweber,L.(1951):An iteration formula for Fredholm integral equations of the first kind.Amer.J.Math.,vol.73,pp.615–624.

    Lin,J.;Chen,W.;Wang,F.(2011):A new investigation into regularization techniques for the method of fundamental solutions.Mathematics and Computer in Simulation,vol.81,no.6,pp.1144-1152.

    Liu,C.-S.(2008):A fictitious time integration method for two-dimensional quasilinear elliptic boundary value problems.CMES:Computer Modeling in Engineering&Sciences,vol.33,pp.179-198.

    Liu,C.-S.(2012):Optimally generalized regularization methods for solving linear inverse problems.CMC:Computers,Materials,&Continua,vol.29,pp.103-127.

    Liu,C.-S.(2013):An optimal preconditioner with an alternate relaxation parameter used to solve ill-posed linear problems.CMES:Computer Modeling in Engineering&Sciences,vol.92,pp.241-269.

    Liu,C.S.;Atluri,S.N.(2011a):An iterative algorithm for solving a system of nonlinear algebraic equations,F(x)=0,using the system of ODEs with an optimum in˙x=λ?αF+(1?α)BTF?;Bij=?Fi/?xj.CMES:Computer Modeling in Engineering&Sciences,vol.73,pp.395431.

    Liu,C.-S.;Atluri,S.N.(2011b):Simple"residual-norm"based algorithms,for the solution of a large system of non-linear algebraic equations,which converge faster than the Newton’s method.CMES:Computer Modeling in Engineering&Sciences,vol.71,pp.279-304.

    Liu,C.-S.;Atluri,S.N.(2012):An iterative method using an optimal descent vector,for solving an ill-conditioned system BX=b,better and faster than the conjugate gradient method.CMES:Computer Modeling in Engineering&Sciences,vol.80,pp.275-298.

    Liu,C.-S.;Yeih,W.;Kuo,C.L;Atluri,S N.(2009):A scalar homotopy method for solving an over/under-determined system of non-linear algebraic equations.CMES:Computer Modeling in Engineering&Science,vol.53,pp.47-71.

    Polyanin,A.D.;Manzhirov,A.V.(2007):Handbook of Integral Equations.Second Edition,Caoman&Hall/CRC,Taylor&Francis Group,New York.

    Ramm,A.G.(2007):Dynamical system methods for solving operator equations.Mathematics in Science and Engineering,vol.208 Elsevier,Amsterdam,Netherlands.

    Tikhonov,A.N.;Arsenin,V.Y.(1977):Solution of Ill-posed Problems.Washington:Winston&Sons.

    Tjalling,J.Y.(1955):Historical development of the Newton-Raphson method.SIAM Review,vol.37,pp.531–551.

    Wang,F.;Chen,W.;Ling,L.(2012):Combinations of the method of fundamental solutions for general inverse source identification problems.Applied Mathematics and Computation,vol.19,no.3,pp.1173-1182.

    Yeih,W.;Ku,C-Y;Liu,C.-S;Chan,I-Y(2013):A scalar homotopy method with optimal hybrid search directions for solving nonlinear algebraic equations.CMES:Computer Modeling in Engineering&Sciences,vol.90 pp.255-282.

    国产伦精品一区二区三区四那| 国内精品久久久久久久电影| 久久6这里有精品| 可以在线观看毛片的网站| 51午夜福利影视在线观看| 熟女电影av网| 国产亚洲精品av在线| 国产精品亚洲av一区麻豆| 国产三级在线视频| 午夜日韩欧美国产| 老司机午夜十八禁免费视频| 亚洲成人中文字幕在线播放| 国产又黄又爽又无遮挡在线| 成人午夜高清在线视频| 可以在线观看毛片的网站| 在线观看美女被高潮喷水网站 | 亚洲五月婷婷丁香| 免费av不卡在线播放| 麻豆av噜噜一区二区三区| 丰满的人妻完整版| 亚洲人成网站在线播| 成年女人永久免费观看视频| 怎么达到女性高潮| 97热精品久久久久久| 亚洲 国产 在线| 亚洲欧美激情综合另类| 亚洲性夜色夜夜综合| 色在线成人网| 日韩欧美 国产精品| 免费无遮挡裸体视频| 日日摸夜夜添夜夜添小说| 久久99热6这里只有精品| 日韩欧美精品免费久久 | 精品日产1卡2卡| 男插女下体视频免费在线播放| 成年女人永久免费观看视频| 亚洲成人精品中文字幕电影| 熟女电影av网| 亚洲成人久久性| 99久久99久久久精品蜜桃| 中文字幕免费在线视频6| 亚洲最大成人手机在线| 综合色av麻豆| 久久亚洲精品不卡| 国产爱豆传媒在线观看| 国产精品乱码一区二三区的特点| 国产在线精品亚洲第一网站| 在线看三级毛片| 非洲黑人性xxxx精品又粗又长| 国产成人影院久久av| 波多野结衣高清作品| 亚洲美女黄片视频| 午夜福利在线观看免费完整高清在 | 一区二区三区高清视频在线| 在线看三级毛片| а√天堂www在线а√下载| avwww免费| 国内少妇人妻偷人精品xxx网站| 久久精品国产亚洲av涩爱 | 亚洲久久久久久中文字幕| 国产淫片久久久久久久久 | 亚洲成人久久爱视频| 丝袜美腿在线中文| 长腿黑丝高跟| 3wmmmm亚洲av在线观看| 国产老妇女一区| 在线观看舔阴道视频| 欧洲精品卡2卡3卡4卡5卡区| 51国产日韩欧美| 亚洲aⅴ乱码一区二区在线播放| 国产成年人精品一区二区| 最好的美女福利视频网| 欧美日韩黄片免| 国产精品国产高清国产av| 国产激情偷乱视频一区二区| 99热这里只有精品一区| 最近最新免费中文字幕在线| 欧美bdsm另类| 又粗又爽又猛毛片免费看| 成人特级黄色片久久久久久久| 国产成+人综合+亚洲专区| 国产成人a区在线观看| 直男gayav资源| 夜夜夜夜夜久久久久| 91久久精品国产一区二区成人| 久久久精品欧美日韩精品| 国产成人福利小说| 亚洲av.av天堂| 美女大奶头视频| 精品一区二区三区人妻视频| 国产乱人伦免费视频| 国产精品电影一区二区三区| 国产在视频线在精品| 波多野结衣巨乳人妻| 韩国av一区二区三区四区| 亚洲中文日韩欧美视频| 国产又黄又爽又无遮挡在线| 国产成人欧美在线观看| 简卡轻食公司| 嫁个100分男人电影在线观看| 一区二区三区四区激情视频 | 麻豆久久精品国产亚洲av| 国产在线男女| 99热这里只有是精品50| 久久婷婷人人爽人人干人人爱| 精品人妻偷拍中文字幕| 成人特级黄色片久久久久久久| 欧美+日韩+精品| 麻豆久久精品国产亚洲av| 好看av亚洲va欧美ⅴa在| 黄色丝袜av网址大全| 免费在线观看亚洲国产| 俄罗斯特黄特色一大片| 自拍偷自拍亚洲精品老妇| 欧美激情久久久久久爽电影| 人妻丰满熟妇av一区二区三区| 很黄的视频免费| 久久午夜福利片| 18禁在线播放成人免费| 亚洲av成人av| 搡女人真爽免费视频火全软件 | 久久久精品欧美日韩精品| 免费人成视频x8x8入口观看| 国产日本99.免费观看| 怎么达到女性高潮| 一级黄色大片毛片| 悠悠久久av| 男人舔奶头视频| 日韩欧美在线乱码| 国产av一区在线观看免费| 国产成人aa在线观看| 真人一进一出gif抽搐免费| 最好的美女福利视频网| 欧美+日韩+精品| 国产中年淑女户外野战色| 国产色婷婷99| 99视频精品全部免费 在线| 少妇人妻一区二区三区视频| 天堂√8在线中文| 亚洲欧美清纯卡通| 日韩欧美在线二视频| 欧美精品啪啪一区二区三区| 亚洲成人精品中文字幕电影| 欧美日韩中文字幕国产精品一区二区三区| 亚洲成av人片免费观看| 高清在线国产一区| 少妇高潮的动态图| 又粗又爽又猛毛片免费看| 欧美一区二区精品小视频在线| 国产熟女xx| 亚洲无线观看免费| 欧洲精品卡2卡3卡4卡5卡区| 成熟少妇高潮喷水视频| 免费在线观看日本一区| 精品福利观看| 日韩免费av在线播放| 他把我摸到了高潮在线观看| 在线观看美女被高潮喷水网站 | 色尼玛亚洲综合影院| 成人一区二区视频在线观看| 成人美女网站在线观看视频| 国产精品野战在线观看| 淫妇啪啪啪对白视频| 亚洲欧美精品综合久久99| 99在线视频只有这里精品首页| 国产一区二区在线av高清观看| 亚洲国产欧美人成| 亚洲欧美日韩高清在线视频| 亚洲人成网站高清观看| 国产成+人综合+亚洲专区| 变态另类成人亚洲欧美熟女| 欧美+亚洲+日韩+国产| 男女床上黄色一级片免费看| 国产精品爽爽va在线观看网站| 天堂√8在线中文| 久久精品国产自在天天线| 日韩免费av在线播放| 亚洲在线自拍视频| 成熟少妇高潮喷水视频| 美女 人体艺术 gogo| 在线观看美女被高潮喷水网站 | 97超视频在线观看视频| 亚洲熟妇中文字幕五十中出| 国内毛片毛片毛片毛片毛片| 在线观看午夜福利视频| 精品人妻熟女av久视频| 99热6这里只有精品| 久久久精品大字幕| 特级一级黄色大片| 白带黄色成豆腐渣| 日韩大尺度精品在线看网址| 国产精品99久久久久久久久| 一区二区三区激情视频| 亚洲一区二区三区色噜噜| 国产高清视频在线播放一区| 日韩中字成人| 久久婷婷人人爽人人干人人爱| 国产精品一区二区三区四区久久| 久久久精品欧美日韩精品| 99久久无色码亚洲精品果冻| 精品无人区乱码1区二区| 国内久久婷婷六月综合欲色啪| 成人永久免费在线观看视频| 国产男靠女视频免费网站| 综合色av麻豆| 中国美女看黄片| 亚洲欧美激情综合另类| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 99久久精品一区二区三区| 亚洲成av人片在线播放无| 精品不卡国产一区二区三区| 午夜福利高清视频| av天堂在线播放| 中文字幕人成人乱码亚洲影| 婷婷六月久久综合丁香| 在线免费观看的www视频| 亚洲狠狠婷婷综合久久图片| 国模一区二区三区四区视频| 亚洲人与动物交配视频| 女人被狂操c到高潮| 国产精品久久电影中文字幕| 真实男女啪啪啪动态图| 国产大屁股一区二区在线视频| 天堂影院成人在线观看| 精品国内亚洲2022精品成人| 在线十欧美十亚洲十日本专区| av中文乱码字幕在线| 波多野结衣高清无吗| 国产精品久久久久久亚洲av鲁大| 久久这里只有精品中国| 亚洲国产欧洲综合997久久,| 我要搜黄色片| 亚洲欧美清纯卡通| www.www免费av| 麻豆国产av国片精品| 男人狂女人下面高潮的视频| 老熟妇乱子伦视频在线观看| 久久国产精品影院| 国产精品综合久久久久久久免费| 亚洲自拍偷在线| 国产私拍福利视频在线观看| 丰满乱子伦码专区| 中文字幕熟女人妻在线| 国产精品久久久久久人妻精品电影| 亚洲精品影视一区二区三区av| 在现免费观看毛片| 欧美3d第一页| 久久人妻av系列| 国内精品一区二区在线观看| 无遮挡黄片免费观看| 国内毛片毛片毛片毛片毛片| 一级av片app| 午夜精品一区二区三区免费看| 日韩欧美在线二视频| 午夜精品久久久久久毛片777| 欧美潮喷喷水| 久久久久亚洲av毛片大全| 天美传媒精品一区二区| 免费黄网站久久成人精品 | 每晚都被弄得嗷嗷叫到高潮| 国产成年人精品一区二区| 成年人黄色毛片网站| 中文字幕高清在线视频| av国产免费在线观看| 亚洲最大成人手机在线| 日日摸夜夜添夜夜添小说| 欧美日韩黄片免| 欧美黄色片欧美黄色片| 99久久精品国产亚洲精品| 91九色精品人成在线观看| av中文乱码字幕在线| 亚洲熟妇中文字幕五十中出| 亚洲三级黄色毛片| 国产久久久一区二区三区| 国产欧美日韩精品一区二区| 在线观看66精品国产| 在线观看av片永久免费下载| 色噜噜av男人的天堂激情| 噜噜噜噜噜久久久久久91| www.www免费av| 天堂√8在线中文| 99国产综合亚洲精品| 成人av在线播放网站| 国产又黄又爽又无遮挡在线| 白带黄色成豆腐渣| 国产午夜精品久久久久久一区二区三区 | 久久久色成人| 欧美日韩亚洲国产一区二区在线观看| 亚洲午夜理论影院| 1000部很黄的大片| 日韩欧美一区二区三区在线观看| 欧美日韩中文字幕国产精品一区二区三区| 免费人成视频x8x8入口观看| 中文字幕精品亚洲无线码一区| 日本三级黄在线观看| 国产亚洲精品综合一区在线观看| 国产精品一区二区性色av| 中文字幕免费在线视频6| 亚洲av免费高清在线观看| 又爽又黄无遮挡网站| 美女被艹到高潮喷水动态| 婷婷亚洲欧美| 精华霜和精华液先用哪个| 色精品久久人妻99蜜桃| 国产真实乱freesex| 99久久成人亚洲精品观看| 国产精品亚洲美女久久久| 精品一区二区三区人妻视频| avwww免费| 久久亚洲真实| 在线免费观看不下载黄p国产 | 精品人妻熟女av久视频| 别揉我奶头 嗯啊视频| 麻豆一二三区av精品| 黄色一级大片看看| 国产高清视频在线播放一区| 丰满的人妻完整版| 丝袜美腿在线中文| 在线免费观看不下载黄p国产 | 国产精品久久久久久久久免 | 伦理电影大哥的女人| 欧美在线黄色| 丰满人妻一区二区三区视频av| 露出奶头的视频| 午夜免费激情av| www.熟女人妻精品国产| 日韩国内少妇激情av| 麻豆久久精品国产亚洲av| 亚洲,欧美精品.| 久久亚洲真实| 亚洲一区高清亚洲精品| 免费人成在线观看视频色| 午夜福利在线观看免费完整高清在 | 国产三级黄色录像| 欧美成人一区二区免费高清观看| 国产成人欧美在线观看| 国产激情偷乱视频一区二区| 麻豆成人av在线观看| 色噜噜av男人的天堂激情| 久久精品影院6| 丝袜美腿在线中文| 如何舔出高潮| 国产伦一二天堂av在线观看| 全区人妻精品视频| 一a级毛片在线观看| a级毛片免费高清观看在线播放| 欧美乱妇无乱码| 99久久成人亚洲精品观看| 成人永久免费在线观看视频| 国产精品久久久久久亚洲av鲁大| АⅤ资源中文在线天堂| www.www免费av| 又爽又黄a免费视频| 免费av不卡在线播放| 国产不卡一卡二| 国产黄a三级三级三级人| 成年人黄色毛片网站| 午夜久久久久精精品| 黄色配什么色好看| 亚洲真实伦在线观看| 亚洲熟妇熟女久久| 日韩亚洲欧美综合| av黄色大香蕉| 亚洲av五月六月丁香网| 18禁黄网站禁片免费观看直播| 麻豆国产97在线/欧美| 一本一本综合久久| 国产大屁股一区二区在线视频| 国产精品一区二区三区四区免费观看 | 日日摸夜夜添夜夜添av毛片 | 国产色爽女视频免费观看| 国产精品不卡视频一区二区 | 露出奶头的视频| 精品人妻熟女av久视频| 麻豆一二三区av精品| ponron亚洲| 露出奶头的视频| 两人在一起打扑克的视频| 午夜免费男女啪啪视频观看 | 久久午夜亚洲精品久久| 午夜久久久久精精品| 婷婷精品国产亚洲av| 美女高潮喷水抽搐中文字幕| 欧美日韩福利视频一区二区| 90打野战视频偷拍视频| 嫩草影院入口| 天堂av国产一区二区熟女人妻| 天堂网av新在线| 又爽又黄a免费视频| 国产三级中文精品| 99riav亚洲国产免费| 9191精品国产免费久久| 草草在线视频免费看| 最近在线观看免费完整版| 在线国产一区二区在线| av在线观看视频网站免费| 久久久久国内视频| 免费在线观看日本一区| 中文字幕av成人在线电影| 深爱激情五月婷婷| 亚洲精品456在线播放app | 丰满人妻一区二区三区视频av| 亚洲aⅴ乱码一区二区在线播放| 亚洲三级黄色毛片| 亚洲国产精品999在线| 午夜精品在线福利| 天天一区二区日本电影三级| 宅男免费午夜| 国产中年淑女户外野战色| 亚洲,欧美,日韩| av在线老鸭窝| 日本五十路高清| 午夜老司机福利剧场| 久久久久免费精品人妻一区二区| 丰满的人妻完整版| 久久久色成人| 精品99又大又爽又粗少妇毛片 | 亚洲国产欧美人成| 午夜福利成人在线免费观看| 国内少妇人妻偷人精品xxx网站| 亚洲av一区综合| 亚洲男人的天堂狠狠| 国产一区二区三区视频了| a级毛片a级免费在线| 日韩欧美国产在线观看| 国产男靠女视频免费网站| 岛国在线免费视频观看| 久久国产精品人妻蜜桃| 色噜噜av男人的天堂激情| 日本一二三区视频观看| 91九色精品人成在线观看| 国产精品一区二区三区四区久久| 国产美女午夜福利| 18+在线观看网站| 最新中文字幕久久久久| 男人的好看免费观看在线视频| 亚洲国产日韩欧美精品在线观看| 午夜福利欧美成人| 国产麻豆成人av免费视频| 国产在线男女| 日韩中字成人| 可以在线观看的亚洲视频| 老熟妇乱子伦视频在线观看| 精品久久国产蜜桃| aaaaa片日本免费| 亚洲欧美日韩东京热| 日韩欧美三级三区| 午夜激情欧美在线| 久久国产精品影院| 国产高清有码在线观看视频| 黄色丝袜av网址大全| 在线免费观看的www视频| 99久久精品国产亚洲精品| h日本视频在线播放| 国内揄拍国产精品人妻在线| 欧美一区二区国产精品久久精品| 久久久国产成人精品二区| 夜夜看夜夜爽夜夜摸| 深爱激情五月婷婷| 老女人水多毛片| av天堂在线播放| 国内揄拍国产精品人妻在线| 成人性生交大片免费视频hd| 波野结衣二区三区在线| 精品久久国产蜜桃| 成人亚洲精品av一区二区| 一区二区三区高清视频在线| 成人午夜高清在线视频| 亚洲在线观看片| 亚洲成人精品中文字幕电影| 午夜老司机福利剧场| 国产亚洲精品综合一区在线观看| 国产伦精品一区二区三区视频9| 亚洲人与动物交配视频| .国产精品久久| 美女xxoo啪啪120秒动态图 | 此物有八面人人有两片| 亚洲精华国产精华精| 丁香六月欧美| 国产不卡一卡二| 18禁黄网站禁片午夜丰满| 少妇熟女aⅴ在线视频| 亚洲国产欧洲综合997久久,| 国产69精品久久久久777片| 日本成人三级电影网站| 久久精品综合一区二区三区| 99久久成人亚洲精品观看| 人人妻,人人澡人人爽秒播| 色精品久久人妻99蜜桃| 日韩欧美在线乱码| 色综合亚洲欧美另类图片| 最新在线观看一区二区三区| 亚洲中文字幕日韩| 国内毛片毛片毛片毛片毛片| 国产色爽女视频免费观看| 村上凉子中文字幕在线| 一本一本综合久久| 国产精品国产高清国产av| 九色成人免费人妻av| 精品99又大又爽又粗少妇毛片 | 亚洲中文字幕日韩| 国内毛片毛片毛片毛片毛片| 99热精品在线国产| av欧美777| 国内精品久久久久久久电影| 成人特级黄色片久久久久久久| 天美传媒精品一区二区| 午夜视频国产福利| 亚洲av美国av| 99热这里只有精品一区| 99国产极品粉嫩在线观看| 精品一区二区三区视频在线| 精品一区二区三区视频在线观看免费| 99国产精品一区二区蜜桃av| 国产毛片a区久久久久| 久久久久久大精品| 国产大屁股一区二区在线视频| 午夜福利18| 18禁黄网站禁片午夜丰满| 亚洲专区国产一区二区| 久久久久久大精品| 国产高清三级在线| 欧美一级a爱片免费观看看| 神马国产精品三级电影在线观看| 久久亚洲真实| 国内毛片毛片毛片毛片毛片| 久久久国产成人免费| 9191精品国产免费久久| 九九久久精品国产亚洲av麻豆| 国产成人欧美在线观看| 麻豆久久精品国产亚洲av| 欧美成人性av电影在线观看| 国产激情偷乱视频一区二区| 一a级毛片在线观看| 国产日本99.免费观看| 亚洲一区二区三区色噜噜| 最近最新免费中文字幕在线| 久久久久久久亚洲中文字幕 | 搡老妇女老女人老熟妇| 免费人成在线观看视频色| 91av网一区二区| 国产美女午夜福利| 一级黄色大片毛片| 午夜福利免费观看在线| 欧美一级a爱片免费观看看| 国产高清激情床上av| 精品午夜福利视频在线观看一区| 国产野战对白在线观看| 久9热在线精品视频| 亚洲 欧美 日韩 在线 免费| 久久6这里有精品| 亚洲国产精品合色在线| 国产精品日韩av在线免费观看| 色尼玛亚洲综合影院| 久久精品久久久久久噜噜老黄 | 日韩精品青青久久久久久| 无人区码免费观看不卡| 国内精品美女久久久久久| 久99久视频精品免费| 不卡一级毛片| 欧美xxxx性猛交bbbb| 欧美激情国产日韩精品一区| 亚洲av日韩精品久久久久久密| 日韩欧美国产在线观看| 亚洲欧美日韩无卡精品| 国产亚洲精品久久久com| 亚洲中文字幕日韩| 欧美日韩乱码在线| 日韩欧美在线乱码| 欧美黑人欧美精品刺激| 国产久久久一区二区三区| 欧美+亚洲+日韩+国产| 午夜精品在线福利| 亚洲欧美日韩东京热| 欧美激情在线99| 久久久久久久久久成人| 欧美一区二区国产精品久久精品| 精品久久久久久久久久久久久| 男女下面进入的视频免费午夜| 一进一出抽搐动态| 国产免费一级a男人的天堂| 在线观看舔阴道视频| 丰满的人妻完整版| 欧美高清性xxxxhd video| ponron亚洲| 成人性生交大片免费视频hd| 变态另类成人亚洲欧美熟女| 女人十人毛片免费观看3o分钟| 99久久精品一区二区三区| 欧美精品国产亚洲| 亚洲美女搞黄在线观看 | 日韩欧美三级三区| 国产探花在线观看一区二区| 琪琪午夜伦伦电影理论片6080| 亚洲三级黄色毛片| 哪里可以看免费的av片| 乱码一卡2卡4卡精品| 久久中文看片网| 最近最新中文字幕大全电影3| 变态另类丝袜制服| 精品久久久久久久久久免费视频| 欧美午夜高清在线| 欧美日韩亚洲国产一区二区在线观看| 少妇被粗大猛烈的视频| 亚洲美女搞黄在线观看 | 日韩 亚洲 欧美在线| 国内少妇人妻偷人精品xxx网站| 久久久久国内视频| 久久精品91蜜桃| 中国美女看黄片| 全区人妻精品视频| 夜夜爽天天搞| 欧美日韩综合久久久久久 | 国产三级中文精品| 精品午夜福利视频在线观看一区|