• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    W rink ling Analysis in a Film Bonded to a Compressible Compliant Substrate in Large Deformation

    2014-04-14 05:15:47
    Computers Materials&Continua 2014年18期

    1 Introduction

    Stretchable electronics is now attracting considerable attention,due to its broad range of applications,such as microelectronics,medicine,clothing and military.Comparing with traditional printing and flat panel displays, flexible displays have both of their advantages,which are soft and portable,and able to store more information[Rogers and Bao(2002)].The flexible sensors integrated into the clothes can monitor the health information of human body[Wagner,Lacour,Jones,Hsu,Sturm,Li and Suo(2004)].Travelers and athletes can carry flexible solar panels for power[Schubert and Werner(2006)].To make the device stretchable,buckling of a stiff film bound to a compliant substrate is applied.Khang,Jiang,Huang and Rogers(2006)produced a stretchable form of silicon based on a PDMS substrate.It is periodic and wavelike in microscale.It can be reversibly stretched and compressed in large deformation without damage.Huang,Hong and Suo(2005)developed a model of a stiff elastic thin film on a compliant elastic substrate subjected to an axial strain.They obtained the buckling wavelength and amplitude of the film and developed a method to reveal the two dimensional patterns.Huang(2005)studied the wrinkling process of an elastic film on a viscoelastic layer.Linear perturbation analysis is conducted to reveal the kinetics of wrinkling in the film.Huang and Suo(2002)studied the wrinkling process of this system by using the lubrication theory for the viscous flow and the nonlinear plate theory for the elastic film,and presented a more rigorous analysis for all thickness range of the viscous layer.Im and Huang(2008)considered the wrinkle patterns of anisotropic crystal films on viscoelastic substrates.Jiang,Khang,Fei,Kim,Huang,Xiao and Rogers(2008)considered the finite width effect of thin- films buckling on compliant substrate.Song,Jiang,Choi,Khang,Huang and Rogers(2008)studied the two-dimensional buckling including checkerboard and herringbone modes,and found that the herringbone mode corresponds to the lowest energy,as observed in experiments.Chen and Hutchinson(2004)also showed that the herringbone mode constituted a minimum energy con figuration among a limited set of competing modes.Audoly and Boudaoud(2008)studied the secondary instabilities of these modes and presented a weakly nonlinear post-buckling analysis.They found that the square checkerboard mode was optimal just above the threshold under equi-biaxial prestrain.Cai,Breid,Crosby,Suo and Hutchinson(2011)studied the thin stiff films on compliant elastic substrates subjected to equi-biaxial compressive stress states,which were observed to buckle into various periodic patterns including checkerboard,hexagonal and herringbone.For flat films,the checkerboard mode was preferred only above the threshold.Nair,Farkas and Kriz(2008)studied of size effects and deformation of thin films due to nanoindentation using molecular dynamics simulations.Kurapati,Lu and Yang(2010)used the finite element method to analyze the spherical indentation of elastic film and substrate structures.

    In previous studies,the substrate is usually described by small deformation theory and linear elastic constitutive relation.But when the structure are subjected to large loads and buckles into large deformation,the small deformation hypothesis is no longer applicable.Song,Jiang,Liu,Khang,Huang,Rogers,Lu and Koh(2008)analyzed the large deformation of this structure by perturbation method.The original strain-free con figuration of the film was considered.The finite strain theory and hyperelasticity constitutive relation were applied to describe the substrate.For the incompressible substrate,the buckling features were deduced analytically and coincided well with the experiments and simulations.Zhu,Zhou and Fan(2014)studied rupture and instability of soft films due to moisture vaporization in microelectronic devices.Neo-Hookean,Mooney-Rivlin,and Ogden’s models were used to derive the analytical solutions.Zhang and Yang(2013)studied the methods of extracting the mechanical properties of nonlinear elastic materials under large deformation and built general relationships of the indentation load and depth of hyperelastic materials.

    This paper focuses on the case of compressible substrate.The displacements in the linear and nonlinear models are compared.The in fluence of the compressibility of the substrate on buckling is discussed.The coordinate systems are based on the original strain-free con figurations of the film and the substrate.A hyperelasticity,neo-Hookean,constitutive relation is applied to describe the substrate under finite deformation theory.Through the perturbation analysis,the displacement of substrate is solved analytically.The buckling wave number,amplitude and critical condition are obtained by energy method.Comparing with the traditional linear model,the buckling amplitude in the nonlinear model decreases.The wave number increases and relates to the prestrain.With the increment of Poisson’s ratio of the substrate,the buckling wave number increases,but the amplitude decreases.The displacements near the interface in two models are different.

    2 Displacement

    2.1 M odel

    A stiff elastic thin film is bonded to a compliant elastic thick substrate without slipping,as shown in Fig.1.H and h are the thickness of the substrate and the film,respectively,and H?h.The substrate is imposed a uniaxial prestrainε0first,and then is boned to a stress-free film,as shown in Fig.1(a).After the prestrain in the substrate released,the structure buckles,as shown in Fig.1(b).Since the structure is only imposed a uniaxial load and the length(x2)is much larger than the buckling amplitude,the substrate can be simplified as a plane strain problem,and the thin film can be modeled as a beam undergoing large rotation.The Young’s modulus and Poisson’s ratio of the film and substrate are Efand vfEand v.The film is much harder than the substrate,so

    The original strain-free states of the film and the substrate are asynchronous,as shown in Fig.2.In the first step,Fig.2(a),the substrate is strain-free with the original lengthl.In the second step,Fig.2(b),the substrate is stretched to the length(1+ε0)lwith a prestrainε0,but the film is free with the original length(1+ε0)land attached to the substrate.In the third step,Fig.2(c),the substrate is relaxed to its original lengthl,and the film buckles under compression.Two coordinate systems are based on the strain-free con figurations of the film and the substrate,as shown in Fig.2(a)and(b),with the transformation:

    Figure 1:A stiff thin film on a compliant thick substrate:(a)The film is bonded to a pre-strained substrate;(b)The structure buckles after releasing the prestrain.

    Figure 2:The buckling process and coordinate systems(a)Free substrate;(b)Stretched substrate and free film;(c)Relaxed substrate and buckled film.

    In this paper,two models are compared:

    (1)Linear model.The small deformation theory and linear elasticity constitutive relation,Hookean law,are applied to describe the substrate.The same coordinate system under the strain-free con figuration of the substrate is applied to describe the film and the substrate.

    (2)Nonlinear model.The finite deformation theory and nonlinear hyperelasticity constitutive relation,neo-Hookean law,are applied to describe the substrate.Different coordinate systems under the strain-free con figurations of the film and the substrate are applied.

    2.2 Film

    Under the coordinate system based on the strain-free con figuration of the film,Fig.2(b)the in-plane displacement and deflection in the midplane are denoted byu1andu3respectively and they are independent of the thickness.When the film buckles,it undergoes large rotation,so the influence of the deflection should be considered According to the finite deformation theory,the axial strain is

    The membrane force is given by Hookean law(plane stress)as

    The midplane displacement consists of two parts.One is the axial displacement-εxcaused by axial compression the other is the wavy displacement caused by buckling.

    The strain energy is the sum of bending and stretching contribution.Their strain energy densities are

    The uniaxial buckling mode is assumed as a cosine curve,the deflection of the film is assumed as

    whereAandkare the amplitude and wave number in the buckled con figuration,Fig.2(c).The wavelength is assumed much larger than the film thickness and amplitude,orFrom Eqs.(1)~(4),the in-plane displacement is obtained,

    After integration,the strain energy of the film is

    In traditional analysis,the strain-free con figuration of the film is the same as the substrate,soξ=1.

    2.3 Substrate

    Under the coordinate system based on the strain-free con figuration of the substrate,Fig.2(a),the displacement is denoted byuI(I=1,3).The deformation gradient isFIJ=δIJ+uIJ.The Green strain tensor is

    whereWsis the strain energy density,andTIJis the 2nd Piola-Kirchhoff stress.In neo-Hookean constitutive law,the strain energy density has the form that

    where the material constants areC1=E/4(1+v),D1=E/6(1-2v).Jis the volume change at a point and equals to the determinant of deformation gradientF,J=detThe first invariantI1is the trace of the left Cauchy-Green strain tensor,that is.Specially,for the incompressible material,J=1,the strain energy density can be simplified asWs=C1(I1-3).The force equilibrium equation and the traction on the surface are

    wherenJis the unit normal vector of the surface In plane strain problem,the equations above can be simplified.The volume changeJand the first invariantI1are

    By substituting Eq.(12)into Eqs.(9)~(10),the 2nd Piola-Kirchhoff stress components are obtained,

    Nonlinear constitutive relation is used,

    From Eq.(11),the equilibrium equations and tractions are expanded,

    The bottom of the substrate is free.At the interface,the shear traction is neglected,and the normal displacement is continuous.The boundary conditions are

    From Eq.(8),equilibrium equations(14)can be simplified as a boundary value problem about the displacement.The perturbation method is applied to solve this highly nonlinear problem.Since the amplitudeAis much smaller than the wavelengthλ,a small dimensionless parameterδ=A/λis used to expand the displacement to power series,

    By substituting Eq.(17)into(14)~(16),the displacement in each order can be solved

    In the linear model,the displacement is the first order of displacement,that is Eq.(18).In the nonlinear model,the tangential displacementu1at the surface(z=0)is

    In the linear model,is the first term in Eq.(22)

    By substituting the displacements(18)~(21)into Eqs.(8)and(10),the strain energy can be integrated as

    where the effective modulus isIn the linear model,the strain energy is the first term of Eq.(23),orγ=0.For the incompressible substrate(v=1/2 andγ=5/128),the displacements in the nonlinear model are

    And the strain energy is

    Song,Jiang,Liu,Khang,Huang,Rogers,Lu and Koh(2008)have the same result when the substrate is incompressible.

    3 Buck ling

    From Eqs.(7)and(23),the total potential energy of the film and substrate is

    According to the principle of minimum potential energy,the buckling government equations are deduced by minimizing the total energy(27),that is?U/?A=?U/?k=0,

    where the relative effective modulus isIf settingξ=1 andγ=0,Eqs.(28)degenerates to the case of the linear model:μ-h3k3=0;μ+hk(A2k2-4ε0)=0.It is easy to solve the buckling wave number,critical prestrain and amplitude,

    The variable with a bar indicates the result in the linear model.The wave number only relates to the material property but not to prestrain.By substituting Eq.(29)into(27),the minimum potential energy in the linear model is

    In the nonlinear model,the critical prestrain is deduced by settingA=0 in Eq.(28),

    It is only dependent on the material property and approximate to the critical prestrain in the linear model.The ratios between the linear and nonlinear model of the buckling amplitude and wave number are assumed thatThe variable with a tilde indicates the result in the nonlinear model.From Eq.(29),the buckling government equations(28)can expressed about the parametersαandκ,

    Neglecting the small quantityμ(when the prestrain is not too small),the parameters are solved,

    By substituting Eqs.(29),(30)and(33)into(27),the minimum potential energy in the nonlinear modeis obtained.The ratio between two models is

    From Eqs.(29),(30),(33)and(34),the buckling wave number,amplitude and critical prestrain and minimum potential energy are

    whereDifferent from the linear model,the buckling wave number is not only dependent on the material properties but also the prestrain.

    4 Discussion

    4.1 Substrate

    The displacement fields of the substrate in linear and nonlinear models are compared by settingA=3μm,k=0.367μm-1(δ=0.175)andv=1/2,as shown in Fig.3 and 4 At the top of the substrate(the interface to the film),the distribution of displacement in two models is different.The spatial period(x1)in the nonlinear model is nearly two times as that in the linear model.From Eq.(22),the tangential displacement of the substrate at the surface is shown in Fig.5.When the substrate is incompressibleis zero in the linear model,but nonzero in the nonlinear model.

    Figure 3:Displacements(a)u1 and(b)u3 of the substrate in the nonlinear model(μm).

    Figure 4:Displacements(a)u1 and(b)u3 of the substrate in the linear model(μm).

    Figure 5:The tangential displacement of the substrate at the interface.

    From Eq.(24),Fig.6 shows the hyperelastic coefficientγabout the Poisson’s ratiov.It ranges from 0.029(v≈0.31)to 0.047(v=0.1).From Eq.(23),the ratio of the strain energy of the substrate in two models isφs=1+γA2k2=1+4γπ2δ2>1.The strain energy of the substrate in the nonlinear model is large than that in the linear model.With the increment of the Poisson’s ratiov,the energy ratioφsdecreases first and then increases,as shown in Fig.7(a).Whenthe energy ratioφsreaches the minimum.With the increment ofδ,the energy ratioφsincreases,as shown in Fig.7(b).

    Figure 6:The hyperelastic coefficient γ.

    4.2 Buckling

    For the silicon film and PDMS substrate,the material and geometric parameters areEf=130GPa,vf=0.28,E=1.8MPa,v=0.48,h=0.1μm,l=1mm.The buckling features under different prestrains are obtained according to Eq.(35)and(29),as shown in Tab.1

    Figure 7:The ratio of substrate’s strain energy between two models about(a)the Poisson’s ratio and(b)δ =A/λ.

    Table 1:The buckling features in two models.

    Fig.8 shows the buckling wave number and amplitude about the prestrainεin two models In the linear model,the buckling wave numberkis constant But in the nonlinear model,the wave number increases with the increment of prestrain,as shown in Fig.8(a)The buckling amplitudeAin the nonlinear model is less than that in the linear model,as shown in Fig.8(b)With the increment of Poisson’s ratiov,the buckling wave number increase,but the amplitude decreases as shown in Fig.9.The stronger the compressibility of the substrate(the less Poisson’s ratio)is,the larger the amplitude and wavelength w ill be.

    Fig.10 shows the ratios of the buckling wave numberκ,amplitudeαand total energyφbetween two models about the prestrain.With the increment of prestrain,the ratios of buckling wave numberκand total energyφare larger than one and increase,but the ratio of amplitudeαis less than one and decreases.The ratios of buckling wave numberκand amplitudeαchange significantly when the prestrain increase

    Figure 8:The buckling(a)wave number and(b)amplitude about the prestrain in two models.

    Figure 9:The buckling(a)wave number and(b)amplitude about Poisson’s ratio in the nonlinear model.

    4.3 Film

    From Eq.(5),the midplane displacement of the film consists of two parts.Parts of the wavy displacements caused by buckling in two models are

    Figure 10:The ratio of wave number κ,amplitude α and total energy φ between two models about the prestrain.

    Figure 11:The wavy displacement of the film caused by buckling.

    They are shown in Fig.11 Comparing with the linear model,the prestrain not only influences the amplitude but also the wavelength.The larger the prestrain is,the shorter the wavelength w ill be in the nonlinear model.The amplitude in the nonlinear model is smaller than that in the linear model,and when the prestrain increase,such difference becomes remarkable.

    5 Conclusion

    This paper studies the buckling of the film and substrate structure in large deformation.A nonlinear model is developed.The film and the substrate are described by finite deformation theory under different original strain-free con figurations.The neo-Hookean constitutive relation is applied to describe the substrate Through the perturbation analysis,the displacement of the substrate under a uniaxial prestrain is obtained.The buckling wave number,amplitude and critical condition are obtained by energy method.

    The displacement fields near the interface are different in two models.The strain energy of the substrate in the nonlinear model is large than that in the linear model.Comparing with the traditional linear model,the buckling amplitude in the nonlinear model decreases,but the wave number increases and relates to the prestrain.In the nonlinear model,the stronger the compressibility of the substrate is,the larger the buckling amplitude and wavelength w ill be.

    Acknow ledgement:This work was partially supported by the National Natural Science Foundation of China(Nos.11372113 and 11472110)New Century Excellent Talents(No.NCET-13-0218).

    Audoly,B.;Boudaoud,A.(2008):Buckling of a stiff film bound to a compliant substrate-Part I::Formulation,linear stability of cylindrical patterns,secondary bifurcations.Journal of the Mechanics and Physics of Solids,vol.56,no.7,pp.2401-2421.

    Cai,S.;Breid,D.;Crosby,A.J.;Suo,Z.;Hutchinson,J.W.(2011):Periodic patterns and energy states of buckled films on compliant substrates.Journal of the Mechanics and Physics of Solids,vol.59,no.5,pp.1094-1114.

    Chen,X.;Hutchinson,J.W.(2004):Herringbone buckling patterns of compressed thin films on compliant substrates.Journal of Applied Mechanics-Transactions of the Asme,vol.71,no.5,pp.597-603.

    Huang,R.(2005):Kinetic wrinkling of an elastic film on a viscoelastic substrate.Journal of the Mechanics and Physics of Solids,vol.53,no.1,pp.63-89.

    Huang,R.;Suo,Z.(2002):Instability of a compressed elastic film on a viscous layer.International Journal of Solids and Structures,vol.39,no.7,pp.1791-1802.

    Huang,Z.Y.;Hong,W.;Suo,Z.(2005):Nonlinear analyses of wrinkles in a film bonded to a compliant substrate.Journal of the Mechanics and Physics of Solids,vol.53,no.9,pp.2101-2118.

    Im,S.H.;Huang,R.(2008):Wrinkle patterns of anisotropic crystal films on viscoelastic substrates.Journal of the Mechanics and Physics of Solids,vol.56,no.12,pp.3315-3330.

    Jiang,H.Q.;Khang,D.Y.;Fei,H.Y.;K im,H.;Huang,Y.G.;Xiao,J.L.;Rogers,J.A.(2008):Finite width effect of thin- films buckling on compliant substrate:Experimental and theoretical studies.Journal of the Mechanics and Physics of Solids,vol.56,no.8,pp.2585-2598.

    Khang,D.Y.;Jiang,H.Q.;Huang,Y.;Rogers,J.A.(2006):A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates.Science,vol.311,no.5758,pp.208-212.

    Kurapati,S.;Lu,Y.;Yang,F.(2010):Indentation Load-Displacement Relations for the Spherical Indentation of Elastic Film/Substrate Structures.Computers,Materials&Continua,vol.20,no.1,pp.1-17.

    Nair,A.K.;Farkas,D.;K riz,R.D.(2008):Molecular dynamics study of size effects and deformation of thin films due to nanoindentation.Computer Modeling in Engineering&Sciences,vol.24,no.2/3,pp.239.

    Rogers,J.A.;Bao,Z.(2002):Printed plastic electronics and paperlike displays.Journal of Polymer Science Part A:Polymer Chemistry,vol.40,no.20,pp.3327-3334.

    Schubert,M.B.;Werner,J.H.(2006):Flexible solar cells for clothing.Materials Today,vol.9,no.6,pp.42-50.

    Song,J.;Jiang,H.;Choi,W.M.;Khang,D.Y.;Huang,Y.;Rogers,J.A.(2008):An analytical study of two-dimensional buckling of thin films on compliant substrates.Journal of Applied Physics,vol.103,no.1,pp.014303-014310.

    Song,J.;Jiang,H.;Liu,Z.J.;Khang,D.Y.;Huang,Y.;Rogers,J.A.;Lu,C.;Koh,C.G.(2008):Buckling of a stiff thin film on a compliant substrate in large deformation.International Journal of Solids and Structures,vol.45,no.10,pp.3107-3121.

    Wagner,S.;Lacour,S.P.;Jones,J.;Hsu,P.-h.I.;Sturm,J.C.;Li,T.;Suo,Z.(2004):Electronic skin:architecture and components.Physica E:Lowdimensional Systems and Nanostructures,vol.25,no.2-3,pp.326-334.

    Zhang,Q.;Yang,Q.-S.(2013):The Analytical and Numerical Study on the Nanoindentation of Nonlinear Elastic Materials.Computers,Materials&Continua,vol.37,no.2,pp.123-134.

    Zhu,L.;Zhou,J.;Fan,X.(2014):Rupture and Instability of Soft Films due to Moisture Vaporization in Microelectronic Devices.Computers,Materials&Continua,vol.39,no.2,pp.113-134.

    国产精品av视频在线免费观看| 在线观看免费高清a一片| 亚洲欧美一区二区三区黑人 | 国产一区二区三区av在线| 免费观看在线日韩| 亚洲av中文av极速乱| 日韩精品有码人妻一区| 色吧在线观看| a级毛片免费高清观看在线播放| 一二三四中文在线观看免费高清| 久久韩国三级中文字幕| 午夜爱爱视频在线播放| 日韩一区二区三区影片| 久久草成人影院| 国产日韩欧美在线精品| 日韩电影二区| 99re6热这里在线精品视频| 最近中文字幕2019免费版| 永久免费av网站大全| 日韩欧美 国产精品| 看十八女毛片水多多多| 秋霞伦理黄片| 内地一区二区视频在线| av国产久精品久网站免费入址| 久久久久久伊人网av| 久久精品久久久久久噜噜老黄| 26uuu在线亚洲综合色| 国产一区二区在线观看日韩| 人体艺术视频欧美日本| av在线天堂中文字幕| 国产成人免费观看mmmm| 国产男女超爽视频在线观看| 欧美人与善性xxx| 免费看不卡的av| 中文字幕人妻熟人妻熟丝袜美| 欧美日韩亚洲高清精品| 午夜福利视频1000在线观看| 天天躁日日操中文字幕| 人人妻人人澡人人爽人人夜夜 | 十八禁国产超污无遮挡网站| 欧美日韩国产mv在线观看视频 | 欧美日韩视频高清一区二区三区二| 亚洲精品自拍成人| 欧美日韩综合久久久久久| 看黄色毛片网站| 99久久九九国产精品国产免费| 1000部很黄的大片| 99热网站在线观看| 丝袜美腿在线中文| 青春草国产在线视频| videos熟女内射| 午夜免费男女啪啪视频观看| 老女人水多毛片| 性色avwww在线观看| 国产av不卡久久| 国产色婷婷99| 99热这里只有精品一区| 久久草成人影院| 亚洲高清免费不卡视频| 亚洲av男天堂| 免费观看在线日韩| 日日撸夜夜添| videossex国产| 欧美3d第一页| 免费看不卡的av| 国产高清不卡午夜福利| 91aial.com中文字幕在线观看| 国产亚洲91精品色在线| 成人性生交大片免费视频hd| 国产日韩欧美在线精品| 国产爱豆传媒在线观看| 国产av不卡久久| 成人午夜高清在线视频| 又爽又黄a免费视频| 国产成人午夜福利电影在线观看| 久久热精品热| 国产男人的电影天堂91| 一个人看的www免费观看视频| 国产精品国产三级专区第一集| 在线观看一区二区三区| 国产综合精华液| 人妻少妇偷人精品九色| 欧美97在线视频| 丝瓜视频免费看黄片| 国产精品不卡视频一区二区| 久久久亚洲精品成人影院| 国产精品av视频在线免费观看| 青春草亚洲视频在线观看| 欧美xxxx黑人xx丫x性爽| 干丝袜人妻中文字幕| 免费看av在线观看网站| 亚洲欧美一区二区三区国产| 午夜精品在线福利| 日本欧美国产在线视频| 亚洲人与动物交配视频| 天堂网av新在线| 精品一区二区三区人妻视频| 搡女人真爽免费视频火全软件| 深爱激情五月婷婷| 亚洲人与动物交配视频| 国产精品人妻久久久久久| 看免费成人av毛片| 久久久久久久亚洲中文字幕| 97在线视频观看| 中文天堂在线官网| 插逼视频在线观看| 亚洲欧美日韩东京热| 99久久九九国产精品国产免费| av福利片在线观看| 精品国产露脸久久av麻豆 | 日韩欧美一区视频在线观看 | 51国产日韩欧美| 精品久久久精品久久久| 午夜免费激情av| 韩国高清视频一区二区三区| 亚洲三级黄色毛片| av福利片在线观看| 日韩大片免费观看网站| 国产精品久久久久久av不卡| 成人亚洲精品av一区二区| 亚洲精品一二三| 国产乱人视频| 一级a做视频免费观看| 一本久久精品| 亚洲人成网站在线播| 赤兔流量卡办理| 国产av码专区亚洲av| 国产精品福利在线免费观看| 亚洲欧洲日产国产| 成人性生交大片免费视频hd| 秋霞伦理黄片| 日本黄大片高清| 热99在线观看视频| 久久97久久精品| 久久人人爽人人片av| 大又大粗又爽又黄少妇毛片口| 国产精品1区2区在线观看.| 中文欧美无线码| 男女国产视频网站| 高清欧美精品videossex| 欧美日韩亚洲高清精品| 精品少妇黑人巨大在线播放| 亚洲欧美精品自产自拍| 色吧在线观看| 丰满少妇做爰视频| 又爽又黄无遮挡网站| 中文字幕av在线有码专区| 日本-黄色视频高清免费观看| 精品一区二区三区人妻视频| 久久99热这里只有精品18| 两个人视频免费观看高清| 国产单亲对白刺激| 国产精品不卡视频一区二区| 在线观看一区二区三区| 色播亚洲综合网| 乱码一卡2卡4卡精品| 波多野结衣巨乳人妻| 在线天堂最新版资源| 九九久久精品国产亚洲av麻豆| 午夜激情久久久久久久| 国产精品熟女久久久久浪| 亚洲精品一二三| 免费人成在线观看视频色| 你懂的网址亚洲精品在线观看| 国内揄拍国产精品人妻在线| 午夜老司机福利剧场| 中文字幕亚洲精品专区| 成年版毛片免费区| 久久精品久久久久久噜噜老黄| 国产av国产精品国产| 免费在线观看成人毛片| 亚洲精华国产精华液的使用体验| 亚洲激情五月婷婷啪啪| 国产精品精品国产色婷婷| 亚洲欧美一区二区三区国产| 尾随美女入室| 亚洲精品日韩av片在线观看| 两个人视频免费观看高清| 精品欧美国产一区二区三| 亚洲图色成人| 天堂中文最新版在线下载 | 国产熟女欧美一区二区| 久久久久久伊人网av| 国产人妻一区二区三区在| 亚洲欧美成人精品一区二区| 2021天堂中文幕一二区在线观| 97在线视频观看| 麻豆av噜噜一区二区三区| 高清毛片免费看| 国产综合懂色| 国产一区有黄有色的免费视频 | 色5月婷婷丁香| 久久这里有精品视频免费| 男女那种视频在线观看| a级一级毛片免费在线观看| 国产亚洲精品av在线| 日韩一区二区视频免费看| 天堂网av新在线| 美女被艹到高潮喷水动态| 精品亚洲乱码少妇综合久久| 日韩一区二区视频免费看| 国产伦一二天堂av在线观看| 精品久久久噜噜| 欧美高清性xxxxhd video| 麻豆成人午夜福利视频| 精品人妻一区二区三区麻豆| 欧美日韩综合久久久久久| 精品国产三级普通话版| 婷婷色综合www| 真实男女啪啪啪动态图| 亚洲欧美精品自产自拍| 国产亚洲最大av| 成人av在线播放网站| 欧美97在线视频| 一区二区三区高清视频在线| 亚洲成人中文字幕在线播放| 国产一区二区在线观看日韩| 免费观看a级毛片全部| 亚洲av免费在线观看| 成人特级av手机在线观看| 国产高清国产精品国产三级 | 午夜激情福利司机影院| 嘟嘟电影网在线观看| 久久久久久久国产电影| 久久久a久久爽久久v久久| 91狼人影院| 大话2 男鬼变身卡| 国产激情偷乱视频一区二区| 国产亚洲精品av在线| 中文字幕av成人在线电影| 激情五月婷婷亚洲| 在线免费观看不下载黄p国产| 国产又色又爽无遮挡免| 国产亚洲5aaaaa淫片| 超碰av人人做人人爽久久| 久热久热在线精品观看| av天堂中文字幕网| 黑人高潮一二区| 久久久色成人| 亚洲av中文字字幕乱码综合| 久久久久精品久久久久真实原创| 在现免费观看毛片| 久久久久久久久中文| 亚洲av中文av极速乱| 欧美一区二区亚洲| 亚洲精品乱码久久久v下载方式| 精品不卡国产一区二区三区| 一级片'在线观看视频| 简卡轻食公司| 国产午夜精品论理片| 人人妻人人澡欧美一区二区| 91久久精品国产一区二区成人| 久久久久久久久久久丰满| 欧美日韩综合久久久久久| 国产精品人妻久久久影院| 成人性生交大片免费视频hd| 国产午夜精品论理片| 久久精品夜夜夜夜夜久久蜜豆| 卡戴珊不雅视频在线播放| 亚洲天堂国产精品一区在线| 日产精品乱码卡一卡2卡三| 校园人妻丝袜中文字幕| 免费黄频网站在线观看国产| 2022亚洲国产成人精品| 国产高清有码在线观看视频| 亚洲国产精品国产精品| 天堂中文最新版在线下载 | 欧美日韩在线观看h| 少妇猛男粗大的猛烈进出视频 | 国产麻豆成人av免费视频| 亚洲精品一二三| 26uuu在线亚洲综合色| 午夜老司机福利剧场| 国产大屁股一区二区在线视频| 精品亚洲乱码少妇综合久久| 国产av码专区亚洲av| 亚洲精品色激情综合| 国产黄色视频一区二区在线观看| 狠狠精品人妻久久久久久综合| 久久久久国产网址| 亚洲自拍偷在线| 我的女老师完整版在线观看| 99热全是精品| 成人一区二区视频在线观看| 欧美变态另类bdsm刘玥| 哪个播放器可以免费观看大片| 国产av国产精品国产| 国产精品麻豆人妻色哟哟久久 | 一个人免费在线观看电影| 欧美日韩亚洲高清精品| 国产一级毛片七仙女欲春2| 国产高清国产精品国产三级 | 亚洲欧洲国产日韩| 五月天丁香电影| 91精品一卡2卡3卡4卡| 97人妻精品一区二区三区麻豆| 毛片一级片免费看久久久久| 啦啦啦韩国在线观看视频| 只有这里有精品99| 一区二区三区四区激情视频| 国产亚洲精品av在线| 草草在线视频免费看| 国产人妻一区二区三区在| 亚洲性久久影院| 日本wwww免费看| 亚洲成人久久爱视频| 麻豆成人av视频| 久久99热这里只有精品18| 在线 av 中文字幕| 日日啪夜夜爽| 欧美97在线视频| 久久精品国产亚洲av天美| 欧美极品一区二区三区四区| 九草在线视频观看| 99视频精品全部免费 在线| 亚洲欧美成人综合另类久久久| 国产综合精华液| 日本欧美国产在线视频| 男女那种视频在线观看| 久久久久久久久久久免费av| 国产精品.久久久| 免费av不卡在线播放| 久久热精品热| 国产精品一区二区三区四区久久| 欧美激情在线99| 欧美xxxx性猛交bbbb| 日韩电影二区| 大香蕉久久网| 男人舔奶头视频| 一级片'在线观看视频| 亚洲va在线va天堂va国产| 国产单亲对白刺激| 91精品一卡2卡3卡4卡| 亚洲精品日韩在线中文字幕| videossex国产| 国产在线男女| 成人毛片60女人毛片免费| 综合色丁香网| 日韩一区二区视频免费看| 美女大奶头视频| 大片免费播放器 马上看| 波多野结衣巨乳人妻| 婷婷色综合大香蕉| 久久6这里有精品| 天天躁日日操中文字幕| 亚洲图色成人| 国产成人精品久久久久久| 国产伦精品一区二区三区视频9| 成年人午夜在线观看视频 | 国产毛片a区久久久久| 日日撸夜夜添| 又爽又黄无遮挡网站| 亚洲欧美精品自产自拍| 国产综合精华液| 国产 一区 欧美 日韩| 亚洲av中文av极速乱| 91久久精品国产一区二区成人| 亚洲av不卡在线观看| 三级国产精品欧美在线观看| 久久6这里有精品| 国产欧美日韩精品一区二区| 成人国产麻豆网| 亚洲欧美一区二区三区国产| 国产精品.久久久| 麻豆国产97在线/欧美| 一区二区三区免费毛片| 久久这里有精品视频免费| 亚洲欧洲国产日韩| 亚洲精品成人av观看孕妇| 日本-黄色视频高清免费观看| 搡老乐熟女国产| 中文在线观看免费www的网站| 蜜臀久久99精品久久宅男| 国产免费视频播放在线视频 | 91久久精品电影网| 91久久精品国产一区二区成人| 久久久久久久久中文| 亚洲熟女精品中文字幕| 久久久久精品性色| 精品人妻一区二区三区麻豆| 网址你懂的国产日韩在线| 亚洲精品,欧美精品| 在现免费观看毛片| 大香蕉久久网| 国产精品精品国产色婷婷| 亚洲av成人精品一区久久| 日韩伦理黄色片| 午夜福利在线观看吧| 欧美变态另类bdsm刘玥| 3wmmmm亚洲av在线观看| 亚洲国产精品成人久久小说| 国产一区二区三区综合在线观看 | 欧美3d第一页| 亚洲av日韩在线播放| 校园人妻丝袜中文字幕| 午夜免费男女啪啪视频观看| 在线免费观看的www视频| 51国产日韩欧美| 女的被弄到高潮叫床怎么办| 国产精品综合久久久久久久免费| videossex国产| 不卡视频在线观看欧美| 久久久久久国产a免费观看| 精品久久久久久久久久久久久| 91av网一区二区| 国产片特级美女逼逼视频| 黄色配什么色好看| 色综合站精品国产| 最近最新中文字幕大全电影3| 国产黄频视频在线观看| 成人av在线播放网站| 在线a可以看的网站| 日本爱情动作片www.在线观看| 亚洲精品国产av蜜桃| 神马国产精品三级电影在线观看| 日本一二三区视频观看| 天天一区二区日本电影三级| 国产精品三级大全| 免费观看精品视频网站| 国产成人免费观看mmmm| 蜜桃久久精品国产亚洲av| 亚洲精品,欧美精品| 能在线免费观看的黄片| 99久久九九国产精品国产免费| 男女国产视频网站| 国产日韩欧美在线精品| 国产精品国产三级国产av玫瑰| 九九爱精品视频在线观看| 亚洲精品,欧美精品| 国产美女午夜福利| 亚洲第一区二区三区不卡| 国产精品久久视频播放| 一个人看视频在线观看www免费| 高清av免费在线| 国产精品麻豆人妻色哟哟久久 | 18禁裸乳无遮挡免费网站照片| 精品酒店卫生间| 欧美性感艳星| 欧美变态另类bdsm刘玥| 亚洲国产欧美在线一区| 久久久a久久爽久久v久久| 日韩精品有码人妻一区| 美女高潮的动态| 精华霜和精华液先用哪个| 亚洲欧美一区二区三区国产| 成人毛片a级毛片在线播放| 国产乱来视频区| 男女边摸边吃奶| 春色校园在线视频观看| 久久久久久久久久久免费av| 日本一二三区视频观看| 一个人看的www免费观看视频| 国产高清有码在线观看视频| 亚洲丝袜综合中文字幕| or卡值多少钱| 国产淫语在线视频| av又黄又爽大尺度在线免费看| 天堂俺去俺来也www色官网 | ponron亚洲| 女人十人毛片免费观看3o分钟| 97超碰精品成人国产| 国产av不卡久久| 男女那种视频在线观看| 亚洲综合色惰| 三级国产精品片| 日韩人妻高清精品专区| 亚洲欧美中文字幕日韩二区| 一区二区三区高清视频在线| 国产精品久久久久久精品电影小说 | 亚洲欧美精品专区久久| 久久久久久久国产电影| 亚洲av福利一区| 人人妻人人看人人澡| 亚洲av一区综合| 亚洲色图av天堂| 国产精品熟女久久久久浪| 日日啪夜夜撸| 午夜精品国产一区二区电影 | 噜噜噜噜噜久久久久久91| 国产毛片a区久久久久| 免费观看的影片在线观看| 久久热精品热| 成人亚洲精品av一区二区| 久久久久久久久久黄片| 中文资源天堂在线| 一级毛片电影观看| 少妇的逼水好多| 国产国拍精品亚洲av在线观看| 国产精品麻豆人妻色哟哟久久 | 久久久久精品性色| 国产成人freesex在线| 国产一区亚洲一区在线观看| 欧美一级a爱片免费观看看| 菩萨蛮人人尽说江南好唐韦庄| 亚洲人成网站在线播| 人人妻人人澡欧美一区二区| 建设人人有责人人尽责人人享有的 | 欧美zozozo另类| 亚洲最大成人中文| 亚洲18禁久久av| 少妇丰满av| 国产亚洲精品av在线| 亚洲精品一二三| 亚洲久久久久久中文字幕| 51国产日韩欧美| 18禁动态无遮挡网站| a级毛色黄片| 国产麻豆成人av免费视频| 精品久久久久久成人av| 久久午夜福利片| 丝袜美腿在线中文| 在线免费十八禁| 老师上课跳d突然被开到最大视频| 国产一级毛片七仙女欲春2| 男女视频在线观看网站免费| 搞女人的毛片| 美女xxoo啪啪120秒动态图| 80岁老熟妇乱子伦牲交| 色综合亚洲欧美另类图片| 狠狠精品人妻久久久久久综合| freevideosex欧美| 禁无遮挡网站| 免费av观看视频| 久久久久久国产a免费观看| 夜夜爽夜夜爽视频| 蜜臀久久99精品久久宅男| 卡戴珊不雅视频在线播放| 国产伦理片在线播放av一区| 我要看日韩黄色一级片| 国产亚洲一区二区精品| 亚洲精品视频女| 高清日韩中文字幕在线| 国产老妇女一区| 亚洲成人精品中文字幕电影| 久久99热这里只有精品18| 夫妻午夜视频| 亚洲va在线va天堂va国产| 建设人人有责人人尽责人人享有的 | 看十八女毛片水多多多| av在线天堂中文字幕| 亚洲国产最新在线播放| 99热全是精品| 国产亚洲精品av在线| 欧美精品一区二区大全| 午夜激情久久久久久久| 国产不卡一卡二| 国产高清国产精品国产三级 | 亚洲精品aⅴ在线观看| 美女大奶头视频| 国产高清国产精品国产三级 | 久久久久久久久久成人| 精品久久国产蜜桃| 午夜福利成人在线免费观看| 男女下面进入的视频免费午夜| 成年人午夜在线观看视频 | 亚洲精品乱久久久久久| 欧美3d第一页| 2022亚洲国产成人精品| 日韩一区二区三区影片| 免费无遮挡裸体视频| 有码 亚洲区| 51国产日韩欧美| 成人av在线播放网站| 亚洲国产日韩欧美精品在线观看| 男女下面进入的视频免费午夜| 天美传媒精品一区二区| 午夜精品在线福利| 欧美最新免费一区二区三区| 丝袜美腿在线中文| 黄色一级大片看看| 一级毛片久久久久久久久女| 熟妇人妻不卡中文字幕| 男女边摸边吃奶| 国产精品爽爽va在线观看网站| 国产成人a区在线观看| 99热网站在线观看| videos熟女内射| 中文字幕av成人在线电影| 禁无遮挡网站| 久久久久久久久久人人人人人人| 国产精品女同一区二区软件| 成人二区视频| 成人美女网站在线观看视频| 97人妻精品一区二区三区麻豆| 久久99热这里只频精品6学生| 精品久久久久久成人av| 欧美区成人在线视频| 久久久精品欧美日韩精品| 最后的刺客免费高清国语| 亚洲不卡免费看| 波野结衣二区三区在线| av又黄又爽大尺度在线免费看| 久久国内精品自在自线图片| 亚洲三级黄色毛片| 天堂中文最新版在线下载 | 精品熟女少妇av免费看| 中文精品一卡2卡3卡4更新| 一级av片app| 肉色欧美久久久久久久蜜桃 | 亚洲成人精品中文字幕电影| 午夜爱爱视频在线播放| 插逼视频在线观看| 欧美zozozo另类| 欧美高清成人免费视频www| 亚洲av男天堂| 亚洲精品中文字幕在线视频 | 亚洲国产精品成人久久小说| 国产精品1区2区在线观看.| 国产综合精华液| 看黄色毛片网站| 国产精品国产三级国产av玫瑰| 日韩一区二区三区影片| 国产精品一区二区三区四区免费观看| 久久这里只有精品中国| 免费观看的影片在线观看|