• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Computing the Electric and Magnetic Green’s Functions in General Electrically Gyrotropic Media

    2014-04-14 05:15:32
    Computers Materials&Continua 2014年18期

    1 Introduction

    The Faraday effect,observed in 1945 in a piece of glass placed between the poles of a magnet,was the first of the magneto-optical effects to be discovered by Michael Faraday[Faraday(1933)].The result of the existence of magnetic fields inside of magneto-optical materials opens gyrotropic materials.Gyrotropic materials have been an active research topic because,using these materials,new microwave devices such as circulators,isolators,resonators,and optical devices such as modulators,sw itches,phase shifters can be designed[Eroglu(2003);Eroglu(2006a);Eroglu(2006b)].Moreover,the study of electromagnetic wave propagation in gyrotropic materials can be used in development of gyrotropic devices for ionospheric applications[Eroglu(2006b)].The electromagnetic fields observed in magnetically biased plasma or ferrite can be modeled as electromagnetic waves in gyrotropic materials[Eroglu(2006b)].Many problems of remote sensing,monolithic integrated circuits and optics,geophysical probing,microstrip circuits and antennas,submarine communication,opto-electronics etc.are connected with electromagnetic fields in gyro-electric materials[Eroglu(2010);Eroglu(2003);Eroglu(2006a);Eroglu(2006b);Prati(2003)].

    If the electrical and/or magnetic properties of a medium depend upon the directions of field vectors,then the medium is called anisotropic medium and the relationships between fields have the follow ing form

    Anisotropic materials may be divided into two classes,depending on whether the natural modes of propagation are linearly polarized or circularly polarized waves[Eroglu(2010)].In the first class,the permittivity and permeability components are symmetric;that isεik=εkiandμik=μki.For the second class,called gyrotropic media,the permittivity or permeability matrices are Herm itian,that isand,where?is denoted as complex conjugate of the given element.

    The gyrotropic medium becomeselectrically gyrotropicorgyro-electricif the permittivity matrixis Hermitian and the permeability matrix.The gyrotropic medium becomesmagnetically gyrotropicorgyro-magneticif the permeability matrixis Hermitian and[Eroglu(2010);Kong(1984)].

    In the present paper we consider the gyro-electric materials in the general form when the permittivity matrix can be written as the following matrix(see,for example,[Eroglu(2010)])

    Let us mention some works related to the construction of the Green’s functions for equations of electro magnetics.Ortner and Wagner[Ortner(2004)],Wagner[Wagner(2011)]have applied the Fourier meta-approach and found the explicit formulae of the Green’s functions for the systems of elasticity and Maxwell’s equations for some particular cases of anisotropy only by the Fourier transform meta-approach.These formulae can be used for the computer implementation.The approximate computation of the time-dependent three-dimensional Green’s functions(fundamental solutions)in general anisotropic materials by the Fourier transform metaapproach was suggested in the papers[Yakhno(2008);Yakhno(2011b)].Using the Lorentz reciprocity relation and the multiple scattering approach the dyadic Green’s functions for gyro-electric media are found in[Barkleshli(1993)].The dyadic Green’s functions for an electrically gyrotropic medium with particular form ofhave been derived by matrix method with dyadic decomposition in[Eroglu(2003);Eroglu(2006a);Eroglu(2006b)].The time-harmonic Green’s dyadics have been constructed in closed form for a particular case of homogeneous gyrotropic mate-rials by Fourier transform approach in[Olyslager(1997)].

    However,the numerical computation of the Green’s functions(fundamental solutions)of Maxwell’s equations in general gyro-electric materials is not known.Moreover the numerical methods for the space of tempered distributions are not developed till now.

    In our paper we suggest a method of an approximate(regularized)computation of the in finite-body Green’s functions for the time-harmonic Maxwell’s equations in the general gyro-electric materials.This method is based on the Fourier transform meta-approach where the Fourier image of the Green’s function is computed by some matrix transformations and symbolic computations in MATLAB.After that the inverse Fourier transform is computed in an regularized(approximate)form.The parameters of the regularization have been chosen by the comparison of the regularized Green’s function with Green’s function obtained by the explicit formula for the isotropic case.The approximate computation of the inverse Fourier transform has been implemented by MATLAB tools.The computational experiments are presented in the paper.

    The paper is organized as follows.The equations for the time-harmonic electric and magnetic Green’s functions are written in the beginning of Section 2.Methods of computing the electric and magnetic Green’s functions are described in Section 2.1 and 2.2 respectively.Computational experiments are described in Section 3.

    2 Electric and Magnetic Green’s Functions in General Gyro-electric Media

    The electric Green’s function is a matrix function

    whose columnssatisfy the equation

    The magnetic Green’s function is a matrix function

    whose columnssatisfy the equation

    Herex=(x1,x2,x3)∈R3is the 3Dspace variable;ωis a fixed parameter(frequency);ε0=8.854×10-12F/m,μ0=1.257×10-6N/A2are positive constants(dielectric permittivity and magnetic permeability)of vacuum,respectively;e1=(1,0,0)T,e2=(0,1,0)T,e3=(0,0,1)Tare basis vectors of R3;iis the imaginary uniti2=-1;δ(x)=δ(x1)δ(x2)δ(x3),δ(xj)is the Dirac delta function concentrated atxj=0 forj=1,2,3.

    2.1 Computing the Electric Green’s function

    LetF xbe the operator of the Fourier transform with respect tox=(x1,x2,x3),i.e.

    for the scalar integrable functionE(x),whereν=(ν1,ν2,ν3)is a 3Dparameter of the Fourier transform;ν·x=ν1x1+ν2x2+ν3x3.The operator of the Fourier transform is de fined in[Vladimirov(1979)]for any generalized function(tempered distribution).

    we find

    where

    Letεbe a symmetric real 3×3 matrix andgbe an antisymmetric real 3×3 matrix de fined by

    In the paper we suppose thatBis positive definite.

    Remark 2.1Positive definiteness of B is natural for a wide class of gyrotropic materials because the matrix ε is always positive definite and the elements of matrix g essentially smaller then elements of ε(see,for example,[Freiser(1968)];[Pershan(1967)]).

    Moreover under assumption of positive de finiteness of B the matrixˉε is invertible,i.e.the inverse matrixexists.

    Let us denoteas the real part ofjcomponent ofandas the imaginary part ofjcomponent of,i.e.and1,2,3.Then equality(6)can be written as a vector equation

    whereApplying technique and computational tools of[Yakhno(2011b)],it is possible to compute a non-singular matrixT(ν)and diagonal matrixD(ν)=diag(d1(ν),d2(ν),...,d6(ν)),such that

    (MATLAB code of this computation is given in Appendix A:).

    Below the equation(10)is written in terms of a new unknown vector functionYkwhich is defined by

    Substituting(11)into(10)we find

    Multiplying the equation(12)byTT(ν),we find

    or in a component form

    whereAs a result,the solution of(10)is determined by

    Finally,applying the inverse Fourier transform to(15),we find thek-column of the electric Green’s function as a tempered distribution,i.e.

    whereis the operator of the inverse Fourier transform in the space of distributionS′(R3)[Vladimirov(1979)].

    Usually the classical functions are de fined by a point-wise manner and we can draw their graphs.Unfortunately,this point-wise definition and its graphical presentation is not adequate to singular tempered distributions[Vladimirov(1979)].They are very often replaced by regularized functions which are classical and have graphic presentations.This regularization has a parameter of the regularization and the singular generalized function is a limit in sense of the generalized functions space,when the parameter of the regularization tends to+∞.The right hand side of(16)can be regularized by

    whereAis the parameter of regularization.

    We takeA=N?and approximate the integral(17)by the integral sum

    for the numerical computation.The parametersNand?are determined by the procedure described in Section 3.2.

    2.2 Computing the magnetic Green’s function

    Applying the Fourier transform with respect toxto the equation(5)and using equalities

    we find

    Letbe the real parts ofandbe the imaginary parts ofrespectively.

    Denotingandthe equation(19)can be written in the form

    whereP(ν)is a 6×6 symmetric matrix defined by

    Using the symbolic matrix transformation in MATLAB and the technique from[Yakhno(2011b)]we can compute an invertible matrixQ(ν)andM(ν)such that

    whereM(ν)=diag(mn(ν),n=1,2,3,4,5,6).(MATLAB code of computation ofQ(ν)andM(ν)is given in Appendix B:)

    Letthen

    Using(23)the equation(20)can be written in the form

    Multiplying the equation(24)byQ-1(ν),we find

    wheren=1,2,...,6.As a result the solution of(20)is determined by

    and the solution of(19)is found by

    Applying the inverse Fourier transform to(27),we find thek-column of the magnetic Green’s function as a tempered distribution,i.e.

    The right hand side of(28)can be regularized by

    whereAis the parameter of regularization.

    We takeA=N?and approximate the integral(29)by the integral sum

    for the numerical computation.The parametersNand?are determined by the procedure described in Section 3.2.

    3 Computational Examples

    3.1 Computational accuracy of the Fourier transform of the electric Green’s function

    The Fourier transform of the electric and magnetic Green’s functions can be found by exact formulas for the case of isotropic homogeneous materials.We use these formulas to compute the exact values of the Fourier transform of Green’s functions and then to compare them with values computed by our method.

    These computational experiments have shown that values offound by our method and by explicit formulas are almost the same(the accuracy is around 10-6).

    3.2 Determining parameters for the approximate computation of the Fourier transform in the space of generalized functions

    The fundamental solution of the Helmholtz equation as well as the image of the Fourier transform with respect to a space variable are given by explicit formulas.We apply these explicit formulas to determine the parameters which we use for the numerical computation of the inverse Fourier transform for finding the electric and magnetic Green’s functions in gyro-electric media.

    Let us consider the fundamental solution

    of the Helmholtz equation

    Applying the Fourier transform(the Fourier transform of generalized functions[Vladimirov(1979)])to equation(34),we find

    whereν=(ν1,ν2,ν3)∈R3is the parameter of the Fourier transform,

    Forwe have

    The fundamental solutionU(x),de fined by(33),can be found by application of the inverse Fourier transform(as the inverse Fourier transform of generalized functions[Vladimirov(1979)])todetermined by(35).

    For the approximate computationUN,?(x)of the functionU(x)we apply the approximation of the inverse Fourier transform by

    The parametersNand?have been chosen using the empirical observation and natural logic.Namely,using the formula(36)we compute valuesUN,?(x)for? =0.1,0.5,0.8,1.0,N=20,30,40,50,60,80 and so on numerically in MATLAB.We compare the computed values ofUN,?(x)with values of the functionU(x),defined by(33).We have observed that the difference between the values ofUN,?(x)andU(x)corresponding to?=1 andN=30,40,50,60,80,100 becomes small and increment of the approximation for the parameterNis not essential,according to the case?=1,N=30.For this reason we choose?=1,N=30 as the suitable parameters for the calculation of the inverse Fourier transform by(36).

    We have presented 1Dgraphs of the functionsU(x)andUN,?(x)for the different values ofNand?in Fig.1 and Fig.2.

    Figure 1:1D plot of U(x)and UN,?(x)for N=30,? =0.5

    Figure 2:1D plot of U(x)and UN,?(x)for N=30,? =1.0

    3.3 The approximate computation of the electric and magnetic Green’s functions in general gyro-electric media

    In this section we consider the computation of electric and magnetic Green’s functions for general gyro-electric media characterizing by

    whereκ=10-1and 10-2.

    Applying the method of Section2.1 we have computedT(ν),TT(ν),D(ν)and then using the formula(18)we have derived solutionsE1(x),E2(x),E3(x)of(6)numerically and applying the method of Section 2.2 we have computedQ(ν),Q-1(ν),M(ν)and then using the formula(30)we have derived solutionsH1(x),H2(x),H3(x)of(19)numerically.

    Results of the computation of real and imaginary parts ofandforκ=10-1,10-2are presented in Fig.3,Figs.5-6 and Fig.4,Figs.7-8,respectively.

    Figure 3:(a)1D plot of plot of in rectangular region for κ=10-1,10-2

    Figure 4:ω =2c,κ=10-1,10-2(a)2D plot of(b)2D plot of

    Figure 5:ω=2c,κ=10-1(a)2D plot of(b)3D plot of

    Figure 6:ω=2c,κ=10-1(a)2D plot of(b)2D plot of

    Figure 7:ω=2c,κ=10-1(a)2D plot of (b)2D plot of

    Figure 8:ω=2c,κ=10-1(a)2D plot of(b)2D plot of

    In Fig.3(a),the 1Dplots offorx1=x2=x,x3=0,ω=2cforκ=10-1andκ=10-2is given.Fig.3(b)presents the zoomed part of the graph of Fig.3(a)in the indicated rectangle.Figs.4(a),(b)present the 1Dgraphs ofandrespectively forκ=10-1,10-2.These graphs show the influence ofκon the components of the electric and magnetic Green’s functions.

    The behaviour of real and imaginary parts of the computed components of the electric and magnetic Green’s functions is presented in Fig.3,Figs.5-6.The result of the simulationforω=2c,κ=10-1is presented in Fig.5.The 3Dplot ofis shown in Fig.5(b).Here the horizontal axes arex1andx2,respectively.The vertical axis is the magnitude ofFig.5(a)is a screen shot of 2Dlevel plot of the same surfacei.e.a view of the surfacepresented in Fig.5(b)from the top ofz-axis.Figs.6(a),(b)illustrate the 2Dlevel plots ofandrespectively.

    The result of simulationandare presented in Fig.7.Figs.7(a),(b)are the 2Dplots ofandrespectively.The illustration ofandis given in Fig.8.

    4 Conclusion

    The method for the approximate computation of the electric and magnetic Green’s functions for the time-harmonic Maxwell’s equations in general gyro-electric materials has been developed in the paper.The method is based on the Fourier transform meta-approach.The Fourier transform with respect to the 3Dspace variable has been applied to partial differential equations for electric and magnetic Green’s functions.The images of the Fourier transform of Green’s functions were found from the obtained equations by the matrix transformations in MATLAB.The inverse Fourier transform of these images has been done numerically in the regularized(approximate)form in MATLAB.The parameters of this regularization have been chosen using the explicit formulae of the Green’s function and its Fourier image for the Helmholtz equation.Two types of the computational experiments were presented in the paper.The first one demonstrates the high level of computational accuracy for the Fourier images and the inverse Fourier transform.The second one has been done for computing the electric and magnetic Green’s functions in a general gyro-electric material.These computational experiments con firm the robustness of the method.

    Barkleshli,S.(1993):Electromagnetic dyadic Green’s function for multilayered symmetric gyro-electric media.Radio Science,vol.28,no.1,pp.23-36.

    Chen,J.;Ke,J.L.H.(2009): Construction of Green’s function using field integral approach for Laplace problems with circular boundaries.CMC:Computers,Materials and Continua,vol.9,pp.93-109.

    Chew,W.C.(1990):Waves and fields in inhomogeneous media.New York:Van Nostrand Reinhold.

    Ehrenpreis,L.(1960):Solution of some problems of division.IV.Invertible and elliptic operators.Amer.J.Math.,vol.82,pp.522-588.

    Eroglu,A.(2010):Wave Propagation and Radiation in Gyrotropic and Anisotropic Media.Springer.

    Eroglu,A.;Lee,J.K.(2003): Dyadic Green’s function for a Gyro-electric Medium.IEEE International,vol.2,pp.1100-1103.

    Eroglu,A.;Lee,J.K.(2006): Dyadic Green’s function for an Electrically Gyrotropic medium.PIER,vol.58,pp.223-241.

    Eroglu,A.;Lee,J.K.(2006): Wave propagation and dispersion characteristics for a nonreciprocal electrically gyrotropic medium.PIER,vol.62,pp.237-260.

    Faraday,M.(1933):Faraday’s Diary.George Bell and Sons Ltd.,vol.4.

    Freiser,M.J.(1968):A Survey of Magnetooptic Effects.IEEE Transactions on Magnetics,vol.4,pp.152-161.

    Gu,M.H.;Young,D.L.F.C.M.(2009):The method of fundamental solutions for one-dimensional wave eqautions.CMC:Com puters,Materials and Continua,vol.11,pp.185-208.

    Hormander,L.(1963):Linear Partial Differential Operators.Springer,Berlin.

    Kong,J.A.(1984):Electromagnetic Wave Theory.John Wiley and Sons.

    Lindell,I.V.;Sihvola,A.H.T.S.A.V.A.J.(1994):Electromagnetic waves in chiral and biisotropic media.New York:Artech House.

    M algrange,B.(1956): Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution.Annales de l’institut Fourier,vol.6,pp.271-355.

    Olyslager,F.(1997): Time harmonic two-and three-dimensional closed form Green’s dyadic for gyrotropic,bianisotropic,and anisotropic media.Electromagnetics,Taylor and Fracis,vol.17,no.4,pp.369-386.

    Ortner,N.;Wagner,P.(2004): Fundamental matrices of homogeneous hyperbolic systems.Applications to crystal optics,elastodynamics,and piezoelectromagnetism.ZAMM Z.Angew.Math.Mech.,vol.84,no.5,pp.314-346.

    Pershan,P.S.(1967):MagnetoOptical Effects.Journal of Applied Physics,vol.38,pp.1482.

    Prati,E.(2003): Propagation in gyroelectromagnetic guiding system.J.of Electromagn Waves and Appl.,vol.17,pp.1177-1196.

    Rashed,Y.F.(2004):Green’s first identity method for boundary-only solution of self-weight in BEM formulation for thick slabs.CMC:Computers,Materials and Continua,vol.1,pp.319-326.

    Tai,C.T.(1994):Dyadic Green’s functions in electromagnetic theory.New Jersey:IEEE Press.

    Tewary,V.;Bartolo,L.P.A.(2002): Green’s Functions Experts Meeting 274 and the GREEN Digital Library.NIST Workshop Report.

    Tewary,V.K.(1995):Computationally efficient representation for elastodynamic and elastostatic Green’s functions for anisotropic solids.Physical Review B,vol.51,pp.15695-15702.

    Tewary,V.K.(2004): Elastostatic Green’s function for advanced materials subject to surface loading.Journal of Engineering Mathematics,vol.49,pp.289-304.

    Vladimirov,V.(1971):Equations of Mathematical Physics.Marcel Dekker,New York.

    Vladimirov,V.(1979):Generalized Functions in Mathematical Physics.M ir,Moscow.

    Wagner,P.(2011):The singular terms in the fundamental matrix of crystal optics.Proc.R.Soc.A,vol.467,pp.2663-2689.

    Yakhno,V.G.;Ozdek,D.(2012):Computation of the time-dependent Green’s function for the longitudinal vibration of multi-step rod.CMES:Computer Modeling in Engineering and Sciences,vol.85,no.2,pp.157-176.

    Yakhno,V.G.;Ozdek,D.(2013): The time-dependent Green’s function of the transverse vibration of a composite multi stepped membrane.CMC:Computers,Materials and Continua,vol.33,no.2,pp.155-173.

    Yakhno,V.G.;Cerdik Yaslan,H.(2011):Computation of the time-dependent Green’s function of three dimensional elastodynamics in 3D quasicrystals.CMES:Computer Modeling in Engineering and Sciences,vol.81,no.4,pp.295-310.

    Yakhno,V.G.(2008): Computing and simulation of time-dependent electromagnetic fields in homogeneous anisotropic materials.International Journal of Engineering Science,vol.46,pp.411-426.

    Yakhno,V.G.(2011):Computation of Dyadic Green’s Functions for Electrodynamics in Quasi-Static Approximation with Tensor Conductivity.CMC:Computers,Materials and Continua,vol.21,no.1,pp.1-15.

    Yang,B.;Tewary,V.K.(2008):Green’s function for multilayered with interfacial membrane and flexural rigidities.CMC:Computers,Materials and Continua,vol.8,pp.23-31.

    Young,D.L.;Chen,C.S.W.T.K.(2005): Solution of Maxwell’s equations using the MQ method.CMC:Computers,Materials and Continua,vol.2,pp.267-276.

    在线观看免费日韩欧美大片| 国模一区二区三区四区视频 | 精品欧美国产一区二区三| 舔av片在线| 成在线人永久免费视频| 日本精品一区二区三区蜜桃| 波多野结衣高清作品| 国产一区二区在线av高清观看| 亚洲18禁久久av| 久久久久久久午夜电影| 九色成人免费人妻av| 色综合站精品国产| 香蕉丝袜av| 夜夜爽天天搞| 香蕉国产在线看| 国产单亲对白刺激| 国产精品乱码一区二三区的特点| 色噜噜av男人的天堂激情| 最近视频中文字幕2019在线8| 一级作爱视频免费观看| 色综合婷婷激情| 757午夜福利合集在线观看| 久久精品国产综合久久久| 久久久国产精品麻豆| 人人妻人人澡欧美一区二区| 麻豆久久精品国产亚洲av| 999久久久国产精品视频| 久久精品91蜜桃| 日韩国内少妇激情av| 不卡av一区二区三区| 欧美不卡视频在线免费观看 | 国产三级黄色录像| 两个人视频免费观看高清| 青草久久国产| 欧美丝袜亚洲另类 | 欧美成人免费av一区二区三区| 黑人欧美特级aaaaaa片| 日本熟妇午夜| 好男人电影高清在线观看| 国产精品香港三级国产av潘金莲| 淫秽高清视频在线观看| 最近最新免费中文字幕在线| 欧美日韩一级在线毛片| 国产日本99.免费观看| svipshipincom国产片| 非洲黑人性xxxx精品又粗又长| 欧美久久黑人一区二区| 天天一区二区日本电影三级| 国产精品影院久久| 淫秽高清视频在线观看| 99久久综合精品五月天人人| 欧美精品亚洲一区二区| 88av欧美| 好男人在线观看高清免费视频| 亚洲av成人精品一区久久| 中文亚洲av片在线观看爽| 两个人免费观看高清视频| 亚洲黑人精品在线| 国产精品 欧美亚洲| 亚洲av五月六月丁香网| 免费电影在线观看免费观看| cao死你这个sao货| 最近最新中文字幕大全电影3| 一级黄色大片毛片| 国产高清视频在线观看网站| 狂野欧美白嫩少妇大欣赏| 日日爽夜夜爽网站| 久久久久亚洲av毛片大全| 深夜精品福利| 黄片小视频在线播放| 看片在线看免费视频| 人人妻人人看人人澡| 欧美日韩精品网址| av天堂在线播放| 欧美午夜高清在线| 国产精品自产拍在线观看55亚洲| 久久久久国内视频| 精品久久蜜臀av无| 中文字幕av在线有码专区| 国内精品一区二区在线观看| ponron亚洲| 在线永久观看黄色视频| 国产精品日韩av在线免费观看| 国产黄a三级三级三级人| 国产免费av片在线观看野外av| 欧美黄色片欧美黄色片| 免费看美女性在线毛片视频| 禁无遮挡网站| 国产成人一区二区三区免费视频网站| 丰满人妻熟妇乱又伦精品不卡| 99久久99久久久精品蜜桃| 日本黄色视频三级网站网址| 巨乳人妻的诱惑在线观看| 久久久水蜜桃国产精品网| 老鸭窝网址在线观看| 非洲黑人性xxxx精品又粗又长| 久久久精品大字幕| 国产黄片美女视频| 国产三级在线视频| 亚洲av成人av| 亚洲av熟女| 久久久精品国产亚洲av高清涩受| 观看免费一级毛片| 亚洲av中文字字幕乱码综合| 国产精品99久久99久久久不卡| 女人高潮潮喷娇喘18禁视频| 久久精品影院6| 久久久久国内视频| 欧美黄色淫秽网站| 免费看日本二区| 精品久久久久久成人av| 久久久精品大字幕| 亚洲精品一卡2卡三卡4卡5卡| 神马国产精品三级电影在线观看 | 中国美女看黄片| 久久久久性生活片| 国产高清videossex| 91在线观看av| 久久久久久免费高清国产稀缺| 亚洲人成网站在线播放欧美日韩| 精品国产亚洲在线| 成年版毛片免费区| 亚洲专区中文字幕在线| 一a级毛片在线观看| 波多野结衣高清无吗| 两个人免费观看高清视频| 90打野战视频偷拍视频| 成年人黄色毛片网站| 美女扒开内裤让男人捅视频| 免费一级毛片在线播放高清视频| 精品国内亚洲2022精品成人| 久久久久久久久免费视频了| 免费观看精品视频网站| 啦啦啦韩国在线观看视频| 高潮久久久久久久久久久不卡| 怎么达到女性高潮| 亚洲午夜精品一区,二区,三区| 亚洲美女视频黄频| 99热6这里只有精品| 久久精品亚洲精品国产色婷小说| 亚洲,欧美精品.| 亚洲人成电影免费在线| 国产精品国产高清国产av| 亚洲国产看品久久| 99精品久久久久人妻精品| 国产亚洲精品综合一区在线观看 | 亚洲一区高清亚洲精品| 男男h啪啪无遮挡| 日韩欧美精品v在线| 亚洲国产欧美一区二区综合| 在线国产一区二区在线| 亚洲精品久久成人aⅴ小说| 两性夫妻黄色片| 法律面前人人平等表现在哪些方面| 久久 成人 亚洲| 国内精品一区二区在线观看| 999久久久国产精品视频| 巨乳人妻的诱惑在线观看| 十八禁网站免费在线| 欧美日韩乱码在线| 欧美日韩福利视频一区二区| 国产又黄又爽又无遮挡在线| 久久精品国产综合久久久| 999精品在线视频| 1024香蕉在线观看| 69av精品久久久久久| 97超级碰碰碰精品色视频在线观看| 国内精品久久久久精免费| 中文亚洲av片在线观看爽| 亚洲片人在线观看| 最近最新中文字幕大全免费视频| 国产区一区二久久| 91九色精品人成在线观看| 一级黄色大片毛片| 国产亚洲精品第一综合不卡| 亚洲片人在线观看| 国产精品九九99| 国产精品亚洲av一区麻豆| 国产精品1区2区在线观看.| 一二三四社区在线视频社区8| 亚洲欧美激情综合另类| 不卡一级毛片| 亚洲aⅴ乱码一区二区在线播放 | 欧美性猛交╳xxx乱大交人| 日韩欧美在线二视频| 国产高清视频在线播放一区| 国产精品久久久久久人妻精品电影| 一本精品99久久精品77| 三级男女做爰猛烈吃奶摸视频| 我的老师免费观看完整版| 日韩精品青青久久久久久| 色噜噜av男人的天堂激情| 中文字幕熟女人妻在线| 欧美久久黑人一区二区| 国产又色又爽无遮挡免费看| 可以在线观看的亚洲视频| 国产精品一区二区三区四区免费观看 | 免费看日本二区| 亚洲电影在线观看av| 一个人免费在线观看的高清视频| 国产aⅴ精品一区二区三区波| 亚洲 国产 在线| 欧美在线一区亚洲| 亚洲 欧美一区二区三区| 国产精品久久久av美女十八| 亚洲成人久久爱视频| 精品福利观看| 国产亚洲精品久久久久5区| xxx96com| 久久精品夜夜夜夜夜久久蜜豆 | 一级黄色大片毛片| 中文字幕熟女人妻在线| 精品国内亚洲2022精品成人| 久久精品国产清高在天天线| 婷婷丁香在线五月| 女人高潮潮喷娇喘18禁视频| 99精品久久久久人妻精品| 曰老女人黄片| 少妇裸体淫交视频免费看高清 | 草草在线视频免费看| 欧美日韩一级在线毛片| 日韩中文字幕欧美一区二区| 极品教师在线免费播放| 男女那种视频在线观看| 久久99热这里只有精品18| 免费在线观看成人毛片| 999精品在线视频| а√天堂www在线а√下载| 看免费av毛片| 日本在线视频免费播放| 日韩欧美 国产精品| 欧美性猛交╳xxx乱大交人| 最近最新中文字幕大全电影3| 午夜福利18| 禁无遮挡网站| 一级黄色大片毛片| 91av网站免费观看| 黄色a级毛片大全视频| 一级a爱片免费观看的视频| 日韩高清综合在线| 日韩精品中文字幕看吧| 免费观看人在逋| 免费观看精品视频网站| 亚洲激情在线av| 欧美3d第一页| 婷婷精品国产亚洲av在线| 在线观看午夜福利视频| 757午夜福利合集在线观看| 国产av不卡久久| 国内久久婷婷六月综合欲色啪| 女人高潮潮喷娇喘18禁视频| 一进一出抽搐动态| 亚洲中文字幕一区二区三区有码在线看 | 国产亚洲精品久久久久5区| 国内精品久久久久精免费| www日本黄色视频网| 欧美日韩福利视频一区二区| 精品国产亚洲在线| 欧美在线一区亚洲| 亚洲欧美日韩东京热| 亚洲熟妇中文字幕五十中出| 日本在线视频免费播放| 美女免费视频网站| 成年免费大片在线观看| 欧美又色又爽又黄视频| 久99久视频精品免费| 亚洲专区国产一区二区| 两个人视频免费观看高清| 一级毛片精品| 中文字幕人妻丝袜一区二区| 欧美极品一区二区三区四区| 午夜福利18| 麻豆国产av国片精品| 亚洲精品一卡2卡三卡4卡5卡| 99国产综合亚洲精品| 50天的宝宝边吃奶边哭怎么回事| 国产精品香港三级国产av潘金莲| 中文字幕精品亚洲无线码一区| 在线观看66精品国产| 精品国产乱码久久久久久男人| 亚洲天堂国产精品一区在线| 国产av一区二区精品久久| e午夜精品久久久久久久| 黄色 视频免费看| 日本 欧美在线| 一本综合久久免费| 亚洲中文av在线| 日本三级黄在线观看| 国产男靠女视频免费网站| 禁无遮挡网站| 亚洲国产高清在线一区二区三| 亚洲黑人精品在线| 手机成人av网站| 极品教师在线免费播放| 黑人操中国人逼视频| 亚洲18禁久久av| 午夜成年电影在线免费观看| 97人妻精品一区二区三区麻豆| 香蕉国产在线看| 精品久久久久久久人妻蜜臀av| 真人一进一出gif抽搐免费| √禁漫天堂资源中文www| 亚洲自偷自拍图片 自拍| 久久婷婷人人爽人人干人人爱| 欧美成狂野欧美在线观看| 亚洲欧美日韩高清在线视频| 精品不卡国产一区二区三区| 国产私拍福利视频在线观看| 成年人黄色毛片网站| av免费在线观看网站| 欧美成人性av电影在线观看| 欧美日韩国产亚洲二区| 久久久久久大精品| 窝窝影院91人妻| 欧美黑人欧美精品刺激| 久久国产精品人妻蜜桃| 国产私拍福利视频在线观看| 天堂影院成人在线观看| 久久中文看片网| 欧洲精品卡2卡3卡4卡5卡区| 亚洲美女视频黄频| 在线播放国产精品三级| 久久精品国产清高在天天线| 最近最新中文字幕大全电影3| 国产精品av视频在线免费观看| 亚洲一区高清亚洲精品| 欧美av亚洲av综合av国产av| 首页视频小说图片口味搜索| 国产野战对白在线观看| 国内精品久久久久久久电影| 国产精品影院久久| 国产亚洲欧美98| 国产精品影院久久| 最新在线观看一区二区三区| 在线视频色国产色| 老司机福利观看| 国产在线观看jvid| 精品午夜福利视频在线观看一区| 一级a爱片免费观看的视频| 国产亚洲欧美98| 人人妻,人人澡人人爽秒播| 99在线视频只有这里精品首页| 不卡一级毛片| 欧美日韩福利视频一区二区| 97碰自拍视频| 亚洲免费av在线视频| www.自偷自拍.com| 国产视频内射| 村上凉子中文字幕在线| 国产精品亚洲av一区麻豆| 国产亚洲精品第一综合不卡| 少妇的丰满在线观看| 久久久国产欧美日韩av| 特大巨黑吊av在线直播| 国产主播在线观看一区二区| 日韩欧美国产在线观看| 国产精品免费一区二区三区在线| 精品第一国产精品| 哪里可以看免费的av片| 一级毛片精品| 嫩草影院精品99| 久久精品国产综合久久久| 国产一区二区三区在线臀色熟女| 午夜日韩欧美国产| 99国产综合亚洲精品| 亚洲一区二区三区不卡视频| 日本免费a在线| 国产成+人综合+亚洲专区| 免费观看人在逋| 一本大道久久a久久精品| 日本免费a在线| 亚洲va日本ⅴa欧美va伊人久久| 亚洲av第一区精品v没综合| 国产精品乱码一区二三区的特点| 夜夜爽天天搞| 国产视频一区二区在线看| 久久久久九九精品影院| 久久久久久免费高清国产稀缺| 久久午夜亚洲精品久久| 91字幕亚洲| 国产麻豆成人av免费视频| 日韩精品青青久久久久久| 在线看三级毛片| 色在线成人网| 婷婷丁香在线五月| 在线永久观看黄色视频| 久久久精品大字幕| 欧美日韩中文字幕国产精品一区二区三区| 在线观看舔阴道视频| 我要搜黄色片| 欧美激情久久久久久爽电影| 久久精品成人免费网站| 精品国产亚洲在线| 18禁黄网站禁片午夜丰满| 日韩欧美国产一区二区入口| 国产成人欧美在线观看| 在线观看一区二区三区| 国产aⅴ精品一区二区三区波| 88av欧美| 国产成人精品久久二区二区免费| 欧美日韩乱码在线| 国产乱人伦免费视频| 一边摸一边抽搐一进一小说| 999久久久精品免费观看国产| 男人的好看免费观看在线视频 | 日韩精品青青久久久久久| 色哟哟哟哟哟哟| 国产伦人伦偷精品视频| 精品国内亚洲2022精品成人| 男女做爰动态图高潮gif福利片| 亚洲av电影不卡..在线观看| 色播亚洲综合网| 亚洲欧美激情综合另类| 一边摸一边做爽爽视频免费| 国产成人精品久久二区二区91| 久久热在线av| 日本一区二区免费在线视频| 国产成+人综合+亚洲专区| 视频区欧美日本亚洲| 夜夜躁狠狠躁天天躁| 精品乱码久久久久久99久播| √禁漫天堂资源中文www| 少妇人妻一区二区三区视频| 18禁黄网站禁片午夜丰满| 国产一区二区三区视频了| 色精品久久人妻99蜜桃| 亚洲av五月六月丁香网| 国产高清有码在线观看视频 | 国产精品综合久久久久久久免费| 在线观看免费日韩欧美大片| 欧美日韩瑟瑟在线播放| www.999成人在线观看| 91麻豆av在线| 国产99白浆流出| 亚洲av日韩精品久久久久久密| 99热这里只有是精品50| 丰满人妻一区二区三区视频av | 精品国产美女av久久久久小说| 熟女少妇亚洲综合色aaa.| 成人三级黄色视频| 欧美3d第一页| 欧美日本亚洲视频在线播放| 欧美色欧美亚洲另类二区| 国产av在哪里看| 亚洲人成电影免费在线| 亚洲精品一卡2卡三卡4卡5卡| 亚洲性夜色夜夜综合| 国产精品永久免费网站| 午夜福利在线在线| 久久久国产成人免费| 国产精品久久久久久久电影 | 一边摸一边做爽爽视频免费| 国产一区二区激情短视频| 午夜成年电影在线免费观看| 欧美av亚洲av综合av国产av| 国产精品av久久久久免费| 亚洲欧美日韩高清在线视频| 一a级毛片在线观看| 国产视频内射| 精品电影一区二区在线| 亚洲五月天丁香| 韩国av一区二区三区四区| 国产精品一区二区三区四区久久| 高清在线国产一区| 亚洲电影在线观看av| 最近最新中文字幕大全免费视频| 亚洲 欧美一区二区三区| 18禁国产床啪视频网站| 欧美成人免费av一区二区三区| www.自偷自拍.com| 在线观看免费日韩欧美大片| 色综合婷婷激情| 国产一区二区在线av高清观看| 正在播放国产对白刺激| 男女午夜视频在线观看| aaaaa片日本免费| 一区二区三区高清视频在线| 亚洲av熟女| 99国产精品一区二区三区| 亚洲av电影在线进入| 可以在线观看毛片的网站| 精品久久久久久,| 可以免费在线观看a视频的电影网站| 亚洲成人久久性| 一本一本综合久久| 国产黄片美女视频| cao死你这个sao货| 成年版毛片免费区| 免费观看人在逋| 91九色精品人成在线观看| 亚洲熟妇中文字幕五十中出| 国产精品一区二区免费欧美| 丰满人妻一区二区三区视频av | 男人舔女人下体高潮全视频| 久久久国产成人精品二区| 妹子高潮喷水视频| 青草久久国产| 岛国在线观看网站| 性色av乱码一区二区三区2| 日日爽夜夜爽网站| 免费高清视频大片| 欧美中文日本在线观看视频| av中文乱码字幕在线| 无人区码免费观看不卡| 日韩欧美 国产精品| 1024视频免费在线观看| 欧美性长视频在线观看| 香蕉丝袜av| 成人永久免费在线观看视频| 黄色视频,在线免费观看| 亚洲自偷自拍图片 自拍| 欧美日韩亚洲综合一区二区三区_| 亚洲av片天天在线观看| 国产精品,欧美在线| 久久伊人香网站| 久久婷婷人人爽人人干人人爱| 一本精品99久久精品77| 国产91精品成人一区二区三区| 特大巨黑吊av在线直播| 欧美在线黄色| 精品午夜福利视频在线观看一区| 国产亚洲av高清不卡| 亚洲精品中文字幕一二三四区| 国产1区2区3区精品| 91麻豆精品激情在线观看国产| 熟女少妇亚洲综合色aaa.| 欧美在线黄色| 精品久久蜜臀av无| 国产一区在线观看成人免费| √禁漫天堂资源中文www| 国产精品久久久av美女十八| 色av中文字幕| 18禁观看日本| 91国产中文字幕| 国产精品国产高清国产av| 51午夜福利影视在线观看| 又黄又粗又硬又大视频| 久久久久久久精品吃奶| 小说图片视频综合网站| 99久久无色码亚洲精品果冻| 搞女人的毛片| 午夜福利免费观看在线| 亚洲中文日韩欧美视频| 亚洲七黄色美女视频| 脱女人内裤的视频| www.999成人在线观看| 黄色a级毛片大全视频| 五月玫瑰六月丁香| 精品国产乱子伦一区二区三区| 国产黄a三级三级三级人| 日日爽夜夜爽网站| 亚洲精品美女久久久久99蜜臀| 精品午夜福利视频在线观看一区| 欧美又色又爽又黄视频| 久久久久亚洲av毛片大全| 一本久久中文字幕| 欧美高清成人免费视频www| av在线天堂中文字幕| 欧美久久黑人一区二区| 日本精品一区二区三区蜜桃| 免费观看精品视频网站| 露出奶头的视频| 天堂av国产一区二区熟女人妻 | 国产黄色小视频在线观看| 国产伦在线观看视频一区| 99国产精品一区二区蜜桃av| 黄色成人免费大全| tocl精华| 老熟妇仑乱视频hdxx| 黄片大片在线免费观看| 精品国产超薄肉色丝袜足j| 在线观看日韩欧美| 欧美三级亚洲精品| 在线观看免费日韩欧美大片| 久久久久久人人人人人| 久久久久久亚洲精品国产蜜桃av| 欧美在线黄色| 久久伊人香网站| 国产精品一及| 高清在线国产一区| 亚洲,欧美精品.| 免费一级毛片在线播放高清视频| 最近视频中文字幕2019在线8| 欧美日本视频| 午夜亚洲福利在线播放| 又紧又爽又黄一区二区| 麻豆国产av国片精品| 999久久久国产精品视频| 亚洲欧美激情综合另类| 国产精品久久久av美女十八| 天堂影院成人在线观看| 88av欧美| 日韩欧美在线二视频| 日本精品一区二区三区蜜桃| 日韩欧美在线乱码| 亚洲欧美一区二区三区黑人| 国语自产精品视频在线第100页| 久久精品成人免费网站| 国产爱豆传媒在线观看 | www日本黄色视频网| 两个人看的免费小视频| 长腿黑丝高跟| 久久久久久久久中文| 18禁美女被吸乳视频| 一边摸一边做爽爽视频免费| 一级作爱视频免费观看| 村上凉子中文字幕在线| 欧洲精品卡2卡3卡4卡5卡区| 欧美黑人欧美精品刺激| 日日摸夜夜添夜夜添小说| 男女之事视频高清在线观看| 亚洲专区字幕在线| 精品久久久久久久末码| 精品国产亚洲在线| 一级作爱视频免费观看|