安芳 朱永峰 魏少妮 賴紹聰
1. 大陸動(dòng)力學(xué)國家重點(diǎn)實(shí)驗(yàn)室,西北大學(xué)地質(zhì)系,西安 7100692. 造山帶與地殼演化教育部重點(diǎn)實(shí)驗(yàn)室,北京大學(xué)地球與空間科學(xué)學(xué)院,北京 1008713. 西安科技大學(xué)地質(zhì)與環(huán)境學(xué)院,西安 7100541.
京希-伊爾曼德金礦位于西北天山吐拉蘇盆地中,礦區(qū)出露晚古生代火山-沉積巖和獅子山次火山巖;獅子山次火山巖主要為安山玢巖、英安玢巖,侵位于火山-沉積巖底部的凝灰質(zhì)砂巖、凝灰?guī)r、流紋巖以及安山巖組合中。鋯石SHRIMP U-Pb年代學(xué)研究表明,獅子山次火山巖的形成年齡為370.5±2.1Ma,略晚于圍巖火山巖。獅子山次火山巖MgO、TiO2、K2O含量低,為低鉀拉斑系列,稀土元素總量低(5.1×10-6~8.8×10-6),輕稀土弱富集((La/Yb)N=2.7~3.8),弱Eu正異常和Ce負(fù)異常,相對富集大離子親石元素和Zr、Hf,虧損Nd,地球化學(xué)特征與圍巖安山巖明顯不同。具有虧損的Sr-Nd同位素特征,(87Sr/86Sr)i=0.703185~0.703810,εNd(t)=4.03~4.54。獅子山次火山巖形成于火山弧環(huán)境,是火山弧中少量拉斑系列巖石的代表,其巖漿源區(qū)為俯沖帶流體交代的虧損地幔,地幔石榴石二輝橄欖巖經(jīng)~5%部分熔融形成原始玄武質(zhì)巖漿,玄武質(zhì)巖漿經(jīng)~20%的礦物分離結(jié)晶形成獅子山次火山巖,其形成環(huán)境以及演化過程非常有利于巖漿演化形成熱液型金礦床,可能與京希-伊爾曼德金礦具有密切的成因聯(lián)系。
次火山巖;年代學(xué);地球化學(xué);獅子山;京希-伊爾曼德;西北天山
西天山是中亞造山帶的主要組成部分,位于準(zhǔn)噶爾盆地和塔里木盆地之間,自北向南由西北天山、伊犁地塊和西南天山組成,是古亞洲洋消減閉合,準(zhǔn)噶爾板塊、塔里木板塊以及伊犁地塊碰撞造山的產(chǎn)物(Windleyetal., 1990; Allenetal., 1993; Gaoetal., 1998; Xiaoetal., 2004)。西天山地區(qū)大面積出露晚古生代火山-沉積巖,主要分布于伊犁板塊南北緣,新疆地質(zhì)礦產(chǎn)局(1993)統(tǒng)一將這套火山-沉積巖劃歸“下石炭統(tǒng)大哈拉軍山組”。近年來對于西天山地區(qū)這套火山-沉積巖的研究取得了大量成果,火山巖的形成時(shí)代跨度很大,從晚志留世(安芳和朱永峰, 2008; Zhuetal., 2009)到晚石炭世(Zhuetal., 2005)均有出露,關(guān)于火山巖形成的構(gòu)造背景也有較深入的認(rèn)識,但仍存在爭議,如火山弧(王強(qiáng)等, 2006; Wangetal., 2007; 安芳和朱永峰, 2008; Zhuetal., 2009; 龍靈利等, 2008; 唐功建等, 2009),與地幔柱相關(guān)的裂谷環(huán)境(Xiaetal., 2008; 車自成等, 1996)或泥盆紀(jì)-早石炭世為火山弧,而晚石炭世為裂谷環(huán)境(韓穎平等,2008;劉飛等,2011)。
西北天山是中亞成礦域主要的Au成礦帶,金礦化集中分布于吐拉蘇-也里莫墩火山巖盆地中,區(qū)域內(nèi)發(fā)育多個(gè)大型淺成低溫?zé)嵋盒徒鸬V床,金礦化主要賦存于晚古生代火山-沉積巖中,部分礦區(qū)出露次火山巖雜巖體,侵位于火山巖中,在空間上與金礦化關(guān)系密切?;鹕綆r研究獲得的新認(rèn)識對早期關(guān)于次火山巖形成時(shí)代的認(rèn)識提出了挑戰(zhàn),要深入探討次火山巖與金礦化之間的關(guān)系,需在詳細(xì)研究次火山巖地質(zhì)、地球化學(xué)特征、形成時(shí)代、巖石成因和構(gòu)造背景的基礎(chǔ)上進(jìn)行。吐拉蘇盆地京希-伊爾曼德金礦區(qū)大面積分布著晚古生代火山-沉積巖,并有獅子山次火山巖在京希礦區(qū)出露。本文首次對獅子山次火山巖進(jìn)行了鋯石SHRIMP U-Pb年代學(xué)、元素地球化學(xué)研究,并初步探討了其形成的地質(zhì)構(gòu)造背景、巖石成因及其與金成礦之間的關(guān)系。
圖1 西北天山吐拉蘇盆地區(qū)域地質(zhì)略圖(據(jù)新疆地質(zhì)礦產(chǎn)局,1993;肖龍等,2002,有修改)Fig.1 Simplified geological map of Tulasu Basin in Northwest Tianshan (modified after BGMRX, 1993; Xiao et al., 2002)
吐拉蘇盆地位于西北天山西端,在大地構(gòu)造上位于伊犁板塊北緣,盆地呈NW-SE向展布,伊犁盆地北緣斷裂和科古琴山南坡斷裂分別控制著盆地的南北界(圖1)。邊界斷裂均為壓扭性巖石圈斷裂,NWW-SEE走向,斷裂帶長約400~500km,寬約1km,控制著區(qū)內(nèi)地層和侵入巖的分布。吐拉蘇盆地中主要出露奧陶紀(jì)灰?guī)r夾薄層火山巖和晚古生代火山-沉積巖(圖1),奧陶紀(jì)灰?guī)r構(gòu)成了吐拉蘇盆地的主要基底,而晚古生代火山-沉積巖(大哈拉軍山組)是蓋層的主要組成部分,不整合覆蓋于基底灰?guī)r之上,在不整合面上局部發(fā)育吐拉蘇組卵石礫巖。吐拉蘇盆地中局部出露下石炭統(tǒng)阿恰勒河組濱-淺海相碎屑巖,不整合覆蓋于火山-沉積地層之上。盆地中晚古生代巖漿活動(dòng)強(qiáng)烈,大量晚石炭世-早二疊世花崗巖侵位于奧陶系-下石炭統(tǒng)中,少量次火山巖在局部出露,與晚古生代火山-沉積巖緊密伴生,如阿庇因迪鈉長斑巖,獅子山安山巖等。
吐拉蘇盆地是西天山地區(qū)主要的金成礦帶,金礦床主要為淺成低溫?zé)嵋盒?,如阿希金礦為低硫型淺成低溫?zé)嵋盒?董連慧和沙德銘, 2004; Zhaietal., 2009),京希-伊爾曼德金礦為改造過的高硫型淺成低溫?zé)嵋盒?Xiaoetal., 2005)。金礦體的主要賦礦圍巖為吐拉蘇盆地中廣泛分布的晚古生代火山-沉積巖(圖1),盆地中與科古琴山南坡斷裂和伊犁盆地北緣斷裂伴生的NW、EW走向的次級斷裂控制著區(qū)內(nèi)金礦床的分布,次級構(gòu)造與主干斷裂、不整合面等的復(fù)合部位是金礦化主要的賦礦構(gòu)造,如阿希金礦礦體主要產(chǎn)于晚古生代火山-沉積地層頂部的安山巖、英安巖中,受NW向斷裂以及與古火山機(jī)構(gòu)相關(guān)的放射狀斷裂控制;京希-伊爾曼德金礦體主要產(chǎn)于晚古生代火山-沉積地層底部的凝灰質(zhì)砂巖、凝灰?guī)r中,受次級斷裂交匯處以及基底與蓋層間的不整合面控制。
圖2 吐拉蘇盆地京希-伊爾曼德金礦區(qū)地質(zhì)簡圖(a,據(jù)朱炳玉,2010)和獅子山次火山巖(b)及其中的斜長石斑晶及?;豢椊Y(jié)構(gòu)的基質(zhì)(c)Fig.2 Simplified geological map of the Jingxi-Yelmand gold deposit (a, modified after Zhu, 2010), the Shizishan sub-volcanic rock (b) and plagioclase phenocryst and fine-grained plagioclase in groundmass of andesite porphyry (c)
獅子山次火山巖出露于京希-伊爾曼德金礦區(qū),地表出露形態(tài)為不規(guī)則圓形或似心形,東西長約780m,面積約0.6km2(圖2a),從其南側(cè)遠(yuǎn)眺,酷似一蹲著的雄獅,故命名為獅子山(圖2b;朱炳玉,2010)。獅子山次火山巖侵位于晚古生代火山-沉積地層下部的凝灰質(zhì)砂巖-凝灰?guī)r-安山巖-流紋巖組合中,與圍巖界限清楚,接觸面產(chǎn)狀陡立,傾向南西。朱炳玉(2010)根據(jù)其產(chǎn)出形態(tài)、與圍巖的接觸關(guān)系,確定其為火山頸相。
獅子山次火山巖巖性主要為安山巖,少量安山質(zhì)英安巖,這兩類巖石在顏色、結(jié)構(gòu)、構(gòu)造方面非常相似,安山質(zhì)英安巖以含有極少量石英而區(qū)別于安山巖(朱炳玉,2010)。本次研究樣品主要采自獅子山西北部(圖2a),巖石呈灰白色,塊狀構(gòu)造,斑狀結(jié)構(gòu),斑晶主要為斜長石,自形-半自形,~1mm(圖2c),少量角閃石,斑晶含量約5%?;|(zhì)由細(xì)粒自形-半自形斜長石(55%)、角閃石(35%)以及少量玻璃質(zhì)(5%)組成(圖2c),部分樣品基質(zhì)中含有少量細(xì)粒他形石英。巖石經(jīng)歷了不同程度的蝕變(圖2c),如斜長石蝕變成鈉長石或絹云母、角閃石蝕變成綠泥石,浸染狀硅化和方解石化局部發(fā)育。巖石中大部分角閃石具有清晰的暗化邊,導(dǎo)致在鏡下觀察到的樣品顏色暗淡(圖2c)。
獅子山安山巖樣品通過破碎、磁選和重液法分離出鋯石,與標(biāo)準(zhǔn)鋯石樣品TEMROA1一起在中國地質(zhì)科學(xué)院北京離子探針中心制靶。對挑選的鋯石利用CAMECA SX-50進(jìn)行CL成像分析。鋯石U-Pb年齡數(shù)據(jù)是在北京離子探針中心的網(wǎng)絡(luò)虛擬實(shí)驗(yàn)室,通過位于澳大利亞Curtin理工大學(xué)(Curtin University of Techonology)的SHRIMP遠(yuǎn)程共享控制系統(tǒng)(SHRIMP Remote Operation System, SROS),由SHRIMP II儀器測試獲得。數(shù)據(jù)采用標(biāo)準(zhǔn)鋯石TEMROA1(417Ma, Blacketal., 2003)進(jìn)行元素間的分餾校正,標(biāo)準(zhǔn)鋯石SL13(572Ma, U含量為238×10-6)進(jìn)行樣品中U、Th和Pb含量的標(biāo)定。通過SQUID及ISOPLOT程序進(jìn)行數(shù)據(jù)處理和年齡計(jì)算。具體實(shí)驗(yàn)流程見宋彪等(2002)。
表1獅子山次火山巖(YM11)SHRIMP U-Pb定年結(jié)果
Table 1The SHRIMP U-Pb data of Shizishan sub-volcanic rock (YM11)
SpotNo.UTh(×10-6)ThU206Pb(×10-6)Comm.206Pb(%)207Pb206Pberr(%)207Pb235Uerr(%)206Pb238Uerr(%)206Pb238UAge(Ma)err(1s)1.1296980.3418.00.370.053151.70.51741.80.070610.64439.82.72.12021050.5410.60.350.05342.60.4502.70.061070.81382.13.03.1150940.657.61-0.06237.30.5107.40.059431.1372.23.94.11691200.7410.3-0.05926.30.5796.40.070960.96441.94.15.1192980.539.870.310.05268.30.4328.30.059570.96373.03.55.2161640.419.540.460.05276.10.4976.20.068460.95426.93.97.194510.5617.10.500.07822.12.2652.40.21011.11,229129.1194920.499.940.140.05373.90.4414.00.059570.85373.03.110.1190960.529.750.090.05524.50.4554.60.059760.87374.23.211.13582850.8219.00.430.05263.20.4473.20.061520.63384.92.412.12311820.8211.7-0.05471.90.44392.10.058890.75368.92.713.14755431.1829.90.480.05212.60.5242.60.072900.54453.62.414.13382130.6517.10.500.05042.40.4072.50.058560.63366.92.315.13952390.6291.9-0.093750.643.5050.810.27110.501,546.46.916.1173770.469.03-0.05693.60.4793.70.061100.88382.33.317.12211800.8438.8-0.080560.912.2681.10.20420.651,197.87.1
通過詳細(xì)的手標(biāo)本和顯微鏡觀察,挑選獅子山次火山巖中有代表性的全巖樣品,用清水洗凈晾干,用不銹鋼擂缽破碎至60~80目,再用瑪瑙研缽研磨成200目,待溶解。主量元素分析在北京大學(xué)造山帶與地殼演化教育部重點(diǎn)實(shí)驗(yàn)室完成,使用儀器為美國產(chǎn)ARL ADVANT’XP +掃描型波長色散順序式X射線熒光光譜儀,測試精度優(yōu)于1%。微量元素前處理(溶樣)工作在北京大學(xué)地球與空間科學(xué)學(xué)院完成,測試在核工業(yè)地質(zhì)研究院用Finnigen Mat ICP-MS完成,測定元素RSD小于5%。
Sr、Nd化學(xué)分離和同位素組成測定在中國科學(xué)院地質(zhì)與地球物理研究所同位素實(shí)驗(yàn)室完成,Rb-Sr和Sm-Nd的化學(xué)分離采用傳統(tǒng)的離子交換法。Sr、Nd同位素分析在Finnigan MAT-262型多接收固體源熱電離質(zhì)譜儀上完成。樣品的Sr 同位素組成采用靜態(tài)模式分析,通過標(biāo)準(zhǔn)樣品NBS-987進(jìn)行儀器監(jiān)測,并使用86Sr/88Sr=0.1194進(jìn)行校正。樣品的Nd同位素組成采用動(dòng)態(tài)模式分析,通過標(biāo)準(zhǔn)樣品JNdi-1進(jìn)行儀器監(jiān)測,使用146Nd/144Nd=0.7219對結(jié)果進(jìn)行校正。整個(gè)化學(xué)分離流程和分析過程使用國際標(biāo)樣BCR-2和JMC監(jiān)測,分析測試結(jié)果與推薦值在誤差范圍內(nèi)一致。
從獅子山次火山巖樣品YM11中挑選鋯石,進(jìn)行鋯石SHRIMP年代學(xué)研究。鋯石陰極發(fā)光照片顯示,樣品中大部分鋯石形態(tài)較為規(guī)則,大多以短柱狀為主,少數(shù)為長柱狀或扇形,大小50×100μm~50×80μm,具有典型的巖漿振蕩環(huán)帶,部分鋯石具有核-邊結(jié)構(gòu)。短柱狀鋯石部分磨圓程度較高。測試結(jié)果表明,所有測試點(diǎn)均落在了U-Pb諧和線上(圖3b),其中長柱狀、扇形鋯石以及短柱狀鋯石核部具有較老的表觀年齡>1000Ma(圖3a、表1);磨圓程度較高的短柱狀鋯石表觀年齡為430~450Ma,U、Th含量分別為161×10-6~475×10-6、64×10-6~543×10-6(圖3a、表1)。大部分短柱狀鋯石的表觀年齡集中在367~385Ma之間,U(150×10-6~358×10-6)、Th(77×10-6~285×10-6)含量相對較集中,其中6個(gè)測點(diǎn)給出的加權(quán)平均年齡為370.5±2.1Ma (MSWD=1.13)(圖3c, d)。盡管其中的鋯石具有不同的表觀年齡范圍,但所有測點(diǎn)的Th、U含量總體呈正相關(guān)性,Th/U比值主要集中于0.4~0.8之間,結(jié)合各類鋯石陰極發(fā)光下顯示的典型巖漿振蕩環(huán)帶,推斷其中的鋯石均為巖漿成因。
圖3 獅子山次火山巖中鋯石的CL圖像(a)、SHRIMP U-Pb定年結(jié)果(b-d)及鋯石中Th、U含量相關(guān)性圖解(e)Fig.3 Cathode luminescence (CL) images (a), results of SHRIMP dating (b) and relation of Th-U contents (c) of zircons from Shizishan sub-volcanic rock
獅子山次火山巖樣品YM11鋯石U-Pb數(shù)據(jù)較為復(fù)雜,但鋯石大多為巖漿成因,所以其中不同年齡的鋯石代表區(qū)內(nèi)不同地質(zhì)時(shí)期巖漿活動(dòng)的產(chǎn)物。其中中-新元古代的鋯石(>1000Ma)可能主要來源于區(qū)內(nèi)前寒武片麻狀花崗巖基底(李繼磊等,2009);表觀年齡為430~450Ma的鋯石可能來自于奧陶紀(jì)-志留紀(jì)火山巖或代表了鋯石核部和邊部的混合年齡;而382~384Ma的鋯石代表了圍巖火山巖的結(jié)晶時(shí)代,與京希-伊爾曼德礦區(qū)晚古生代火山-沉積巖下部流紋巖的SHRIMP年齡相符(386Ma,安芳和朱永峰,2008),集中于367~374Ma之間的6個(gè)測點(diǎn)給出的加權(quán)平均年齡(370.5Ma)代表獅子山次火山巖侵位結(jié)晶的年齡。
獅子山次火山巖的主量元素含量相對集中(表2),其SiO2含量為68.34%~68.73%,K2O、TiO2、MgO、FeOT含量較低,分別為0.53%~0.61%、0.14%、0.75%~1.02%和1.10%~1.30%。樣品均有較高的Al2O3(17.31%~17.43%)和Na2O(7.66%~8.48%)含量,而CaO含量明顯較低(0.67%~1.74%),圍巖安山巖相比,次火山巖明顯富集Na2O,并具有顯著較高的Na2O+K2O含量,在TAS圖中落在了粗面英安巖和流紋巖的范圍內(nèi)(圖4a),其高Na低Ca的特征可能是樣品中斜長石鈉長石化所致,但樣品中仍保留了斜長石假象,這種斜長石被鈉長石交代的現(xiàn)象在西北天山地區(qū)出露的晚古生代中基性火山巖中普遍存在(王博等,2006),并導(dǎo)致前人采用長石斑晶40Ar/39Ar方法獲得的巖石年齡明顯偏年輕(300~330Ma,王強(qiáng)等,2006)。另外,由于樣品經(jīng)歷了不同程度的硅化,導(dǎo)致樣品具有較高的SiO2含量,根據(jù)鏡下觀察,獅子山次火山巖的成分應(yīng)更接近于安山巖。相對于圍巖鈣堿性系列安山巖,獅子山次火山巖中K2O的含量明顯減低,在SiO2-K2O圖中落在了低鉀拉斑系列的范圍內(nèi)(圖4b)。
對5件獅子山次火山巖樣品進(jìn)行的微量元素分析表明(表2),其稀土元素含量較低,稀土總量僅為5.14×10-6~8.81×10-6,所有樣品具有相似的稀土配分模式,中等程度富集輕稀土元素((La/Yb)N=2.67~3.84),弱Eu正異常(δEu=1.15~1.65)和中等-弱Ce負(fù)異常(δCe=0.52~0.96)(圖5a)。與圍巖火山巖相比,獅子山次火山巖的稀土含量明顯較低,輕重稀土分異較弱,并具有較明顯的Ce和Eu異常(圖5a)。在原始地幔標(biāo)準(zhǔn)化多元素圖解中,所有次火山巖樣品變化不大,均表現(xiàn)為Cs,Rb,Ba,U,Pb,Sr,Zr和Hf富集,而Th,Ce和Nd相對虧損的特點(diǎn)。與圍巖火山巖相比,次火山巖的微量元素含量明顯較低,以虧損Nd而富集Zr、Hf而區(qū)別于安山巖(圖5b)。
表2獅子山次火山巖的主量元素(wt%)和微量元素(×10-6)分析結(jié)果
Table 2Major elements (wt%) and trace elements (×10-6) contents in Shizishan sub-volcanic rocks
樣品號YM10YM11-1YM11-2YM11-4YM11-6樣品號YM10YM11-1YM11-2YM11-4YM11-6SiO268.3468.73TiO20.140.14Al2O317.4317.31MgO0.751.02MnO0.020.02Fe2O31.101.30CaO1.740.67Na2O7.668.48K2O0.530.61P2O50.050.05LOI2.301.91Total100.1100.3Li18.676.4115.135.0417.69Be0.550.490.660.630.81Sc0.730.26-0.12-0.090.56V14.7110.6511.5712.1710.39Cr71.5866.3370.55110.8104.2Co2.862.943.783.653.34Ni10.8412.1815.5115.6910.54Cu17.965.2716.525.369.25Zn39.4245.1675.9535.5328.90Ga16.4911.9512.6812.8112.69As64.7660.9487.1372.9052.51Se0.260.160.220.21-0.06Rb20.439.5314.0511.062.85Sr459.8288.8299.6318.5163.5Y1.842.012.212.321.83Zr103.495.41110.0108.8100.3Nb1.901.881.971.911.95Mo0.770.600.850.460.25Cd0.020.050.080.040.04In0.020.040.030.030.02Sn0.600.680.390.470.29Sb0.550.650.990.860.51Cs1.581.651.211.330.99Ba418.6139.4150.6142.6124.8La1.091.291.411.480.87Ce2.022.593.103.021.10Pr0.320.380.420.430.30Nd1.431.551.721.881.29Sm0.310.340.420.390.28Eu0.180.150.160.160.13Gd0.350.350.420.400.28Tb0.060.060.060.060.05Dy0.320.310.380.400.31Ho0.060.070.080.060.07Er0.200.190.220.210.19Tm0.030.030.040.030.03Yb0.230.250.250.270.22Lu0.040.040.030.040.03Hf3.022.912.992.932.92Ta0.140.120.170.130.15W10.110.080.070.100.08Re00000Tl0.170.050.060.050.05Pb3.242.793.883.262.07Bi0.020.030.020.010.02Th0.310.330.380.340.21U0.130.160.160.170.11Ti867.4799.4936.4885.9884.1Mn163.1141.1211.7161.7183.3∑REE6.647.588.718.815.14(La/Yb)N3.223.493.843.742.67δEu1.651.291.151.211.39δCe0.810.880.960.900.52
Rb-Sr、Sm-Nd同位素分析結(jié)果表明(表3),獅子山次火山巖具有高Sr(299.3×10-6~681.9×10-6),低Rb(11.54×10-6~55.64×10-6)的特點(diǎn),結(jié)果與微量元素分析基本一致。87Rb/86Sr變化范圍較大(0.1108~0.2360),87Sr/86Sr值相對集中(0.704316~0.704428),采用其結(jié)晶年齡370.5Ma計(jì)算獲得的Sr同位素初始比值((87Sr/86Sr)i=0.703185~0.703810)較一致。樣品Sm(0.36×10-6~0.38×10-6)、Nd(1.54×10-6~1.61×10-6)含量較低且較集中,與微量元素測試結(jié)果完全一致,147Sm/144Nd為0.1402~0.1428,143Nd/144Nd值為0.512710~0.512740,所有樣品具有正的εNd(t)值(4.03~4.54),在(87Sr/86Sr)i-εNd(t)同位素圖解中,所有樣品均落入地幔序列(圖6),與出露于南天山東段晚石炭世粗面安山巖的Sr-Nd同位素組成相似(Zhuetal., 2009)。
前人將吐拉蘇盆地以及西天山廣泛出露的晚古生代火山-沉積巖統(tǒng)一命名為“大哈拉軍山組”,并將其形成時(shí)代確定為早石炭世(新疆地質(zhì)礦產(chǎn)局,1993)。早期的Rb-Sr等時(shí)線法確定的吐拉蘇盆地火山巖的年齡為346~321Ma, 為早石炭世(李華芹等,1998)。但近年來新的鋯石年代學(xué)數(shù)據(jù)表明,吐拉蘇盆地中的火山巖形成于泥盆紀(jì)-早石炭世(翟偉等,2006;安芳和朱永峰,2008;唐功建等,2009),京希-伊爾曼德礦區(qū)獅子山次火山巖圍巖具有較老的形成時(shí)代(417~386Ma,Anetal., 2013)?;谠缙趯τ谕吕K盆地中火山巖形成時(shí)代的認(rèn)識為早石炭世,侵位于其中的次火山巖的時(shí)代被限定在海西中期(李華芹等,1998)。本研究獲得鋯石SHRIMP年代數(shù)據(jù)表明,獅子山次火山巖的形成年齡為370.5Ma,時(shí)代為晚泥盆世。
表3獅子山次火山巖的Rb-Sr、Sm-Nd同位素分析結(jié)果
Table 3The Rb-Sr and Sm-Nd isotope composition of Shizishan sub-volcanic rocks
SampleNo.Rb(×10-6)Sr(×10-6)87Rb86Sr87Sr86Sr87Sr86Sr()iSm(×10-6)Nd(×10-6)147Sm144Nd143Nd144NdεNd(t)YM-1055.64681.90.2359950.704428±110.7031850.381.610.1414720.512711±124.03YM11-111.54301.30.1107530.704394±110.7038110.361.540.1402390.512710±124.08YM11-613.80299.30.1334020.704316±120.7036140.381.590.1427810.512740±174.54
圖4獅子山次火山巖的TAS圖解(a)和SiO2-K2O圖解(b)
其中安山巖數(shù)據(jù)據(jù)安芳和朱永峰(2008),獅子山已發(fā)表數(shù)據(jù)據(jù)左學(xué)義等(2006*左學(xué)義, 漆樹基, 伊發(fā)源等. 2006. 吐拉蘇金礦帶大型金礦床定位預(yù)測研究報(bào)告. 國家305項(xiàng)目新疆優(yōu)勢礦產(chǎn)資源勘查評價(jià)研究專題(2003BA612A-06-10)報(bào)告)
Fig.4TAS plot (a) and SiO2-K2O plot (b) for Shizishan sub-volcanic rock
The data for andesites are from An and Zhu (2008)
圖5 獅子山次火山巖原始地幔標(biāo)準(zhǔn)化的微量元素蛛網(wǎng)圖解(a)和球粒隕石標(biāo)準(zhǔn)化的稀土配分模式(b)(標(biāo)準(zhǔn)化值據(jù)Sun and Mcdonough, 1989)安山巖數(shù)據(jù)據(jù)安芳和朱永峰(2008)Fig.5 Primitive mantle normalized trace element spider diagrams (a) and chondrite normalized rare earth element distribution patterns (b) for volcanic rocks from Tulasu Basin, western Tianshan (normalized values after Sun and Mcdonough, 1989)Data for andesite from An and Zhu (2008)
圖6 獅子山次火山巖的(87Sr/86Sr)i-εNd(t)圖圖中列出了南天山晚古生代火山巖(Zhu et al., 2009)、基性巖體(陳江峰等,1995;張作衡等,2007;薛云興和朱永峰,2009)的Sr-Nd同位素值用于對比.圖中曲線為AFC模擬結(jié)果,計(jì)算方法據(jù)Depaolo(1981),MORB((87Sr/86Sr)i=0.7030,εNd(t)=8)用于代表虧損地幔,西北天山前寒武紀(jì)花崗片麻巖((87Sr/86Sr)i=0.7200, εNd(t)=-7, Hu et al., 2000)用于代表大陸地殼Fig.6 Initial 87Sr/86Sr vs. εNd(t) diagram for Shizishan sub-volcanic rocksLate Paleozoic volcanic rocks and mafic intrusions from southwestern Tianshan were shown for comparison (from Zhu et al., 2009; Chen et al., 1995; Zhang et al., 2007; Xue and Zhu, 2009). The curve marked with numbers are AFC (Depaolo, 1981) calculation results with r=0.9. MORB (Initial 87Sr/86Sr=0.7030, εNd(t)=8) is assumed to represent the depleted mantle. Granitic gneiss from Wenquan and Sayram Lake area in North Tianshan (Initial 87Sr/86Sr=0.7200, εNd(t)=-7. Hu et al., 2000) were used to represent the continental crust
西北天山是伊犁板塊和準(zhǔn)噶爾板塊間北天山洋(或準(zhǔn)噶爾洋)俯沖消減,兩板塊最終碰撞拼合的結(jié)果。沿西北天山增生造山帶中段巴音溝地區(qū)分布的巴音溝蛇綠巖被認(rèn)為是北天山洋洋殼殘片。巴音溝蛇綠混雜巖帶由變質(zhì)橄欖巖、輝長巖、基性火山巖和硅質(zhì)巖組成,硅質(zhì)巖中含晚泥盆世-早石炭世放射蟲化石(肖序常等,1992;秦克章,2000),輝長巖和侵位于其中的斜長花崗巖的鋯石LA-ICP-MS年齡分別為344Ma和324Ma(徐學(xué)義等,2005,2006),以上放射蟲化石以及鋯石年代學(xué)數(shù)據(jù)表明,北天山洋洋殼直至早石炭世晚期依然存在,而北天山洋殼向伊犁板塊下的俯沖消減作用可能至少持續(xù)到了早石炭世晚期。侵位于巴音溝蛇綠混雜巖中的四棵樹A型花崗巖的侵位時(shí)代(316Ma),很好的限定了西北天山碰撞造山作用發(fā)生的上限(Hanetal., 2010)。在西北天山零星出露的上石炭統(tǒng)伊什基里克組火山巖被認(rèn)為是碰撞造山后陸內(nèi)裂谷環(huán)境的產(chǎn)物(韓穎平等,2008)。劉飛等(2011)在沙灣地區(qū)識別出一套形成于板內(nèi)拉張環(huán)境的火山巖,巖石組合與伊什基里克組相似,其中流紋巖的鋯石LA-ICP-MS年齡為310Ma,說明晚石炭世時(shí)區(qū)內(nèi)處于陸內(nèi)伸展演化階段。
圖7 獅子山次火山巖的Hf/3-Th-Ta構(gòu)造環(huán)境判別圖解 (a, 據(jù)Wood et al., 1979)和Th/Yb-Nb/Yb變異圖解(b, 據(jù)Pearce and Peate, 1995)Fig.7 Hf/3-Th-Ta ternary diagram (a, after Wood et al., 1979) and Th/Yb-Nb/Yb diagram (b, after Pearce and Peate, 1995) for Shizishan sub-volcanic rocks
京希-伊爾曼德金礦區(qū)火山巖主要為鈣堿性系列巖石(圖4),富集大離子親石元素和輕稀土元素,重稀土元素相對虧損,同時(shí)所有樣品均強(qiáng)虧損Nb、Ta,弱虧損Zr、Hf(圖5a, b),具有典型大陸邊緣弧火山巖地球化學(xué)特征(安芳和朱永峰,2008)。在Hf-Th-Ta(圖7a)圖解中,安山巖和獅子山次火山巖均落入火山弧區(qū)域,但安山巖位于鈣堿性弧火山巖的范圍內(nèi),而獅子山次火山巖落入了島弧拉斑玄武巖的范圍內(nèi)。由此推斷京希-伊爾曼德礦區(qū)的火山巖和次火山巖均形成于弧環(huán)境,是晚泥盆世期間北天山洋洋殼向伊犁板塊俯沖消減過程中形成的大陸弧火山巖,其中安山巖為鈣堿性系列巖石的代表,而次火山巖代表了產(chǎn)于火山弧環(huán)境的少量拉斑系列巖石的組分。火山巖與次火山巖不同的地球化學(xué)特征指示它們巖漿源區(qū)以及巖漿演化過程的差異,在Th/Yb-Nb/Yb變異圖解中(圖7b),安山巖落入大陸弧鈣堿性火山巖的范圍內(nèi),而獅子山次火山巖主要集中于大陸弧與地幔域之間,可能說明典型俯沖帶物質(zhì)對次火山巖源區(qū)的貢獻(xiàn)較少,主要為地幔楔部分熔融的產(chǎn)物。
圖8 獅子山次火山巖的La/Sm-La (a)、Ba/Th-Th/Nb (b)、Th-Ba (c)和Sr/Ta-Th/Nb (d)變異圖解其中DM、PM、N-MORB、E-MORB、UCC數(shù)據(jù)據(jù)Sun and McDonough (1989);俯沖帶沉積物數(shù)據(jù)據(jù)Rollison (1993)Fig.8 Trace elements variation diagrams of La/Sm-La (a), Ba/Th-Th/Nb (b), Th-Ba (c) and Sr/Ta-Th/Nb (d) for Shizishan sub-volcanic rocksData of DM, PM, N-MORB, E-MORB, UCC are from Sun and McDonough (1989), of subducted sediments from Rollison (1993)
獅子山次火山巖與京希-伊爾曼德礦區(qū)安山巖是火山弧的組成部分,弧火山巖的巖漿源區(qū)較為復(fù)雜,通常包括a)地幔楔;b)俯沖帶流體;c)俯沖板片熔體;d)俯沖帶沉積物或大陸地殼物質(zhì)。獅子山次火山巖具有非常虧損的Sr-Nd同位素組成,(87Sr/86Sr)i=0.703185~0.703810,εNd(t)=4.03~4.54,在同位素圖解中分布于地幔序列中(圖6),說明其巖漿源區(qū)主要為虧損地幔,而具有較富集同位素特征的俯沖帶沉積物以及大陸地殼物質(zhì)的參與較少,在Th/Yb-Nb/Yb變異圖解中,次火山巖相對于安山巖位于更接近地幔序列的位置(圖7b),也證明了該推斷,利用Sr-Nd同位素對獅子山次火山巖進(jìn)行了AFC過程的模擬計(jì)算(Depaolo, 1981),計(jì)算過程中以虧損地幔的同位素組成(Sun and Mcdonough, 1989)作為原始巖漿的同位素組成,以Huetal. (2000)研究的溫泉地區(qū)前寒武紀(jì)片麻狀花崗巖作為混染源進(jìn)行模擬計(jì)算,結(jié)果表明在剩余巖漿量占總量的99.5%時(shí)(r=0.9, F=0.995, 圖6),發(fā)生了<1%地殼物質(zhì)的混染,證明在巖漿演化過程中地殼物質(zhì)的同化混染作用非常小。巖石中相對較低的MgO含量(0.70%~1.00%,表2),說明板片熔體對其源區(qū)貢獻(xiàn)不大(Defant and Drummond, 1990)。
圖9 石榴石二輝橄欖巖部分熔融、玄武質(zhì)巖漿分離結(jié)晶過程模擬計(jì)算實(shí)線為部分熔融模擬結(jié)果,虛線為分離結(jié)晶模擬結(jié)果.計(jì)算方法據(jù)Bohrson and Spera (2001),礦物分配系數(shù)據(jù)Rollison (1993)Fig.9 Modeled calculation of partial melting (solid line) and fractional crystallization (dash line) for Shizishan sub-volcanic rocksCalculation method is from Bohrson and Spera (2001); Data used in the calculation are from Rollison (1993)
在La/Sm-La變異圖解中(圖8a),獅子山次火山巖位于E-MORB附近,指示其巖漿源區(qū)有另一種可以導(dǎo)致其輕稀土特征向富集地幔演化的物質(zhì)加入。Ba、Sr在流體中的活動(dòng)性較強(qiáng)(Sanoetal., 2001),而大洋沉積物以及大陸地殼中具有較高的Th含量(Plank and Langmuir, 1998; Othmanetal., 1989),獅子山次火山巖較高的Ba/Th比值(>300)指示俯沖帶流體對其巖漿源區(qū)具有顯著的貢獻(xiàn)(Devine, 1995)。在Ba/Th-Th/Nb(圖8b)、Th-Ba(圖8c)和Sr/Ta-Th/Nb(圖8d)元素變異圖解中,均顯示俯沖帶流體對獅子山次火山巖巖漿巖區(qū)的貢獻(xiàn),而安山巖的巖漿源區(qū)因有俯沖帶沉積物或地殼物質(zhì)的混染而明顯區(qū)別于次火山巖。綜上所述,推斷獅子山次火山巖的巖漿源區(qū)主要為受俯沖帶流體交代的虧損地幔(地幔楔)。
在流體作用下,地幔橄欖巖通常發(fā)生部分熔融形成玄武質(zhì)巖漿,而只有在低溫低壓條件下才可能熔融直接形成安山質(zhì)巖漿,但此類安山質(zhì)巖石通常富含Mg(Tatsumi and Ishizaka, 1981, 1982)。獅子山次火山巖Mg含量很低,不可能是地幔橄欖巖直接熔融的產(chǎn)物,可能是地幔橄欖巖熔融形成的玄武質(zhì)巖漿經(jīng)分離結(jié)晶而成,次火山巖無明顯負(fù)Eu異常說明無斜長石的分離結(jié)晶。部分熔融模擬計(jì)算表明,原始玄武質(zhì)巖漿是石榴石二輝橄欖巖經(jīng)約5%的部分熔融而成(圖9a, b),分離結(jié)晶模擬計(jì)算表明,獅子山次火山巖是玄武質(zhì)巖漿經(jīng)歷約20%的礦物分離結(jié)晶而成,發(fā)生分離結(jié)晶的礦物比例為單斜輝石(Cpx):鈦鐵礦(Ilm):橄欖石(Ol):石榴子石(Grt)=50:30:10:10(圖9a, b),石榴子石的分離結(jié)晶是獅子山次火山巖中稀土元素含量較低的主要原因。
弧火山巖是俯沖帶流體交代地幔楔部分熔融的產(chǎn)物,而俯沖帶流體作用于地幔楔中的地幔橄欖巖,會(huì)使得橄欖巖中的金屬硫化物不穩(wěn)定,釋放出Au、Cu等成礦元素,形成富含Au、Cu的弧巖漿,即使橄欖巖部分熔融程度較低,也不會(huì)對原始巖漿中金的濃度造成影響(Togashi and Terashima, 1997)。實(shí)驗(yàn)研究表明,在水飽和的巖漿體系中,鈦鐵尖晶石或鈦磁鐵礦發(fā)生分離結(jié)晶,會(huì)導(dǎo)致殘留巖漿中Au濃度強(qiáng)烈降低,并最終大大影響巖漿演化形成巖漿熱液型Au礦的能力(Simonetal., 2003, 2008)。Togashi and Terashima (1997)通過對日本Izu-Oshima, Fuji以及Osoreyama地區(qū)的島弧拉斑玄武巖和玄武質(zhì)安山巖的研究發(fā)現(xiàn),巖漿演化早期橄欖石、輝石以及斜長石的分離結(jié)晶會(huì)導(dǎo)致巖漿體系中Au濃度升高,而隨后鈦磁鐵礦的分離結(jié)晶將會(huì)大大降低巖漿體系中的金濃度。但是鈦鐵尖晶石對體系氧逸度反應(yīng)比較靈敏,氧逸度升高會(huì)導(dǎo)致其分解形成磁鐵礦和鈦鐵礦,釋放其中的Au(Togashi and Terashima, 1997; Simonetal., 2008),同時(shí)巖漿體系較高的氧逸度也是源區(qū)Au大量進(jìn)入巖漿的有利條件(Richards, 2011)。獅子山次火山巖是俯沖帶流體交代地幔楔,地幔橄欖巖部分熔融的產(chǎn)物,因此其原始巖漿中具有含高濃度Au的潛力,盡管原始含Au的玄武質(zhì)巖漿在演化形成獅子山次火山巖的過程中有少量鈦磁鐵礦或鈦鐵尖晶石等礦物的分離結(jié)晶,但弧巖漿體系本身較高的氧逸度(Chappell and White, 2001; Blevin, 2004)使得巖漿體系中的Au得以保留。因此,獅子山次火山巖具有較大的金成礦潛力,考慮到在空間上與京希-伊爾曼德金礦化之間的密切關(guān)系,獅子山次火山巖可能是金礦化成礦流體和成礦物質(zhì)主要的提供者。
(1)京希-伊爾曼德礦區(qū)獅子山次火山巖的形成年齡為370.5±2.1Ma,與其圍巖火山巖一起形成于晚泥盆紀(jì)大陸邊緣弧環(huán)境。
(2)獅子山次火山巖為低鉀拉斑系列巖石,具有與圍巖鈣堿性火山巖不同的地球化學(xué)特征,其巖漿源區(qū)為俯沖帶流體交代的地幔楔,地幔橄欖巖部分熔融形成的玄武質(zhì)巖漿經(jīng)結(jié)晶分異而成。部分熔融模擬表明,部分熔融程度為~5%,結(jié)晶分異程度為~20%,發(fā)生結(jié)晶分異的礦物及其比例為Cpx:Ilm:Ol:Grt=50:30:10:10。
(3)由俯沖帶流體交代地幔楔形成的拉斑玄武巖巖漿富含Au,在較高氧逸度條件下發(fā)生礦物分離結(jié)晶不會(huì)導(dǎo)致巖漿體系中的Au損失,因此,獅子山次火山巖具有非常大的Au成礦潛力,可能為京希-伊爾曼德金礦成礦作用提供了成礦流體和成礦物質(zhì)。
致謝在野外工作過程中,國家305項(xiàng)目辦公室馬華東主任,京希-伊爾曼德金礦肖秋生總工提供了諸多便利;實(shí)驗(yàn)工作得到了北京大學(xué)古麗冰老師、北京離子探針中心宋彪老師的指導(dǎo);本研究還得到了“三秦學(xué)者”學(xué)術(shù)團(tuán)隊(duì)以及西北大學(xué)科研啟動(dòng)經(jīng)費(fèi)的聯(lián)合資助;審稿專家的意見,幫助我們完善了本文;在此一并表示感謝。
Allen MB, Windley BF and Zhang C. 1993. Palaeozoic collisional tectonics and magmatism of the Chinese Tien Shan, central Asia. Tectonophysics, 220(1-4): 89-115
An F and Zhu YF. 2008. Study on trace elements geochemistry and SHRIMP chronology of volcanic rocks in Tulasu Basin, West Tianshan. Acta Petrologica Sinica, 24(12): 2741-2748 (in Chinese with English abstract)
An F, Zhu YF, Wei SN and Lai SC. 2013. An Early Devonian to Early Carboniferous volcanic arc in North Tianshan, NW China: Geochronological and geochemical evidence from volcanic rocks. Journal of Asian Earth Sciences, 78: 10-113
Black LP, Kamo SL, Allen CM, Aleinikoff JN, Davis DW, Korsch RJ and Foudoulis C. 2003. TEMORA 1: A quality zircon standard for Phanerozoic U-Pb geochronology. Chemical Geology, 200(1-2): 155-170
Blevin RJ. 2004. Redox and compositional parameters for interpreting the granitoid metallogeny of Eastern Australia: Implications for gold-rich ore systems. Resource Geology, 54(3): 241-252
Bohrson WA and Spera FJ. 2001. Energy-constrained open-system magmatic processes II: Application of energy-constrained assimilation-fractional crystallization (EC-AFC) model to magmatic systems. Journal of Petrology, 42(5):1019-1041
Bureau of Geology and Mineral Resources of Xinjiang Uygur Antonomous Region (BGMRX). 1993. Regional Geology of Xinjiang Uygur Autonomous Region. Beijing: Geological Publishing House (in Chinese)
Chappell BW and White AJR. 2001. Two contrasting granite types: 25 years later. Australia Journal of Earth Sciences, 48(4): 489-499
Che ZC, Liu L, Liu HFetal. 1996. Review on the ancient Ili rift, Xinjiang, China. Acta Petrologica Sinica, 12(3): 478-490 (in Chinese with English abstract)
Chen JF, Man FS and Ni SB. 1995. Neodumium and Strontium isotopic geochemistry of mafic-ultramafic intrusions from Qingbulake rock belt, west Tianshan Mountains, Xinjiang. Geochimica, 24(2): 121-127 (in Chinese with English abstract)
Defant MJ and Drummond MS. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294): 662-665
Depaolo DJ. 1981. Trace elements and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth and Planetary Science Letters, 53(2): 189-202
Devine JD. 1995. Petrogenesis of the basalt-andesite-dacite association of Grenada, Lesser Antilles island arc, revisited. Journal of Volcanology and Geothermal Research, 69(1-2): 1-33
Dong LH and Sha DM. 2004. Hydrothermal Gold Deposits in Western Tianshan. Beijing: Geological Publishing House, 8-15 (in Chinese)
Gao J, Li MS, Xiao XC, Tang YQ and He GQ. 1998. Paleozoic tectonic evolution of the Tianshan Orogen, northwestern China. Tectonophysics, 287(1-4): 213-231
Han BF, Guo ZJ, Zhang ZC, Zhang L, Chen JF and Song B. 2010. Age, geochemistry, and tectonic implications of a Late Paleozoic stitching pluton in the North Tian Shan suture zone, western China. Geological Society of American Bulletin, 122(3-4): 627-640
Han YP, Li CJ and Zhang SZ. 2008. Upper Carboniferous volcanic rock and its geological significance of Keguqin Mountain in Xinjiang. Guizhou Geology, 25(2): 122-127 (in Chinese with English abstract)
Hu AQ, Jahn BM, Zhang GX, Chen YB and Zhang QF. 2000. Crustal evolution and Phanerozoic crustal growth in northern Xinjiang: Nd isotope evidence. Part I. Isotopic characterization of basement rock. Tectonophysics, 328(1): 15-51
Li HQ, Xie CF and Chang HL. 1998. Study on Metallogenetic Chronology of Nonferrous and Precious Metallic Ore Deposits in Northern Xinjiang, China. Beijing: Geological Publishing House (in Chinese)
Li JL, Su W, Zhang X and Liu X. 2009. Zircon Cameca U-Pb dating and its significance for granulite-facies gneisses from the western Awulale Mountain, West Tianshan, China. Geological Bulletin of China, 28(12): 1852-1862 (in Chinese with English abstract)
Liu F, Yang JS, Li TF, Chen SY, Xu XZ, Li JY and Jia Y. 2011. Geochemical characteristics of Late Carboniferous volcanic rocks in northern Tianshan, Xinjiang, and their geological significance. Geology in China, 38(4): 868-889 (in Chinese with English abstract)
Long LL, Gao J, Qian Q, Xiong XM, Wang JB, Wang YM and Gao LM. 2008. Geochemical characteristics and tectonic setting of Carboniferous volcanic rocks from Yili region, western Tianshan. Acta Petrologica Sinica, 24(4): 699-710 (in Chinese with English abstract)
Othman DB, White WM and Patchett J. 1989. The geochemistry of marine sediments, island arc magma genesis, and crust mantle recycling. Earth and Planetary Science Letters, 94(1-2): 1-21
Pearce JA and Peate DW. 1995. Tectonic implications of the composition of volcanic arc magmas. Annual Review of Earth and Planetary Sciences, 23(1): 251-285
Plank T and Langmuir CH. 1998. The chemical composition of subducting sediment and its comsequences for the crust and mantle. Chemical Geology, 145(3-4): 325-394
Qin KZ. 2000. Metellogenesis in relation to Central-Asia style orogeny of northern Xinjiang. Post-Doctor Research Report. Beijing: Institute of Geology and Geophysics, Chinese Academy of Sciences (in Chinese with English summary)
Richards JP. 2011. Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geology Reviews, 40(1): 1-26
Rollison HR. 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. New York: Longman Scientific and Technical, 1-352
Sano T, Hasenaka T, Shimaoka Aetal. 2001. Boron contents of Japan trench sediments and Iwate basaltic lavas, NE Japan arc: Estimation of sediment-derived fluid contribution in mantle wedge. Earth and Planetary Science Letters, 186(2): 187-198
Simon AC, Pettke T, Candela PA, Piccoli PM and Heinrich CA. 2003. Experimental determination of Au solubility in rhyolite melt and magnetite: Constraints on magmatic Au budgets. American Mineralogist, 88(11-12): 1644-1651
Simon AC, Candela PA, Piccoli PM, Mengason M and Englander L. 2008. The effect of crystal-melt partitioning on the budgets of Cu, Au, and Ag. American Mineralogist, 93(8-9): 1437-1448
Song B, Zhang YH, Wan YS and Jian P. 2002. Mount making and procedure of the SHRIMP dating. Geological Review, 48(Suppl.): 26-30 (in Chinese with English abstract)
Sun SS and Mcdonough WF. 1989. Chemical and isotopic study of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society of London, Special Publication, 42(1): 313-345
Tang GJ, Wang Q, Zhao ZH, Wyman DA, Chen HH, Jia XH and Jiang ZQ. 2009. LA-ICP-MS zircon U-Pb geochronology, element geochemistry and petrogenesis of the andesites in the eastern Taerbieke gold deposit of the western Tianshan region. Acta Petrologica Sinica, 25(6): 1341-1352 (in Chinese with English abstract)
Tatsumi Y and Ishizaka K. 1981. Existence of andesitic primary magma: An example from southwest Japan. Earth and Planetary Science Letters, 53(1): 124-130
Tatsumi Y and Ishizaka K. 1982. Origin of high-magnesian andesite in the Setouchi volcanic belt, southwest Japan, I. Petrographical and chemical characteristics. Earth and Planetary Science Letters, 60: 239-304
Togashi S and Terashima S. 1997. The behavior of gold in unaltered island arc tholeiitic rocks from Izu-Oshima, Fuji, and Osoreyama volcanic areas, Japan. Geochimica et Cosmochimica Acta, 61(3): 543-554
Wang B, Shu LS, Cluzel D, Faure M, Charvet J and Ma Q. 2006. Geochemical characteristics and tectonic significance of Carboniferous volcanic rocks in the northern part of the Ili Block, Xinjiang. Geology in China, 33(3): 498-508 (in Chinese with English abstract)
Wang B, Shu LS, Cluzel D, Faure M and Charvet J. 2007. Geochemical constraints on Carboniferous volcanic rocks of the Yili Block (Xinjiang, NW China): Implication for the tectonic evolution of western Tianshan. Journal of Asian Earth Sciences, 29(1): 148-159
Wang Q, Zhao ZH, Xu JF, Wyman DA, Xiong XL, Zi F and Zai ZH. 2006. Carboniferous adakite-high Mg andesite-Nb-enriched basaltic rock suites in the northern Tianshan area: Implications for Phanerozoic crustal growth in the Central Asia Orogenic Belt and Cu-Au mineralization. Acta Petrologica Sinica, 22(1): 11-30 (in Chinese with English abstract)
Windley BF, Allen MB, Zhang C, Zhao ZY and Wang GR. 1990. Paleozoic accretion and Cenozoic redeformation of the Chinese Tien Shan Range, Central Asia. Geology, 18(2): 128-131
Wood DA, Joron JL and Treuil M. 1979. A re-appraisal of the use of trace elements to classify and discriminate between magma series erupted in different tectonic settings. Earth and Planetary Science Letters, 45(2): 326-336
Xia LQ, Xia ZC, Xu XY, Li XM and Ma ZP. 2008. Relative contributions of crust and mantle to the generation of the Tianshan Carboniferous rift-related basic lavas, northwestern China. Journal of Asian Earth Sciences, 31(4-6): 357-378
Xiao L, Wang FZ, Begg G and Fu ML. 2002. Gold mineralization styles of Jingxi-Yelmand deposit: Evidence from hydrothermal alteration and fluid inclusion data. Mineral Deposits, 21(1): 58-64 (in Chinese with English abstract)
Xiao L, Nick H, Graham B, Fu ML, Wang FZ and Franco P. 2005. The Jingxi-Yelmand high-sulfidation epithermal gold deposit, Western Tianshan, Xinjiang Province, P.R. China. Ore Geology Reviews, 26(1-2): 17-37
Xiao WJ, Windley BF, Badarch G, Sun S, Li J, Qin K and Wang Z. 2004. Palaeozoic accretionary and convergent tectonics of the southern Altaids: Implications for the growth of Central Asia. Journal of the Geological Society, 161(3): 339-342
Xiao XC, Tang YQ, Feng YMetal. 1992. Tectonic Evolution of the Northern Xinjiang and Its Adjacent Regions. Beijing: Geological Publishing House, 1-169 (in Chinese)
Xu XY, Ma ZP, Xia LQ, Wang YB, Li XM, Xia ZC and Wang LS. 2005. SHRIMP dating of plagiogranites from Bayingou ophiolite in northern Tianshan Mountains. Geological Review, 51(5): 523-527 (in Chinese with English abstract)
Xu XY, Li XM, Ma ZP, Xia LQ, Xia ZC and Peng SX. 2006. LA-ICP-MS zircon U-Pb dating of gabbro from the Bayingou ophiolite in the northern Tianshan Mountains. Acta Geologica Sinica, 80(8): 1168-1176 (in Chinese with English abstract)
Xue YX and Zhu YF. 2009. Zircon SHRIMP chronology and geochemistry of the Haladala gabbro in southwestern Tianshan Mountains. Acta Petrologica Sinica, 25(6): 1353-1363 (in Chinese with English abstract)
Zhai W, Sun XM, Gao J, He XP, Liang JL, Miao LC and Wu YL. 2006. SHRIMP dating of zircons from volcanic host rocks of Dhalajunshan formation in Axi gold deposit, Xinjiang, China, and its geological implications. Acta Petrologica Sinica, 22(5): 1399-1404 (in Chinese with English abstract)
Zhai W, Sun XM, Sun WD, Su LW, He XP and Wu YL. 2009. Geology, geochemistry, and genesis of Axi: A Paleozoic low-sulfidation type epithermal gold deposit in Xinjiang, China. Ore Geology Reviews, 36(4): 265-281
Zhang ZH, Wang ZL, Wang YBetal. 2007. SHRIMP zircon U-Pb dating of diorite from Qingbulake basic complex in western Tianshan Mountains of Xinjiang and its geological significance. Mineral Deposits, 26(4): 353-360 (in Chinese with English abstract)
Zhu BY. 2010. The study on the metallogenic model and exploration forecast and the genesis discussion in the gold mountain ore field, Yining County, Xinjiang, China. Ph. D. Dissertation. Beijing: Graduate School of Chinese Academy of Sciences (in Chinese with English summary)
Zhu YF, Zhang LF, Gu LB, Guo X and Zhou J. 2005. The zircon SHRIMP chronology and trace element geochemistry of the Carboniferous volcanic rocks in western Tianshan Mountains. Chinese Science Bulletin, 50(19): 2201-2212
Zhu YF, Guo X, Song B, Zhang LF and Gu LB. 2009. Petrology, Sr-Nd-Hf isotopic geochemistry and zircon chronology of the Late Paleozoic volcanic rocks in the southwestern Tianshan Mountains, Xinjiang, NW China. Journal of the Geological Society, 166(6): 1085-1099
附中文參考文獻(xiàn)
安芳, 朱永峰. 2008. 西天山吐拉蘇盆地火山巖SHRIMP年代學(xué)和微量元素地球化學(xué)研究. 巖石學(xué)報(bào), 24(12): 2741-2748
車自成, 劉良, 劉洪福等. 1996. 論伊犁古裂谷. 巖石學(xué)報(bào), 12(3): 478-490
陳江峰, 滿發(fā)勝, 倪守斌. 1995. 西天山菁布拉克巖帶基性-超基性巖的Nd、Sr同位素地球化學(xué). 地球化學(xué), 24(2): 121-127
董連慧, 沙德銘. 2004. 西天山地區(qū)晚古生代淺成低溫?zé)嵋航鸬V床. 北京: 地質(zhì)出版社, 8-15
韓穎平, 李朝晉, 張盛澤. 2008. 新疆科古琴山晚石炭世火山巖及其地質(zhì)意義. 貴州地質(zhì), 25(2): 122-127
李華芹, 謝才富, 常海亮. 1998. 新疆北部主要有色貴金屬成礦作用年代學(xué)研究. 北京: 地質(zhì)出版社
李繼磊, 蘇文, 張喜, 劉新. 2009. 西天山阿吾拉勒西段麻粒巖相片麻巖鋯石Cameca U-Pb年齡及其地質(zhì)意義. 地質(zhì)通報(bào), 28(12): 1852-1862
劉飛, 楊經(jīng)綏, 李天福, 陳松永, 徐向珍, 李金陽, 賈毅. 2011. 新疆北天山沙灣地區(qū)晚石炭世火山巖地球化學(xué)特征及地質(zhì)意義. 中國地質(zhì), 38(4): 868-889
龍靈利, 高俊, 錢清, 熊賢明, 王京彬, 王玉往, 高立明. 2008. 西天山伊犁地區(qū)石炭紀(jì)火山巖地球化學(xué)特征及構(gòu)造環(huán)境. 巖石學(xué)報(bào), 24(4): 699-710
秦克章. 2000. 新疆北部中亞型造山與成礦作用. 博士后研究報(bào)告.北京:中國科學(xué)院地質(zhì)與地球物理研究所
宋彪, 張玉海, 萬渝生,簡平. 2002. 鋯石SHRIMP樣品靶制作、年齡測定及有關(guān)現(xiàn)象討論. 地質(zhì)論評, 48(增刊): 26-30
唐功建, 王強(qiáng), 趙振華, Wyman DA, 陳海紅, 賈小輝, 姜子琦. 2009. 西天山東塔吾爾別克金礦區(qū)安山巖LA-ICP-MS鋯石U-Pb年代學(xué)、元素地球化學(xué)與巖石成因. 巖石學(xué)報(bào), 25(6): 1341-1352
王博, 舒良樹, Cluzel D, Faure M, Charvet J, 馬前. 2006. 新疆伊犁北部石炭紀(jì)火山巖地球化學(xué)特征及其地質(zhì)意義. 中國地質(zhì), 33(3): 498-508
王強(qiáng), 趙振華, 許繼峰, Wyman DA, 熊小林, 資峰, 白正華. 2006. 天山北部石炭紀(jì)埃達(dá)克巖-高鎂安山巖-富Nb島弧玄武質(zhì)巖: 對中亞造山帶顯生宙地殼增生與銅金成礦的意義. 巖石學(xué)報(bào), 22(1): 11-30
肖龍, 王方正, Begg G, 付民祿. 2002. 新疆京希-伊爾曼德金礦床礦化類型: 熱液蝕變及流體包裹體證據(jù). 礦床地質(zhì), 21(1): 58-64
肖序常, 湯耀慶, 馮益民等. 1992. 新疆北部及其鄰區(qū)大地構(gòu)造. 北京: 地質(zhì)出版社, 1-169
新疆地質(zhì)礦產(chǎn)局.1993.新疆維吾爾自治區(qū)區(qū)域地質(zhì)志.北京:地質(zhì)出版社
徐學(xué)義, 馬中平, 夏林圻, 王彥斌, 李向民, 夏祖春, 王立社. 2005. 北天山巴音溝蛇綠巖斜長花崗巖鋯石SHRIMP測年及其意義. 地質(zhì)論評, 51(5): 523-527
徐學(xué)義, 李向民, 馬中平, 夏林圻, 夏祖春, 彭素霞. 2006. 北天山巴音溝蛇綠巖形成于早石炭世: 來自輝長巖LA-ICP-MS鋯石年齡的證據(jù). 地質(zhì)學(xué)報(bào), 80(8): 1168-1176
薛云興, 朱永峰. 2009. 西南天山哈拉達(dá)拉巖體的鋯石SHRIMP年代學(xué)及地球化學(xué)研究. 巖石學(xué)報(bào), 25(6): 1353-1363
翟偉, 孫曉明, 高俊, 賀小平, 梁金龍, 苗來成, 吳有良. 2006. 新疆阿希金礦床賦礦圍巖——大哈拉軍山組火山巖SHRIMP鋯石年齡及其地質(zhì)意義. 巖石學(xué)報(bào), 22(5): 1399-1404
張作衡, 王志良, 王彥斌等. 2007. 新疆西天山菁布拉克基性雜巖體閃長巖鋯石SHRIMP定年及其地質(zhì)意義. 礦床地質(zhì), 26(4): 353-360
朱炳玉. 2010. 新疆伊寧縣金山金礦田成礦模式與礦床成因和找礦預(yù)測研究. 博士學(xué)位論文. 北京: 中國科學(xué)院研究生院