• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Amyloid precursor-like protein 2 C-terminal fragments upregulate S100A9 gene and protein expression in BV2 cells

    2014-04-07 02:42:56GuangzheLiHuiChenLinChengRongjieZhaoJunchangZhaoYanjiXu

    Guangzhe Li, Hui Chen, Lin Cheng, Rongjie Zhao, Junchang Zhao, Yanji Xu

    1 Department of Psychology, Yanbian Brain Hospital, Yanji, Jilin Province, China

    2 Department of Preventive Medicine, Medical College, Yanbian University, Yanji, Jilin Province, China

    3 Department of Pharmacology, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China

    Amyloid precursor-like protein 2 C-terminal fragments upregulate S100A9 gene and protein expression in BV2 cells

    Guangzhe Li1, Hui Chen2, Lin Cheng2, Rongjie Zhao3, Junchang Zhao3, Yanji Xu2

    1 Department of Psychology, Yanbian Brain Hospital, Yanji, Jilin Province, China

    2 Department of Preventive Medicine, Medical College, Yanbian University, Yanji, Jilin Province, China

    3 Department of Pharmacology, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China

    The murine microglial cell line BV2 has neuroprotective effects, but is toxic to neurons by secreting in fl ammatory cytokines, and is an important target in the treatment of nerve in fl ammation and neurodegenerative diseases. In the present study, we observed the effects of transfecting three amyloid precursor-like protein 2 (APLP2) C-terminal fragments (CTFs; C57, C50 and C31) in the pEGFP-N1 vector on S100A9 expression in BV2 cells. Reverse transcription-PCR, western blot assay and immunocytochemistry revealed that S100A9 protein and mRNA expression was greater in BV2 cells after CTF transfection than after mock transfection with an empty vector. Furthermore, transfection of full-length APLP2-751 resulted in low levels of S100A9 protein expression. Our results show that APLP2-CTFs upregulate S100A9 protein and mRNA expression in BV2 cells, and identify a novel pathway involved in neuronal injury and apoptosis, and repair and protection in Alzheimer’s disease.

    nerve regeneration; neurodegeneration; Alzheimer’s disease; APLP2; S100A9; C-terminal fragments; amyloid precursor protein; BV2 cells; γ-secretase; NSFC grant; neural regeneration

    Funding:This work was supported by the Natural Science Foundation of Technology Gallery in Jilin Province of China, No. 2011-15237; and the National Natural Science Foundation of China, No. 81160159.

    Li GZ, Chen H, Cheng L, Zhao RJ, Zhao JC, Xu YJ. Amyloid precursor-like protein 2 C-terminal fragments upregulate S100A9 gene and protein expression in BV2 cells. Neural Regen Res. 2014;9(21):1923-1928.

    Introduction

    Various hypotheses exist for the pathogenesis of Alzheimer’s disease, including cholinergic system dysfunction, aberrant inflammatory or immune responses, gene mutations, oxidative stress, excitotoxicity, apoptosis, and defective metabolism of amyloid precursor protein (APP) (Selkoe et al., 2001; Chang et al., 2005; Walker et al., 2006; Ma et al., 2012; Dong and Chai, 2013). Among these, the APP hypothesis has received much attention (Liu et al., 2002; Scheinfeld et al., 2002; Chang et al., 2006). C-terminal fragments of APP may play a contributing role in the pathogenesis of Alzheimer’s disease (Cao and Sudhof, 2001; Kimberly et al., 2001; Minopoli et al., 2001). Amyloid precursor-like protein (APLP) 2 C-terminal fragments (CTFs) were found to translocate to the nucleus and form a ternary complex with the nuclear adaptor protein Fe65 and the transcription factor CP2/LSF/ LBP1, subsequently inducing glycogen synthase kinase-3β expression, tau phosphorylation and apoptosis (Ferrer et al., 2002; Liu et al., 2002; Kim et al., 2003; Xu et al., 2007). APP is a highly conserved gene, and APP, APLP1 and APLP2 have been identi fi ed in mammals. APP contains an amyloid-beta region, but none of its homologues contain this domain, although their amino acid sequence, domain structure and protein organization are similar to APP (Gu et al., 2001; Galvan et al., 2002; Scheinfeld et al., 2002).

    APLP2 matures through the same unusual secretory/cleavage pathway as APP, and sheds its extracellular domain in multiple cell culture systems (Zimmer et al., 2005). APLP2 is cleaved by γ-secretase, ε-secretase and caspases to generate the CTFs C57, C50 and C31, all of which contribute to the pathology of Alzheimer’s disease (Gu et al., 2001; Xu et al., 2001; Galvan et al., 2002).

    S100A9 is an inflammation-associated calcium-binding protein belonging to the S100 family (Abe et al., 1999; Gebhardt al., 2006; Zhang et al., 2012). Neurological diseases such as cerebral ischemia, traumatic brain injury (Postler et al., 1977) and Alzheimer’s disease (Shepherd et al., 2006; Chang et al., 2012; Wang et al., 2014) are associated with altered expression of S100 family members (Zimmer et al., 2005). S100A9 expression was recently found to be increased within neuritic plaques and reactive glia, and was proposed to participate in the inflammation of Alzheimer’s disease (Shepherd et al., 2006; Zhang et al., 2012; Kim et al., 2014). However, the detailed molecular mechanisms of these patho-logical events remain unknown (Kummer et al., 2006; Lee et al., 2012). TheS100A9gene is signi fi cantly upregulated in the brains of animal models of Alzheimer’s disease, namely Tg2576 and CT-Tg mice, as well as in patients with Alzheimer’s disease (Tae-Young et al., 2010; Chang et al., 2012; Kim et al., 2014). Murine BV2 microglial cells are central nervous system immune cells that protect brain tissue function by phagocytosing neuronal pathogens and harmful particles. However, reactive microglia also release in fl ammatory factors such as S100A9, and are an important target in the treatment of neuroin fl ammation and neurodegenerative diseases. In the present study, we used BV2 cells to investigate the effects of APLP2-CTFs on the expression of the S100A9 gene, to elucidate this pathogenic pathway in Alzheimer’s disease.

    Materials and Methods

    Materials

    APLP2-CTFs and the BV2 cell line were kindly provided by Professor Yoo-hun Suh, Department of Pharmacology, College of Medicine, Seoul National University, South Korea.

    Plasmid extract and puri fi cation

    Escherichia coli (DH5a; BS-3236, Biomedal, Beijing, China) with recombinant plasmid pEGFP-N1-APLP2-CTFs (C57, C50, C31) and EGFP-N1 empty vector (Clontech, Mountain View, CA, USA) were cultured in medium containing 30 μg/mL kanamycin (Kan+). A single colony of each APLP2-CTF was selected into 10 mL Luria-Bertani liquid medium with Kan+, and mixed overnight on a rotary shaker at 230 r/min and 37°C. The colonies were then transferred to 200 mL of Luria-Bertani liquid medium to grow. The plasmids were extracted using the Plasmid Maxi Kit (12163; QIAGEN, Venlo, Netherlands) and the concentration and purity were measured in an ultraviolet spectrophotometer (CKX41; Olympus, Tokyo, Japan).

    BV2 cell culture

    Murine microglial BV2 cells (Department of Pharmacology, Seoul National University, South Korea) were cultured in Dulbecco’s modi fi ed Eagle’s medium (DMEM; Life Technologies Inc., Grand Island, NY, USA) in 6-well plates, supplemented with 5% fetal bovine serum (Corning, Steuben Country, NY, USA) and penicillin/streptomycin (100 U/mL/100 μg/mL) at 37°C and 5% CO2for 3 days (Munsie et al., 2011; Lorena et al., 2006).

    Plasmid transfection

    At this point, the culture was divided into four groups: a mock transfection group (pEGFP-N1 empty vector); an APLP2-C57 transfection group; an APLP2-C50 transfection group; and an APLP2-CT31 transfection group. Each group was transfected with 5 μg plasmid for 48 hours and observed 24 hours post-transfection. BV2 cell cultures were maintained in 24-well plates. In addition, to inhibit CTF generation, BV2 cells were transfected with full-length APLP2-751 and incubated with an inhibitor of γ-secretase, N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT, 2 μmol/L; Sigma-Aldrich, St Louis, MO, USA). All transfection procedures were carried out using 5 μL Lipofectamine? 2000 (Invitrogen, Carlsbad, CA, USA) in 1 mL DMEM, according to the manufacturer’s instructions. Cells were observed under a fl uorescence microscope (Olympus, Tokyo, USA).

    Western blot assay

    Samples were harvested in radioimmunoprecipitation assay buffer (1% Triton X-100, 1% sodium deoxycholate, 0.1% sodium dodecyl sulfate, 0.15 mol/L NaCl, and 0.05 mol/L Tris-HCl; pH 7.2) with protease inhibitors (Complete mini; Roche, Indianapolis, IN, USA) at 4°C. The harvested proteins from cell lysates were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transferred to a polyvinylidene difluoride membrane. The membrane was blocked in Tris-buffered saline containing 4% non-fat milk powder (Lise et al., 2012) for 1 hour at room temperature. The proteins were visualized using activated rabbit anti-S100A9 monoclonal antibody overnight (1:1,000; Sino Biological Inc.) followed by horseradish peroxidase-conjugated goat anti-rabbit IgG (H + L) for 1 hour at room temperature (1:800; Beyotime Institute of Biotechnology, Haimen, Jiangsu Province, China). The membrane was scanned in an ultraviolet spectrophotometer (Olympus) and the gray values of the target protein bands were compared against those of β-tubulin (mouse, 1:1,000; Sino Biological Inc.; 1 hour at room temperature) using Quantity One software (Bio Rad, Hercules, CA, USA).

    Reverse transcription (RT)-PCR

    Trizol reagent (Invitrogen) was used to isolate 2 mg total RNA for cDNA synthesis, which was carried out using Accu-Power RT PreMix (Bioneer, Korea). We measured the concentration and purity of RNA by ultraviolet spectrophotometry (CKX41; Olympus). The abundance of transcripts in cDNA samples was measured by RT-PCR (Waters Company, Changchun, Jilin Province, China). The primer sequences are as follows:

    PrimerGene sequence Product size (bp) S100A9 Forward 5′- CAG CAT AAC CAC CAT CAT CG-3′362 Reverse 5′-GTC CTG GTT TGT GTC CAG GT-3′ ; β-Actin Forward 5′-CCA GAT CAT GTT TGA GAC CT-3′206 Reverse 5′-GTT GCC AAT AGT GAT GAC CT-3′

    The PCR reactions were subjected to 40 amplification cycles of 95°C for 1 minute, 58°C for 1 minute, and 72°C for 1 minute. PCR products were analyzed on 1.5% agarose gel, and the gels were visualized by staining with ethidium bromide. All absorbance values were normalized to β-actin.

    Figure 1 Effects of transfection of BV2 cells with APLP2-CTFs (C57, C50, C31) on S100A9 protein expression (western blot assay).

    Figure 3 Effects of transfection with APLP2-CTFs (C57, C50, C31) onS100A9mRNA expression in BV2 cells (reverse transcription-PCR).

    Figure 4 Effects of transfection with APLP2-751 (full-length) on S100A9 protein expression in BV2 cells.

    Immunocytochemistry

    BV2 cells grown on a glass coverslip were transfected with APLP2-CTFs for 48 hours. Cells were fixed in 4% paraformaldehyde for 1 hour at 4°C and then for 30 minutes at room temperature. After quenching in 50 mmol/L NH4Cl in phosphate-buffered saline (PBS) for 10 minutes, the cells were washed in PBS and permeabilized for 30 minutes at room temperature in permeabilization buffer (PBS containing 0.1% Triton X-100 and 1 mg/mL bovine serum albumin). The following steps were performed at room temperature in permeabilization buffer. Cells were incubated with rabbit anti-S100A9 antibody (1:1,000; Sino Biological Inc.) for 1 hour at room temperature, washed three times, and incubated with Alexa Fluor 555-labeled goat anti-rabbit IgG (H+L; Institute of Biotechnology; 1:800 dilution) for 1 hour at room temperature. After three washes in permeabilization buffer and one wash in PBS, the cells were mounted on microscope slides in mounting medium (DAKO, Copenhagen, Denmark) containing DAPI (1:50; Invitrogen) for nuclear staining. Cells were observed under a laser scanning confocal microscope (Leica TCS SP5, Leica Microsystems, provided by the Experimental Center of Preventive Medicine, Medical College, Yanbian University, China). Data were analyzed using STED deconvolution software (LAS AF; Leica, Germany).

    Statistical analysis

    Figure 2 Effects of transfection with APLP2-CTFs (C57, C50, C31) on S100A9 protein expression in BV2 cells (immunocytochemical staining; laser scanning confocal microscope, × 100).

    All data were expressed as the mean ± SD of at least three independent experiments. Pairedt-tests, or one-way analysis of variance followed by Dunnett’spost-hoct-test, were performed using SPSS 13.0 software (SPSS, Chicago, IL, USA) to study the relationship between the different variables. Values ofP< 0.05 were considered statistically signi fi cant.

    Results

    APLP2-CTFs induced upregulation of S100A9 protein expression

    BV2 cells were transfected with APLP2-CTFs for 48 hours. Western blot assay revealed that expression of S100A9 was signi fi cantly greater in all three groups of APLP2-CTF-transfected cells than in the mock transfected group (P< 0.05; Figure 1).

    Immunocytochemical staining con fi rmed that S100A9 was induced by APLP2-CTFs (Figure 2).

    APLP2-CTFs induced upregulation of S100A9 mRNA

    RT-PCR showed that S100A9 expression was significantly greater in all three APLP2-CTF-transfected groups than inthe mock transfected group (P< 0.05; Figure 3).

    DAPT treatment induced downregulation of S100A9 protein levels

    To determine whether endogenously generated APLP2-CTFs affect S100A9 expression, we investigated the effect of DAPT, an inhibitor of γ-secretase, on S100A9 levels after transfection with full-length APLP2-751. We found that S100A9 expression was lower in the DAPT treatment group than in the vehicle-treated control group (P< 0.05), indicating that the generation of CTFs is critical for S100A9 protein expression (Figure 4).

    Discussion

    Alzheimer’s disease is characterized by age-dependent formation of amyloid-beta-containing senile plaques and intracellular neuro fi brillary tangles (Han et al., 2013; Wang et al., 2013). Induction of theS100A9gene occurs in the brains of patients with Alzheimer’s disease and in animal models of the disease. S100A9 expression is increased in senile plaques and active gliocytes, suggesting that S100A9 is involved in the pathogenesis of Alzheimer’s disease (Zimmer et al., 2005; Shepherd et al., 2006; van Lent et al., 2008). In the present study, we found that transfecting BV2 cells with APLP2-CTFs increased S100A9 protein and mRNA expression.

    Previous studies showed thatS100A9gene silencing significantly reduces Alzheimer’s disease pathology, including the number of plaques, and improves the learning ability of Tg2576 mice. Also, treatment with amyloid-beta (1-42) or C105 and transfection with APP-C50 or C99 can elevateS100A9mRNA expression (Tae-Young et al., 2010). Our results demonstrate that APLP2-CTF has similar toxic effects to those of APP-CTF and amyloid beta on the in fl ammatory responses of glial cells.

    The amyloid precursor protein cleaved by β-secretase and γ-secretase generates amyloid beta and CTFs of different sizes (Xing et al., 2012; Liu et al., 2013). APP-CFTs play a contributing role in Alzheimer’s disease pathogenesis (Cao and Sudhof, 2001; Kimberly et al., 2001; Minopoli et al., 2001; Kim et al., 2003). APLP2-CTFs translocate to the nucleus and form a ternary complex with Fe65 and CP2/LSF/LBP1, and induce the expression of glycogen synthase kinase-3β, tau phosphorylation and apoptosis (Xu et al., 2007).

    We also examined changes in S100A9 levels in BV2 cells expressing full-length APLP2-751 in the presence or absence of the γ-secretase inhibitor, DAPT, to investigate the effects of endogenously generated APLP2-CTFs on S100A9 expression. In the DAPT-treated group, S100A9 levels were not signi fi cantly greater than those in the control group, suggesting that generation of APLP2-CTFs is essential for the induction of S100A9 gene expression in BV2 cells.

    The results of the present study indicate that APLP2-CTF co-contributes to the pathology of Alzheimer’s disease with APP-CTF and amyloid beta. The underlying molecular mechanisms need to be further investigated.

    Acknowledgments:APLP2-CTFs and BV2 cell line kindlyare provided by Professor Suh YH from Department Pharmacology, College of Medicine, Seoul National University South Korea.

    Author contributions:Li GZ and Xu YJ participated in conception and design of the study, and analysis and interpretation of the data. Li GZ, Chen H and Cheng L were in charge of data collection. Chen H, Li GZ, Zhao RJ and Xu YJ wrote the manuscript or provided critical revision of the manuscript for intellectual content. Zhao JC participated in statistical expertise. All authors approved the final version of the paper.

    Con fl icts of interest:None declared.

    Abe M, Umehara F, Kubota R, Moritoyo T, Izumo S, Osame M (1999) Activation of macrophages microglia witn the calcium-binding protein MRP14 and MRP8 is related to the lesional activities in the spinal cord of HTLV-I associated myelopathy. N J Neurol 246:358-364.

    Cao X, Sudhof TC (2001) A transcriptionally active complex of APP with Fe65 and histone acetyltransferase Tip60. Science 293:115-120.

    Chang KA, Kim HS, Ha TY, Ha JW, Shin KY, Jeong YH, Lee JP, Park CH, Kim S, Baik TK, Suh YH (2006) Phosphorylation of amyloid precursor protein (APP) at Thr668 regulates the nuclear translocation of the APP intracellular domain and induces neurodegeneration. Mol Cell Biol 26:4327-4338.

    Chang KA, Kim HJ, Suh YH (2012) The role of S100A9 in the pathogenesis of Alzheimer’s disease: the therapeutic effects of S100A9 knockdown or knockout. Neurodegener Dis 2012;10:27-29.

    Chang KA, Suh YH (2005) Pathophysiological roles of amyloidogenic carboxyterminal fragments of the beta-amyloid precursor protein in Alzheimer’s disease. J Pharmacol Sci 97:461-471.

    Dong XH, Chai XQ (2013) Alzheimer’s disease transgenic animal models: How to get more similar pathological characteristics? Zhongguo Zuzhi Gongcheng Yanjiu 17:8075-8082.

    Ferrer I, Barrachina M, Puig B (2002) Glycogen synthase kinase-3 is associated with neuronal and glial hyperphosphorylated tau deposits in Alzheimer’s disease, Pick’s disease, progressive supranuclear palsy and corticobasal degeneration. Acta Neuropathol (Berl) 104:583-591.

    Galvan V, Chen S, Lu D, Logvinova A, Goldsmith P, Koo EH, Bredesen DE (2002) Caspase cleavage of members of the amyloid precursor family of proteins. J Neurochem 82:283-294.

    Gebhardt C, Nemeth J, Angel P, Hess J (2006) S100A8 and S100A9 in in fl ammation and cancer. Biochem Pharmacol 72:1622-1631.

    Gu Y, Misonou H, Sato T, Dohmae N, Takio K, Ihara Y (2001) Distinct intramembrane cleavage of the beta-amyloid precursor protein family resembling gamma-secretase-like cleavage of Notch. J Biol Chem 276:35235-35238.

    Ha TY, Chang KA, Kim Ja, Kim HS, Kim SH, Chong YH, Suh YH (2010) S100A9 knockdown decreases the memory lmpairment and the neuropathology in Tg2576 mice, AD animal model. PLoS One 5:1-11.

    Han HY, Zhang YC, Ji SQ, Liang QM, Zhu SQ, Xue Z (2013) Integrin beta 1 inhibits long-term potentiation induced by amyloid beta-protein. Zhongguo Zuzhi Gongcheng Yanjiu 17:1959-1964.

    Kim HJ, Chang KA, Ha TY, Kim J, Ha S, Shin KY, Moon C, Nacken W, Kim HS, Suh YH (2014) S100A9 knockout decreases the memory impairment and neuropathology in crossbreed mice of Tg2576 and S100A9 knockout mice model. PLoS One. 9:e88924.

    Kim HS, Kim EM, Lee JP, Park CH, Kim SH, Seo JH, Chang KA, Yu EA, Jeong SJ, Chong YH, Suh YH (2003) C-terminal fragments of amyloid precursor protein exert neurotoxicity by inducing glycogen synthase kinase-3beta expression. FASEB J 17:1951-1953.

    Kimberly WT, Zheng JB, Guenette SY, Selkoe DJ (2001) The intracellular domain of the beta-amyloid precursor protein is stabilized by Fe65 and translocates to the nucleus in a notch-like manner. J Biol Chem 276:40288-40292.

    Kummer MP, Vogl T, Axt D, Griep A, Vieira-Saecker A, Jessen F, Gelpi E, Roth J, Heneka MT (2012) Mrp14 de fi ciency ameliorates amyloid β burden by increasing microglial phagocytosis and modulation of amyloid precursor protein processing. J Neurosci 32:17824-17829.

    Lee EO, Yang JH, Chang KA, Suh YH, Chong YH (2013) Amyloid-β peptide-induced extracellular S100A9 depletion is associated with decrease of antimicrobial peptide activity in human THP-1 monocytes. J Neuroin fl ammation 10:68.

    Lise NM, Carly RD, Ray T (2012) Co fi lin nuclear-cytoplasmic shuttling affects co fi lin-actin rod formation during stress. J Cell Sci 125:3977-3988.

    Liu F, Lqbal K, Grundke-lqbal I, Gong CX (2002) Involvement of aberrant glycosylation in phosphorylation of tau by cdk5 and GSK-3beta. FEBS Lett 530:209-214.

    Liu R, Hou H, Yi X, Wu S, Zeng H (2013) Divalent cation tolerance protein binds to β-secretase and inhibits the processing of amyloid precursor protein. Neural Regen Res 8:991-999.

    Lorena H, Pablo H, Soledad DO, Gabriela K, Francisco SV, Frank LF, Matthias S, Jose DO, Jorge B, Alfredo C, Alfredo L (2006) Phosphorylation of actin-depolymerizing factor/co fi lin by lim-kinase mediates amyloid-induced degeneration: a potential mechanism of neuronal dystrophy in Alzheimer’s disease. J Neurosci 26:6533-6542.

    Ma HP, Lü XR, Shi HY, Shi ZX, Li XC, Li Z (2012) Effect of nerve growth factor pretreatment on phosphorylated Tau protein expression in hippocampal neurons in Alzheimer’s disease rats. Zhongguo Zuzhi Gongcheng Yanjiu 16:8641-8646.

    Minopoli G, de Candia P, Bonetti A, Faraonio R, Zambrano N, Russo T (2001) The beta-amyloid precursor protein functions as a cytosolic anchoring site that prevents Fe65 nuclear translocation. J Biol Chem 276:6545-6550.

    Munsie L, Caron N, Atwal RS, Marsden I, Wild EJ, Bamburg JR, Tabriz SJ, Truant R (2011) Mutant huntingtin causes defective actin remodeling during stress: defining a new role for transglutaminase 2 in neurodegenerative disease. Hum Mol Genet 20:1937-1951.

    Postler E, Lehr A, Schluesener H, Meyermann R (1977) Expression of the S-100 protein MRP-8 and -14 in ischemic brain lesions. Glia 19:27-34.

    Selkoe KJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:41-766.

    Scheinfeld MH, Ghersi E, Laky K, Fowlkes BJ, D’Adamio L (2002) Processing of beta -amyloid precursor-like protein-1 and -2 by gamma-secretase regulates transcription. J Biol Chem 277:44195-44201.

    Shepherd CE, Goyette J, Utter V, Rahimi F, Yang Z, Geczy CL, Halliday GM (2006) Inflammatory S100A9 and S100a12 proteins in Alzheime’s disease. Neurobiol Aging 27:1554-1563.

    van Lent PL1, Grevers L, Blom AB, Sloetjes A, Mort JS, Vogl T, Nacken W, van den Berg WB, Roth J (2008) Myeloidrelated proteins S100A8/ S100A9 regulate joint in fl ammation and cartilage. destruction during antigen-induced arthritis. Ann Rheum Dis 67:1750-1758.

    Walker DG, Link J, Lue LF, Dalsing-Hernandez JE, Boyes BE (2006) Gene expression changes by amyloid beta peptide-stimulated human postmortem brain microglia identify activation of multiple in fl ammatory processes. J Leukoc Biol 79:596-610.

    Wang C, Klechikov AG, Gharibyan AL, W?rml?nder SK, Jarvet J, Zhao L, Jia X, Shankar SK, Olofsson A, Br?nnstr?m T, Mu Y, Gr?slund A, Morozova-Roche LA (2014) The role of pro-in fl ammatory S100A9 in Alzheimer’s disease amyloid-neuroinflammatory cascade. Acta Neuropathol 127:507-522.

    Wang W, Zhang HT, Wang SH, Zhang YB (2013) Correlation of Alzheimer’s disease with Wnt signaling pathway and neural stem cells. Zhongguo Zuzhi Gongcheng Yanjiu 17:3566-3572.

    Xing SL, Chen C, Shen DZ (2012) Signal pathway of amyloid precursor protein in neuronal cell injury induced by amyloid-beta peptide 1-42. Zhongguo Zuzhi Gongcheng Yanjiu 16:2797-2800.

    Xu KP, Zoukhri D, Zieske JD, Dartt DA, Sergheraert C, Loing E, Yu FS (2001) A role for MAP kinase in regulating ectodomain shedding of APLP2 in corneal epithelial cells. Am J Physiol Cell Physiol 281:C603-614.

    Xu YJ, Kim HS, Joo Y, Choi Y, Chang KA, Park CH, Shin KY, Kim S, Cheon YH, Baik TK, Kim JH, Suh YH (2007) Intracellular domains of amyloid precursor-like protein2 interact with CP2 transcription factor in the nucleus and induce glycogen synthase kinase-3β expression. Cell Death Differ 14:79-91.

    Zimmer DB, Chaplin J, Baldwin A, Rast M (2005) S100-mediated signal transduction in the nervous system and neurological diseases. Cell Mol Biol (Noisy-le-grand) 51:201-214.

    Zhang C, Liu Y, Gilthorpe J, van der Maarel JR (2012) MRP14 (S100A9) protein interacts with Alzheimer beta-amyloid peptide and induces its fi brillization. PLoS One 7:e32953.

    Copyedited by Slone-Murphy J, Norman C, Wang J, Qiu Y, Li CH, Song LP, Zhao M

    Yanji Xu, Ph.D., Department of Preventive Medicine, Medical College, Yanbian University, Yanji 133002, Jilin Province, China, xuyanji@ybu.edu.cn.

    10.4103/1673-5374.145362

    http://www.nrronline.org/

    Accepted: 2014-09-06

    精品一区在线观看国产| 久久av网站| 视频区欧美日本亚洲| 久久精品亚洲av国产电影网| 久久人人爽av亚洲精品天堂| 999精品在线视频| 久久中文看片网| 一级片免费观看大全| 欧美日韩成人在线一区二区| 国产一区二区 视频在线| 97人妻天天添夜夜摸| 久久国产精品男人的天堂亚洲| 亚洲av电影在线进入| 最黄视频免费看| 黄色怎么调成土黄色| 国产日韩欧美视频二区| 国产91精品成人一区二区三区 | 午夜老司机福利片| 久久精品国产综合久久久| 中文字幕制服av| 少妇被粗大的猛进出69影院| 十八禁人妻一区二区| 一级毛片电影观看| 日韩 亚洲 欧美在线| 精品视频人人做人人爽| 视频在线观看一区二区三区| 亚洲avbb在线观看| 亚洲欧美日韩另类电影网站| 一本一本久久a久久精品综合妖精| av超薄肉色丝袜交足视频| 国产亚洲欧美精品永久| 欧美精品亚洲一区二区| a级片在线免费高清观看视频| 欧美在线一区亚洲| 国产片内射在线| 老熟妇乱子伦视频在线观看 | 免费在线观看黄色视频的| 日本av手机在线免费观看| 99热全是精品| 亚洲久久久国产精品| 桃红色精品国产亚洲av| 久久99热这里只频精品6学生| 超碰97精品在线观看| 亚洲av美国av| 黄色片一级片一级黄色片| 啦啦啦在线免费观看视频4| 黄色 视频免费看| 捣出白浆h1v1| 亚洲国产av新网站| 欧美精品啪啪一区二区三区 | 日本一区二区免费在线视频| 99国产精品99久久久久| 亚洲国产毛片av蜜桃av| 亚洲精华国产精华精| 国产亚洲午夜精品一区二区久久| 亚洲中文字幕日韩| 亚洲中文av在线| 在线观看免费午夜福利视频| 久久精品国产综合久久久| 亚洲少妇的诱惑av| 亚洲黑人精品在线| 黑人欧美特级aaaaaa片| 亚洲精品在线美女| 成人免费观看视频高清| 首页视频小说图片口味搜索| 岛国在线观看网站| 在线观看免费视频网站a站| 母亲3免费完整高清在线观看| 法律面前人人平等表现在哪些方面 | 丝袜喷水一区| 啪啪无遮挡十八禁网站| 人人澡人人妻人| 婷婷成人精品国产| 日韩熟女老妇一区二区性免费视频| 日本一区二区免费在线视频| 丰满少妇做爰视频| 久久国产精品影院| 国产精品一二三区在线看| 俄罗斯特黄特色一大片| www.自偷自拍.com| av欧美777| 女性生殖器流出的白浆| 香蕉丝袜av| 男人操女人黄网站| 大码成人一级视频| 亚洲精品国产色婷婷电影| 搡老岳熟女国产| 亚洲专区中文字幕在线| 两个人免费观看高清视频| 色94色欧美一区二区| 日韩大码丰满熟妇| 热99re8久久精品国产| 高清在线国产一区| 天天躁日日躁夜夜躁夜夜| 亚洲五月色婷婷综合| 午夜福利视频在线观看免费| 日本黄色日本黄色录像| 国产成人精品久久二区二区91| 如日韩欧美国产精品一区二区三区| a级毛片在线看网站| 国产欧美日韩精品亚洲av| 一级毛片精品| 91老司机精品| 久久久久网色| av线在线观看网站| 亚洲第一青青草原| 亚洲欧美精品自产自拍| 日韩大片免费观看网站| 两个人看的免费小视频| 日日摸夜夜添夜夜添小说| 国产亚洲午夜精品一区二区久久| svipshipincom国产片| 制服诱惑二区| 99热国产这里只有精品6| 国产成人免费观看mmmm| 国产精品欧美亚洲77777| 久久热在线av| 午夜免费鲁丝| 国产99久久九九免费精品| 亚洲色图综合在线观看| 午夜日韩欧美国产| 丰满少妇做爰视频| 曰老女人黄片| 国产老妇伦熟女老妇高清| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲欧美激情在线| 一区二区三区激情视频| 麻豆乱淫一区二区| 女人被躁到高潮嗷嗷叫费观| 亚洲精品国产区一区二| 国产成人系列免费观看| 精品一区二区三卡| 国产一区二区三区综合在线观看| 欧美精品一区二区大全| 免费在线观看黄色视频的| 日韩制服骚丝袜av| 久久热在线av| 精品福利观看| 国产xxxxx性猛交| 国产成人免费观看mmmm| 国产激情久久老熟女| 夫妻午夜视频| 欧美国产精品一级二级三级| 久久99热这里只频精品6学生| 高清欧美精品videossex| 免费日韩欧美在线观看| 国产深夜福利视频在线观看| 99精品欧美一区二区三区四区| 69av精品久久久久久 | a级毛片在线看网站| 久久久久视频综合| 精品卡一卡二卡四卡免费| 老汉色∧v一级毛片| 1024香蕉在线观看| 国产福利在线免费观看视频| 日本vs欧美在线观看视频| 久久99热这里只频精品6学生| 精品福利观看| 在线观看www视频免费| 蜜桃在线观看..| 日韩人妻精品一区2区三区| 午夜激情久久久久久久| 热99国产精品久久久久久7| 午夜两性在线视频| 欧美日韩黄片免| 免费在线观看影片大全网站| www.自偷自拍.com| 午夜福利一区二区在线看| 久久国产精品大桥未久av| 后天国语完整版免费观看| 亚洲欧洲精品一区二区精品久久久| 女性被躁到高潮视频| 十八禁高潮呻吟视频| 性高湖久久久久久久久免费观看| 国产熟女午夜一区二区三区| 亚洲欧洲精品一区二区精品久久久| 欧美精品亚洲一区二区| 两个人免费观看高清视频| av网站免费在线观看视频| 人妻久久中文字幕网| 老司机亚洲免费影院| 一级毛片精品| 日本撒尿小便嘘嘘汇集6| 黑人猛操日本美女一级片| av国产精品久久久久影院| 99热全是精品| 欧美老熟妇乱子伦牲交| 国产成人影院久久av| 国产黄频视频在线观看| 精品人妻熟女毛片av久久网站| 国产免费福利视频在线观看| 菩萨蛮人人尽说江南好唐韦庄| 天堂8中文在线网| 国产一区二区三区av在线| 久久久久国产一级毛片高清牌| 中文字幕av电影在线播放| 少妇 在线观看| 青春草视频在线免费观看| av网站免费在线观看视频| 一级片'在线观看视频| www日本在线高清视频| 国产在线观看jvid| 宅男免费午夜| 丰满少妇做爰视频| 老熟妇仑乱视频hdxx| 亚洲精品粉嫩美女一区| 别揉我奶头~嗯~啊~动态视频 | 亚洲精品在线美女| 精品少妇黑人巨大在线播放| 国产伦人伦偷精品视频| 操美女的视频在线观看| 久久久久网色| 精品国产一区二区三区四区第35| 久久人妻福利社区极品人妻图片| 免费人妻精品一区二区三区视频| 国产成人啪精品午夜网站| 91九色精品人成在线观看| 欧美av亚洲av综合av国产av| 久久国产精品大桥未久av| 女人精品久久久久毛片| 免费日韩欧美在线观看| 在线观看免费视频网站a站| 色94色欧美一区二区| 日本vs欧美在线观看视频| 国产免费视频播放在线视频| 亚洲欧美激情在线| av电影中文网址| 色婷婷久久久亚洲欧美| 一区福利在线观看| a级毛片在线看网站| 一个人免费看片子| 满18在线观看网站| 自拍欧美九色日韩亚洲蝌蚪91| 日韩 亚洲 欧美在线| 男女床上黄色一级片免费看| 日韩有码中文字幕| 亚洲精品av麻豆狂野| 99国产极品粉嫩在线观看| 在线看a的网站| 国产成人欧美在线观看 | 深夜精品福利| 嫁个100分男人电影在线观看| 精品国产乱子伦一区二区三区 | 欧美日韩视频精品一区| 免费一级毛片在线播放高清视频 | 亚洲专区国产一区二区| 久久久欧美国产精品| 丝袜人妻中文字幕| 国产精品免费大片| 啦啦啦啦在线视频资源| 老司机影院毛片| 午夜成年电影在线免费观看| 日韩 亚洲 欧美在线| 欧美黑人欧美精品刺激| 国产精品秋霞免费鲁丝片| 99久久99久久久精品蜜桃| 精品亚洲成国产av| 91av网站免费观看| 国产激情久久老熟女| 少妇粗大呻吟视频| 黑丝袜美女国产一区| 国产精品 欧美亚洲| 国产亚洲一区二区精品| 亚洲中文字幕日韩| 亚洲自偷自拍图片 自拍| 国产日韩欧美亚洲二区| 久久人妻熟女aⅴ| 人人妻人人澡人人看| 免费日韩欧美在线观看| www.999成人在线观看| 亚洲国产av影院在线观看| 又紧又爽又黄一区二区| 精品国产一区二区三区久久久樱花| 亚洲第一欧美日韩一区二区三区 | 亚洲avbb在线观看| 秋霞在线观看毛片| 久久久欧美国产精品| 亚洲熟女毛片儿| 深夜精品福利| 亚洲精品久久久久久婷婷小说| 久久ye,这里只有精品| 麻豆乱淫一区二区| 欧美日本中文国产一区发布| 三级毛片av免费| 一级毛片精品| 91成人精品电影| 永久免费av网站大全| 精品一区二区三区av网在线观看 | 久久久久久久精品精品| 亚洲少妇的诱惑av| 国产91精品成人一区二区三区 | 欧美日韩亚洲国产一区二区在线观看 | av天堂久久9| 欧美日韩亚洲高清精品| 俄罗斯特黄特色一大片| 18禁黄网站禁片午夜丰满| 亚洲专区国产一区二区| 捣出白浆h1v1| 狂野欧美激情性xxxx| 久久人人爽人人片av| 午夜福利在线免费观看网站| www.精华液| 成人av一区二区三区在线看 | 亚洲中文日韩欧美视频| 亚洲第一av免费看| 最新的欧美精品一区二区| 一级毛片女人18水好多| 老熟女久久久| videosex国产| 国产在线视频一区二区| 丝袜人妻中文字幕| 伦理电影免费视频| 乱人伦中国视频| 午夜福利在线观看吧| 国产免费视频播放在线视频| 久久久精品免费免费高清| 久久香蕉激情| 久久精品亚洲熟妇少妇任你| 男女无遮挡免费网站观看| 欧美日韩亚洲综合一区二区三区_| 日本vs欧美在线观看视频| 色婷婷av一区二区三区视频| 三级毛片av免费| 亚洲av成人一区二区三| 日韩精品免费视频一区二区三区| 人成视频在线观看免费观看| 亚洲av电影在线观看一区二区三区| 亚洲精品国产av蜜桃| 亚洲精品中文字幕一二三四区 | 久9热在线精品视频| 高清欧美精品videossex| 高清视频免费观看一区二区| 日本猛色少妇xxxxx猛交久久| 欧美日韩亚洲高清精品| 女人久久www免费人成看片| 国产精品 欧美亚洲| 国产亚洲精品第一综合不卡| 免费人妻精品一区二区三区视频| 国产精品熟女久久久久浪| 99精品欧美一区二区三区四区| 一本—道久久a久久精品蜜桃钙片| 婷婷色av中文字幕| 永久免费av网站大全| 久久九九热精品免费| 一区二区av电影网| 亚洲国产精品一区三区| 免费不卡黄色视频| 少妇 在线观看| 精品久久久久久久毛片微露脸 | 人妻久久中文字幕网| 精品人妻1区二区| 久久精品亚洲av国产电影网| 欧美国产精品va在线观看不卡| 亚洲精品美女久久久久99蜜臀| 老司机午夜十八禁免费视频| 国产精品久久久久成人av| 欧美老熟妇乱子伦牲交| 国产成人欧美在线观看 | 久久精品亚洲av国产电影网| 91九色精品人成在线观看| 91麻豆精品激情在线观看国产 | 国产男人的电影天堂91| 飞空精品影院首页| 欧美亚洲 丝袜 人妻 在线| 男男h啪啪无遮挡| 久久天堂一区二区三区四区| 日韩大片免费观看网站| 欧美亚洲日本最大视频资源| 大型av网站在线播放| 久久热在线av| 老汉色∧v一级毛片| 满18在线观看网站| 国产1区2区3区精品| 国产欧美日韩一区二区三 | av不卡在线播放| 国产精品国产av在线观看| av又黄又爽大尺度在线免费看| 久久久久久久大尺度免费视频| 久久精品成人免费网站| 亚洲专区字幕在线| 五月开心婷婷网| 久久久精品94久久精品| 极品少妇高潮喷水抽搐| 美女大奶头黄色视频| 亚洲色图综合在线观看| 在线观看舔阴道视频| 久久久久久久久免费视频了| 久久久精品94久久精品| 欧美激情久久久久久爽电影 | a 毛片基地| 国产免费av片在线观看野外av| 久久精品久久久久久噜噜老黄| 侵犯人妻中文字幕一二三四区| 欧美日韩中文字幕国产精品一区二区三区 | 国产老妇伦熟女老妇高清| 男女无遮挡免费网站观看| 国产一区二区三区av在线| 曰老女人黄片| 国产av精品麻豆| 欧美另类一区| 精品亚洲成国产av| 波多野结衣一区麻豆| 夜夜骑夜夜射夜夜干| 国产精品久久久人人做人人爽| 女警被强在线播放| 欧美日韩精品网址| 国产精品二区激情视频| 欧美国产精品一级二级三级| 男女无遮挡免费网站观看| 首页视频小说图片口味搜索| 成年av动漫网址| 久久精品成人免费网站| 狂野欧美激情性bbbbbb| 亚洲国产精品一区二区三区在线| 啦啦啦中文免费视频观看日本| 在线永久观看黄色视频| 99久久精品国产亚洲精品| 国产精品国产三级国产专区5o| 欧美激情高清一区二区三区| 黄色怎么调成土黄色| 两个人免费观看高清视频| 亚洲精品乱久久久久久| 人人妻,人人澡人人爽秒播| 国产色视频综合| 色婷婷久久久亚洲欧美| 国产一区二区三区在线臀色熟女 | 人人妻人人添人人爽欧美一区卜| 青春草视频在线免费观看| 国产成人欧美在线观看 | 精品一区二区三区av网在线观看 | 亚洲国产成人一精品久久久| 后天国语完整版免费观看| 黑人巨大精品欧美一区二区mp4| 男女下面插进去视频免费观看| av在线播放精品| 纯流量卡能插随身wifi吗| 五月开心婷婷网| 国产免费视频播放在线视频| 99re6热这里在线精品视频| av天堂久久9| 蜜桃在线观看..| 高清在线国产一区| 青春草视频在线免费观看| 久久久久久亚洲精品国产蜜桃av| 国产深夜福利视频在线观看| 一区二区三区精品91| 亚洲国产欧美网| www.999成人在线观看| 欧美久久黑人一区二区| 人妻 亚洲 视频| 亚洲精品国产一区二区精华液| 91字幕亚洲| 精品熟女少妇八av免费久了| 在线观看www视频免费| 波多野结衣av一区二区av| 在线观看人妻少妇| tocl精华| 2018国产大陆天天弄谢| 精品第一国产精品| 国产精品影院久久| 国产精品久久久久久人妻精品电影 | 国产精品久久久人人做人人爽| 在线av久久热| 久久久国产欧美日韩av| 久久久久久亚洲精品国产蜜桃av| 人人妻,人人澡人人爽秒播| 人人妻人人澡人人看| 悠悠久久av| 青草久久国产| 999精品在线视频| 视频在线观看一区二区三区| 久热爱精品视频在线9| 久久免费观看电影| 两性午夜刺激爽爽歪歪视频在线观看 | 狂野欧美激情性xxxx| av线在线观看网站| 嫁个100分男人电影在线观看| 又黄又粗又硬又大视频| 99精品欧美一区二区三区四区| 多毛熟女@视频| 男女无遮挡免费网站观看| 人人妻人人澡人人看| 亚洲成人免费电影在线观看| 亚洲av日韩在线播放| 精品少妇内射三级| 在线天堂中文资源库| 色视频在线一区二区三区| 久久av网站| 亚洲人成电影免费在线| 午夜精品久久久久久毛片777| 曰老女人黄片| 人成视频在线观看免费观看| 欧美 亚洲 国产 日韩一| 精品国产乱码久久久久久男人| 久久 成人 亚洲| 日本黄色日本黄色录像| 我的亚洲天堂| 久久亚洲国产成人精品v| 中文字幕最新亚洲高清| 午夜福利一区二区在线看| 爱豆传媒免费全集在线观看| 在线观看人妻少妇| 日本撒尿小便嘘嘘汇集6| 国产亚洲一区二区精品| 午夜福利在线观看吧| 热99国产精品久久久久久7| 俄罗斯特黄特色一大片| 99久久综合免费| 亚洲精品国产精品久久久不卡| 日日夜夜操网爽| 日韩三级视频一区二区三区| 亚洲精品久久午夜乱码| 日本精品一区二区三区蜜桃| 天堂8中文在线网| 99国产精品免费福利视频| 人人澡人人妻人| 日本黄色日本黄色录像| 亚洲色图综合在线观看| av有码第一页| 91精品伊人久久大香线蕉| 午夜福利在线免费观看网站| 在线观看舔阴道视频| 美女脱内裤让男人舔精品视频| av电影中文网址| 亚洲欧美精品自产自拍| 亚洲一区中文字幕在线| 亚洲国产欧美一区二区综合| 久久国产精品影院| a在线观看视频网站| 性色av一级| 午夜精品久久久久久毛片777| 老熟妇仑乱视频hdxx| 极品人妻少妇av视频| 丁香六月天网| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美少妇被猛烈插入视频| 久久精品aⅴ一区二区三区四区| 国产精品欧美亚洲77777| kizo精华| 一级毛片女人18水好多| 久久国产精品影院| 青春草视频在线免费观看| 国产成人免费观看mmmm| 韩国精品一区二区三区| e午夜精品久久久久久久| 在线观看人妻少妇| 久久久国产一区二区| 午夜福利视频在线观看免费| 在线av久久热| 国产成人系列免费观看| 久久久久国产一级毛片高清牌| 国产xxxxx性猛交| 欧美另类亚洲清纯唯美| 成年动漫av网址| 午夜成年电影在线免费观看| 精品人妻在线不人妻| 国产高清国产精品国产三级| 亚洲成人国产一区在线观看| 丰满迷人的少妇在线观看| 建设人人有责人人尽责人人享有的| 十八禁高潮呻吟视频| 18禁黄网站禁片午夜丰满| 亚洲精品国产av蜜桃| 日本vs欧美在线观看视频| 精品人妻一区二区三区麻豆| 亚洲国产欧美在线一区| 国产在线观看jvid| 法律面前人人平等表现在哪些方面 | 捣出白浆h1v1| 午夜日韩欧美国产| 国产精品九九99| 丰满少妇做爰视频| 免费女性裸体啪啪无遮挡网站| 国产精品熟女久久久久浪| 午夜福利在线观看吧| 超碰97精品在线观看| 男女边摸边吃奶| 成人国产av品久久久| 亚洲欧洲日产国产| 老熟妇乱子伦视频在线观看 | 18禁黄网站禁片午夜丰满| 丝瓜视频免费看黄片| 十分钟在线观看高清视频www| 考比视频在线观看| 国产免费视频播放在线视频| 亚洲av日韩在线播放| 不卡一级毛片| 久久久精品国产亚洲av高清涩受| 国产真人三级小视频在线观看| 制服人妻中文乱码| 一二三四社区在线视频社区8| 亚洲中文日韩欧美视频| 免费高清在线观看日韩| 不卡av一区二区三区| a在线观看视频网站| 成人三级做爰电影| 国产精品久久久av美女十八| 丰满人妻熟妇乱又伦精品不卡| 国产欧美亚洲国产| av不卡在线播放| 久久久久国内视频| 啦啦啦啦在线视频资源| 国产极品粉嫩免费观看在线| 亚洲国产毛片av蜜桃av| 久久ye,这里只有精品| 日韩,欧美,国产一区二区三区| 欧美大码av| 一本综合久久免费| 久久人妻熟女aⅴ| 国产精品1区2区在线观看. | 亚洲av电影在线观看一区二区三区| 国产在线免费精品| av不卡在线播放| 桃红色精品国产亚洲av| 天天躁夜夜躁狠狠躁躁|