• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Histological assessment in peripheral nerve tissue engineering

    2014-04-06 13:07:43ctorCarrielIngridGarzMiguelAlaminosMariaCornelissen

    Víctor Carriel, Ingrid Garzón Miguel Alaminos Maria Cornelissen

    1 Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, and Instituto de Investigación Biosanitaria ibs, Granada, Spain

    2 Department of Basic Medical Sciences (Histology and Tissue Engineering Group), Faculty of Medicine, Ghent University, Ghent, Belgium

    Histological assessment in peripheral nerve tissue engineering

    Víctor Carriel1,2, Ingrid Garzón1, Miguel Alaminos1, Maria Cornelissen2

    1 Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, and Instituto de Investigación Biosanitaria ibs, Granada, Spain

    2 Department of Basic Medical Sciences (Histology and Tissue Engineering Group), Faculty of Medicine, Ghent University, Ghent, Belgium

    The histological analysis of peripheral nerve regeneration is one of the most used methods to demonstrate the success of the regeneration through nerve conduits. Nowadays, it is possible to evaluate different parameters of nerve regeneration by using histological, histochemical, immunohistochemical and ultrastructural techniques. The histochemical methods are very sensible and are useful tools to evaluate the extracellular matrix remodeling and the myelin sheath, but they are poorly speci fi c. In contrast, the immunohistochemical methods are highly speci fi c and are frequently used for the identi fi cation of the regenerated axons, Schwann cells and proteins associated to nerve regeneration or neural linage. The ultrastructural techniques offer the possibility to perform a high resolution morphological and quantitative analysis of the nerve regeneration. However, the use of a single histological method may not be enough to assess the degree of regeneration, and the combination of different histological techniques could be necessary.

    peripheral nerve regeneration; histology, histochemistry; immunohistochemistry; quantitative histology

    Carriel V, Garzón I, Alaminos M, Cornelissen M. Histological assessment in peripheral nerve tissue engineering. Neural Regen Res. 2014;9(18):1657-1660.

    Introduction

    Peripheral nerves (PN) are specialized organs that form a highly complex network throughout the body providing the motor and/or sensory innervations to target organs. Histologically, PN are composed by two main elements, a functional unit or parenchyma and the stroma. The parenchyma consists of the nerve fibers, formed by axons and the surrounding Schwann cells (SC), while the stroma is formed by three layers of specialized connective tissues. The SC can myelinate a single axon forming the myelinated nerve fibers, or a single SC can interact with a small group of thinner axons forming the unmyelinated nerve fibers. In the case of the stroma, it regulates the compartmentalization of these organs. In transversal sections of PN, it is possible to observe how nerve fi bers are immersed in the endoneurial connective tissue and it is surrounded by the perineurial layer that forms individual fascicles which are immersed in a vascularized connective tissue called epineurium (Geuna et al., 2009; Mills, 2012).

    The normal function of the PN is often affected by traumatic injuries with serious physical and/or psychological consequences for these patients (Daly et al., 2012; Carriel et al., 2014a). Direct nerve repair is the preferred treatment for short nerve gaps, and nerve autografting is the gold standard treatment for critical nerve defects, although it has wellknown disadvantages. Nerve conduits (tubulization) are often used with variable success rates (Daly et al., 2012; Carriel et al., 2014b). Due to the clinical limitations associated to the autograft and the unsatisfactory results obtained with the tubulization technique, current research is focused on the development of novel tissue engineering alternatives to repair critical nerve gaps. In these sense, a range of strategies were achieved or are under investigation, highlighting the use of micropatterned structures, aligned biomaterials and the use of conduits fi lled with cellular scaffolds (Daly et al., 2012; Carriel et al., 2013, 2014b).

    Peripheral nerve tissue engineering (PNTE) is focused on the development of successful strategies to promote nerve regeneration from the clinical, functional and histological point of view. In this sense, the sciatic nerve functional index (walking track and toe spread), the toe spread and the pinch test of sensory recovery are frequently used to measure clinical and functional parameters (Vleggeert-Lankamp, 2007; Carriel et al., 2013). Currently, one of the most used and reliable method to evaluate nerve regeneration is the electrophysiological assessment of the distal muscles (innervated by the injured nerve), which allows determining the degree of muscle denervation or reinnervation (Vleggeert-Lankamp, 2007; Carriel et al., 2013). In addition, the evaluation of the muscle weight and volume is another simple and useful method to assess the degree of muscle recovery (Vleggeert-Lankamp, 2007; Xie et al., 2008).

    Figure 1 Histological method as quality control in PNTE.

    Regarding to the histological analysis, there are several histological, histochemical, immunohistochemical and also ultrastructural methods with speci fi c applications. First, it is necessary to understand the basic concepts of the PN histology in normal conditions and during regeneration. This process is characterized by the proliferation and migration of the local cells, specially the SC, which progressively synthesize a new extracellular matrix (ECM) and form the bands of Büngner that guide the axonal growth from the proximal to the distal nerve stump (Geuna et al., 2009; Daly et al., 2012; Carriel et al., 2013, 2014). These cellular and molecular processes are essential for the success of nerve regeneration. In addition, the most reliable way to evaluate them with high accuracy is the histological and ultrastructural analysis, making the histological analysis one of the most useful quality controls in PNTE.

    The fi rst and more critical step in histology is the fi xation of the tissues, whose main objective is to maintain clear and consistent morphological features, to inhibit the metabolic processes and post-mortem bacterial degradation (Kiernan, 2008). Currently, cryo fi xation and chemical fi xation (coagulant and non-coagulant) are used in PNTE (Kalbermatten et al., 2009; Carriel et al., 2011a, 2013; di Summa et al., 2014). Cryofixation is a good method to preserve the enzymatic activity and tissue antigens. For this reason, it is a suitable method for histochemical and immunohistochemical techniques. Regarding to the chemical fixation, the aldehyde-based fi xatives are the most used for light and electron microscopy. Once the tissues are fi xed, they can be embedded in OCT (cryofixation), paraffin (light microscopy) or resin (electron microscopy), and sectioned for their staining (Kiernan, 2008).

    Staining procedure in light microscopy

    Hematoxylin and eosin (HE) are the most used staining agents for light microscopy in pathology and research. HE staining is commonly non-speci fi c for many tissue elements due to its electropolar nature (Carriel et al., 2011a, b). Using this method, it is not possible to observe the myelin sheath and the ECM is nonspeci fi cally stained. Therefore, HE is not an ideal method allowing an accurate analysis of the nerve regeneration process (Di Scipio et al., 2008; Raimondo et al., 2009; Carriel et al., 2011a).

    Trichrome staining offers the possibility to differentiate the collagen fi bers of the ECM from the other types of structures (epithelial tissue, muscles, parenchyma,etc.). Masson’s trichrome is the most common trichrome method in pathology and muscle histology, but it is infrequently used for the histological analysis of PN. The quality of the histology of PN with this method is considerably better than HE (Raimondo et al., 2009). However, it is not possible to identify the myelin sheath with high accuracy with this method (Figure 1A).

    Regarding the myelin, it is composed by several types of lipids and lipoproteins. Unfortunately, a signi fi cant amount of these elements are dissolved by organic solvents during tissue processing, but some of them are preserved (associated to structural proteins), thus allowing their identification. Interestingly, pre-embedding myelin sheath staining with OsO4 is a useful alternative to identify myelin with high accuracy in light microscopy (Di Scipio et al., 2008; Li et al., 2013). This method can be combined with other histochemical methods including Masson’s method or immunohistochemical procedures.

    In formalin-fixed tissues myelin is frequently stained with luxol fast Blue (LFB) method, which speci fi cally stains myelin in blue. However, LFB only allows the speci fi c identification of myelin, and it is not possible to make a comprehensive assessment of the morphologic parameters and ECM remodeling associated to the PN regeneration process (Carriel et al., 2011a). In this sense, the technical limitations associated to the LFB were improved with the new integrated histochemical method called MCOLL. This method combines the speci fi city and sensibility of conventional LFB (myelin), picrosirius staining (collagen fibers) and Harris haematoxylin (cellular nucleus) allowing the identification of different parameters simultaneously (Figure 1B, C). This method was successfully used in PNTE, allowing an accurate histological and histochemical evaluation of the nerve regeneration (Carriel et al., 2011a, 2013).

    Finally, another useful technique is the histochemical identi fi cation of the acetylcholinesterase activity in skeletal muscle cryosections. This method was used to identify with high speci fi city the newly-formed endplate during the reinnervation of the distal skeletal muscles (Jiao et al., 2009).

    Immunostaining in PNTE

    The immunohistochemical and immuno fl uorescence methods allow the identification of highly specific proteins in tissue sections. Both methods are suitable for cryosections or formalin- fi xed tissues. Currently, there are several antibodies that recognize speci fi c proteins related to cell lineage (surface or intracellular markers), cytoskeletal proteins, ECM molecules, growth factors, etc., and their correct application is essential to establish the degree of PN regeneration in PNTE (Vleggeert-Lankamp, 2007; Raimondo et al., 2009; Mills, 2012; Carriel et al., 2013, 2014b).

    SCs play a key role during PN regeneration, and their identification with conventional histological techniques is extremely dif fi cult, but they can be identi fi ed with high accuracy with antibodies that recognize the glial fi brillar acid protein (GFAP) and the S-100 protein (Figure 1D). Due to the importance of SC during nerve regeneration, high levels of SC immunostaining associated to an organized pattern of regeneration is considered as a positive indicator of nerve regeneration in PNTE (Kalbermatten et al., 2009; Siemionow et al., 2011; Carriel et al., 2013; di Summa et al., 2014).

    Demonstration of axonal regrowth is the most important indicator of PN regeneration. Axons are mainly composed by neurotubules and neurofilaments and both cytoskeletal proteins can be easily evaluated by the immunohistochemical identi fi cation of β-III tubulin (Huang et al., 2012), neuro fi laments (Ma et al., 2011; Huang et al., 2012; Carriel et al., 2013) and growth associated protein-43 (GAP-43), which is speci fi c of newly-formed axons that do not express neurofilaments (Figure 1E, F) (Carriel et al., 2014b). Another commonly used marker to evaluate the axonal growth is the protein gene product 9.5 (PGP9.5), which is positive in neurons and neuroendocrine cells (Kalbermatten et al., 2008).

    Regarding the ECM, it plays a crucial role in guiding the complex process of PN regeneration. Laminin is a normal component of the basal membrane of nerve fi bers and this glycoprotein supports SC proliferation and migration during nerve regeneration (Chernousov et al., 2008; Carriel et al., 2013). Despite the important role of laminin in this process, it is infrequently evaluated in PNTE. However, its expression is a valid parameter to determine the degree of PN regeneration (Siemionow et al., 2011; Carriel et al., 2013). In the case of collagen fi bers, these may be evaluated by histochemical methods such as MCOLL and Masson’s trichrome.

    Myelin can also be detected by immunohistochemistry and immunofluorescence using antibodies that specifically recognize the myelin basic proteins (Carriel et al., 2011a; Mills, 2012). This also applies to the muscular endplate, which can be evaluated with high accuracy and resolution by using a rhodamine-conjugated α-bungarotoxin that irreversibly binds to the postsynaptic acetylcholine receptor site (Ma et al., 2011; Li et al., 2013).

    Quantitative histology

    Histology is classically considered as a purely descriptive method. However, over the recent years, several studies demonstrate that it is possible to perform morphometric or quantitative analyse in histological sections (Raimondo et al., 2009). Regarding the morphometric analysis, it is possible to determine the number of cells in a speci fi c area, the diameters of cells or structures, the area occupied by regeneration tissue or injury etc.

    More recently, it is possible to determine with accuracy the intensity and area fraction of the positive reaction for histochemical (Carriel et al., 2011b, 2013; Oliveira et al., 2013), immunohistochemical or immunofluorescence techniques (Carriel et al., 2013, 2014b). The intensity is related to the increase of the expression or synthesis of some proteins (not all of them). Neurofilament intensity is significantly higher in native nerves as compared to the newly-formed axons during nerve regeneration. However, the experimental groups with high levels of regeneration (functional and histological) showed similar intensity values than native nerves in contrast to other experimental groups (Carriel et al., 2014b). The same was performed for the intensity of S-100 and laminin (Carriel et al., 2013). In relation with the area fraction, this allows determining the percentage of positive reaction in a speci fi c histological area. This method was successfully applied to the quantitative determination of the area fraction occupied by myelinated nerve fibers with the MCOLL histochemical method. In addition, quantitative analysis was applied to immunohistochemical methods for determination of S-100 area fraction, laminin, neuro fi lament (Carriel et al., 2013) and, more recently GAP-43 (Carriel et al., 2014b). Additionally, this quantitative approach was also used as histological quality control of the ECM following a chemical and physical decellularization of small intestine for tissue engineering applications (Oliveira et al., 2013).

    Semithin and ultrathin sections in PNTE

    For more researchers, the gold standard in PN histology is toluidine blue staining of resin-embedded semithin sections (Raimondo et al., 2009; Carriel et al., 2011a; Mills, 2012). By using this method, most of the myelinated axons can be clearly identified and myelin sheaths are sharply delimited due to post- fi xation and staining with OsO4 (Figure 1G, H). The high morphological quality of this method makes it a suitable method to perform a morphometric analysis of PNregeneration. In this sense, the most important parameters that can be used as quality control are: number of fibers, density of fi bers, diameter of fi bers and axons, cross-sectional area of fibers and axons, perimeter of fibers and axons, myelin thickness, myelin thickness/axon-diameter ratio, and fiber-diameter/axon-diameter ratio or axon-diameter/fiber-diameter (g-ratio) (Vleggeert-Lankamp, 2007; Raimondo et al., 2009; Bozkurt et al., 2012).

    The ultrathin sections are often used to evaluate ultrastructural changes associated to the axonal growth and myelination process by transmission electron microscopy. In addition, it is a suitable method to perform morphometric analyses and also to identify and evaluate the unmyelinated nerve fi bers (Hirano, 2005).

    Conclusions

    In order to determine the degree of PN regeneration with high accuracy in PNTE, it is necessary to combine clinical, functional, electrophysiological and histological analyses. Regarding the histology, there are several technical alternatives to evaluate different important parameters associated to the success of failure of nerve regeneration. In all cases, a proper knowledge of the PN histology in normal and regenerative conditions is essential to perform an adequate histological description and to apply the most adequate histological method. Currently, there are useful histochemical techniques available for assessment of the nerve regeneration process such as OsO4 technique, the MCOLL histochemical method and the gold standard toluidine blue in semithin sections. In relation to the immunohistochemical markers, there are a wide range of antibodies available to evaluate PN regeneration, especially S-100, GFAP, neuro fi lament, β-III tubulin, GAP-43, and laminin.

    In conclusion, PN regeneration is a complex process and the use of a single descriptive histological method may not be enough to assess the degree of regeneration. In this sense, it is and it will be necessary to combine different histochemical and immunohistochemical techniques with morphometric or quantitative parameters in order to fi nd statistical differences between the different models of nerve regeneration. Finally, histological assessment of the PN regeneration is one of the most reliable methods available to demonstrate the success or failure of the PN regeneration in tissue engineering.

    Acknowledgments:We are grateful to Ms. Ariane Ruyffelaert from the Department of Linguistics, Faculty of Arts and Philosophy, Ghent University, Belgium, for revising the English version.

    Con fl icts of interest:None declared.

    Bozkurt A, Lassner F, O’Dey D, Deumens R, Bocker A, Schwendt T, Janzen C, Suschek CV, Tolba R, Kobayashi E, Sellhaus B, Tholl S, Eummelen L, Schugner F, Damink LO, Weis J, Brook GA, Pallua N (2012) The role of microstructured and interconnected pore channels in a collagen-based nerve guide on axonal regeneration in peripheral nerves. Biomaterials 33:1363-1375.

    Carriel V, Garzon I, Alaminos M, Campos A (2011a) Evaluation of myelin sheath and collagen reorganization pattern in a model of peripheral nerve regeneration using an integrated histochemical approach. Histochem Cell Biol 136:709-717.

    Carriel V, Garrido-Gomez J, Hernandez-Cortes P, Garzon I, Garcia-Garcia S, Saez-Moreno JA, Del Carmen Sanchez-Quevedo M, Campos A, Alaminos M (2013) Combination of fi brin-agarose hydrogels and adipose-derived mesenchymal stem cells for peripheral nerve regeneration. J Neural Eng 10:026022.

    Carriel V, Alaminos M, Garzon I, Campos A, Cornelissen M (2014a, b) Tissue engineering of the peripheral nervous system. Expert Rev Neurother 14:301-318.

    Carriel V, Garzón I, Campos A, Cornelissen M, Alaminos M (2014a, b) Differential expression of GAP-43 and neuro fi lament during peripheral nerve regeneration through bioartificial conduits. J Tissue Eng Regen Med (in press).

    Carriel VS, Aneiros-Fernandez J, Arias-Santiago S, Garzon IJ, Alaminos M, Campos A (2011b) A novel histochemical method for a simultaneous staining of melanin and collagen fi bers. J Histochem Cytochem 59:270-277.

    Chernousov MA, Yu WM, Chen ZL, Carey DJ, Strickland S (2008) Regulation of Schwann cell function by the extracellular matrix. Glia 56:1498-1507.

    Daly W, Yao L, Zeugolis D, Windebank A, Pandit A (2012) A biomaterials approach to peripheral nerve regeneration: bridging the peripheral nerve gap and enhancing functional recovery. J R Soc Interface 9:202-221.

    Di Scipio F, Raimondo S, Tos P, Geuna S (2008) A simple protocol for paraf fi n-embedded myelin sheath staining with osmium tetroxide for light microscope observation. Microsc Res Tech 71:497-502.

    di Summa PG, Kingham PJ, Campisi CC, Raffoul W, Kalbermatten DF (2014) Collagen (NeuraGen((R))) nerve conduits and stem cells for peripheral nerve gap repair. Neurosci Lett 572:26-31.

    Geuna S, Raimondo S, Ronchi G, Di Scipio F, Tos P, Czaja K, Fornaro M (2009) Chapter 3: Histology of the peripheral nerve and changes occurring during nerve regeneration. Int Rev Neurobiol 87:27-46.

    Hirano A (2005) The role of electron microscopy in neuropathology. Acta Neuropathol 109:115-123.

    Huang W, Begum R, Barber T, Ibba V, Tee NC, Hussain M, Arastoo M, Yang Q, Robson LG, Lesage S, Gheysens T, Skaer NJ, Knight DP, Priestley JV (2012) Regenerative potential of silk conduits in repair of peripheral nerve injury in adult rats. Biomaterials 33:59-71.

    Jiao H, Yao J, Yang Y, Chen X, Lin W, Li Y, Gu X, Wang X (2009) Chitosan/ polyglycolic acid nerve grafts for axon regeneration from prolonged axotomized neurons to chronically denervated segments. Biomaterials 30:5004-5018.

    Kalbermatten DF, Kingham PJ, Mahay D, Mantovani C, Pettersson J, Raffoul W, Balcin H, Pierer G, Terenghi G (2008) Fibrin matrix for suspension of regenerative cells in an arti fi cial nerve conduit. J Plast Reconstr Aesthet Surg 61:669-675.

    Kalbermatten DF, Pettersson J, Kingham PJ, Pierer G, Wiberg M, Terenghi G (2009) New fi brin conduit for peripheral nerve repair. J Reconstr Microsurg 25:27-33.

    Kiernan JA (2008) Histological and Histochemical Methods: Theory and Practice: Scion Publishing Limited.

    Li QT, Zhang PX, Yin XF, Han N, Kou YH, Deng JX, Jiang BG (2013) Functional recovery of denervated skeletal muscle with sensory or mixed nerve protection: a pilot study. PLoS One 8:e79746.

    Ma CH, Omura T, Cobos EJ, Latremoliere A, Ghasemlou N, Brenner GJ, van Veen E, Barrett L, Sawada T, Gao F, Coppola G, Gertler F, Costigan M, Geschwind D, Woolf CJ (2011) Accelerating axonal growth promotes motor recovery after peripheral nerve injury in mice. J Clin Invest 121:4332-4347.

    Mills SE (2012) Histology for pathologists, 4thEdition. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins Health.

    Oliveira AC, Garzon I, Ionescu AM, Carriel V, Cardona Jde L, Gonzalez-Andrades M, Perez Mdel M, Alaminos M, Campos A (2013) Evaluation of small intestine grafts decellularization methods for corneal tissue engineering. PLoS One 8:e66538.

    Raimondo S, Fornaro M, Di Scipio F, Ronchi G, Giacobini-Robecchi MG, Geuna S (2009) Chapter 5: Methods and protocols in peripheral nerve regeneration experimental research: part II-morphological techniques. Int Rev Neurobiol 87:81-103.

    Siemionow M, Duggan W, Brzezicki G, Klimczak A, Grykien C, Gatherwright J, Nair D (2011) Peripheral nerve defect repair with epineural tubes supported with bone marrow stromal cells: a preliminary report. Ann Plast Surg 67:73-84.

    Vleggeert-Lankamp CL (2007) The role of evaluation methods in the assessment of peripheral nerve regeneration through synthetic conduits: a systematic review. Laboratory investigation. J Neurosurg 107:1168-1189.

    Xie F, Li QF, Gu B, Liu K, Shen GX (2008) In vitro and in vivo evaluation of a biodegradable chitosan-PLA composite peripheral nerve guide conduit material. Microsurgery 28:471-479.

    Víctor Carriel, M.Sc., M.Biol., Ph.D., Department of Histology and Tissue Engineering Group (CTS-115), Faculty of Medicine, University of Granada, Av. de Madrid 11, 18012 Granada, Spain; Department of Basic Medical Sciences (Histology, Tissue Engineering Group), Faculty of Medicine, Ghent University, De Pintelaan 185 B3, 9000 Ghent, Belgium, vcarriel@ugr.es; victor.carriel@ugent.be.

    10.4103/1673-5374.141798

    http://www.nrronline.org/

    Accepted: 2014-07-25

    久久久久久久久大av| 国产成人av激情在线播放 | 国模一区二区三区四区视频| 国产免费视频播放在线视频| 亚洲精品久久午夜乱码| 啦啦啦中文免费视频观看日本| 2021少妇久久久久久久久久久| 亚洲人成网站在线播| 五月天丁香电影| 飞空精品影院首页| 国产成人一区二区在线| 婷婷色麻豆天堂久久| 国产男人的电影天堂91| 国内精品宾馆在线| 乱码一卡2卡4卡精品| 少妇高潮的动态图| 日本wwww免费看| 青青草视频在线视频观看| 最近2019中文字幕mv第一页| 99久久精品一区二区三区| 日本-黄色视频高清免费观看| 极品人妻少妇av视频| 天美传媒精品一区二区| 女的被弄到高潮叫床怎么办| 久久av网站| 天天操日日干夜夜撸| 一本色道久久久久久精品综合| av卡一久久| 晚上一个人看的免费电影| 欧美激情国产日韩精品一区| 日韩中字成人| 国产成人a∨麻豆精品| 国产精品久久久久久久久免| 精品酒店卫生间| 国产 一区精品| 中国国产av一级| 亚洲人与动物交配视频| 蜜桃在线观看..| 22中文网久久字幕| 亚洲欧洲精品一区二区精品久久久 | 女的被弄到高潮叫床怎么办| 亚洲经典国产精华液单| 菩萨蛮人人尽说江南好唐韦庄| av在线播放精品| 妹子高潮喷水视频| www.av在线官网国产| 成人手机av| 激情五月婷婷亚洲| 国产亚洲一区二区精品| 人人妻人人爽人人添夜夜欢视频| 国产精品一国产av| 日日爽夜夜爽网站| 高清毛片免费看| 国产成人精品福利久久| 少妇人妻久久综合中文| 亚洲综合精品二区| 成人午夜精彩视频在线观看| 欧美精品人与动牲交sv欧美| 九色成人免费人妻av| 午夜91福利影院| 精品99又大又爽又粗少妇毛片| 亚洲在久久综合| 国产午夜精品久久久久久一区二区三区| 男女国产视频网站| 啦啦啦啦在线视频资源| 一个人看视频在线观看www免费| 在线观看免费日韩欧美大片 | 十八禁网站网址无遮挡| 亚洲国产av新网站| 99九九在线精品视频| 亚洲成人一二三区av| 免费看光身美女| 欧美精品一区二区大全| 欧美日韩视频高清一区二区三区二| 一边摸一边做爽爽视频免费| 久久久精品免费免费高清| 亚洲一区二区三区欧美精品| 一区二区三区四区激情视频| 狠狠精品人妻久久久久久综合| 高清视频免费观看一区二区| 日本与韩国留学比较| 激情五月婷婷亚洲| 三上悠亚av全集在线观看| 日韩,欧美,国产一区二区三区| a级毛片在线看网站| 多毛熟女@视频| 狂野欧美激情性bbbbbb| 久热这里只有精品99| 久久免费观看电影| 91久久精品国产一区二区三区| 建设人人有责人人尽责人人享有的| 在线播放无遮挡| 亚洲av国产av综合av卡| 中国国产av一级| 热re99久久精品国产66热6| 日韩一区二区视频免费看| 男的添女的下面高潮视频| 日本猛色少妇xxxxx猛交久久| 亚洲欧美清纯卡通| 国产精品麻豆人妻色哟哟久久| 国产有黄有色有爽视频| 中文字幕最新亚洲高清| 国产爽快片一区二区三区| 女性生殖器流出的白浆| 午夜久久久在线观看| 国产黄色视频一区二区在线观看| 十八禁网站网址无遮挡| 国产一区亚洲一区在线观看| 一级黄片播放器| 中国美白少妇内射xxxbb| 成人手机av| 免费观看无遮挡的男女| 男人添女人高潮全过程视频| 亚洲精品,欧美精品| 色视频在线一区二区三区| 嘟嘟电影网在线观看| 欧美激情极品国产一区二区三区 | av电影中文网址| 国产日韩欧美在线精品| 久久99精品国语久久久| 最后的刺客免费高清国语| 一个人免费看片子| 永久免费av网站大全| 女人精品久久久久毛片| 一本一本综合久久| 秋霞伦理黄片| 3wmmmm亚洲av在线观看| 99久久精品国产国产毛片| 天天影视国产精品| 欧美日韩成人在线一区二区| 国模一区二区三区四区视频| 97超碰精品成人国产| 男的添女的下面高潮视频| 国产伦精品一区二区三区视频9| 国产精品女同一区二区软件| 日日摸夜夜添夜夜爱| 熟女人妻精品中文字幕| 国产一区有黄有色的免费视频| 成年人午夜在线观看视频| 在线亚洲精品国产二区图片欧美 | 亚洲内射少妇av| 国产片特级美女逼逼视频| 免费黄频网站在线观看国产| 久久精品人人爽人人爽视色| 3wmmmm亚洲av在线观看| 色视频在线一区二区三区| 欧美日韩av久久| 乱码一卡2卡4卡精品| 亚洲国产日韩一区二区| 三级国产精品欧美在线观看| 国产一区二区在线观看av| 视频中文字幕在线观看| 欧美3d第一页| 亚洲性久久影院| 日韩av不卡免费在线播放| 一本色道久久久久久精品综合| 久久国产亚洲av麻豆专区| 欧美 亚洲 国产 日韩一| av在线app专区| 亚洲性久久影院| 22中文网久久字幕| 一本—道久久a久久精品蜜桃钙片| 午夜激情久久久久久久| 国产高清有码在线观看视频| 水蜜桃什么品种好| 五月天丁香电影| 久久久久久人妻| 少妇被粗大的猛进出69影院 | 久热这里只有精品99| 精品国产一区二区三区久久久樱花| 在线观看免费日韩欧美大片 | 两个人免费观看高清视频| 精品国产露脸久久av麻豆| 国产精品成人在线| 黑人高潮一二区| 精品卡一卡二卡四卡免费| 免费看av在线观看网站| 在线观看免费视频网站a站| 狠狠婷婷综合久久久久久88av| 最新中文字幕久久久久| 多毛熟女@视频| 啦啦啦视频在线资源免费观看| 韩国高清视频一区二区三区| 国产在线一区二区三区精| 另类亚洲欧美激情| 夫妻性生交免费视频一级片| 免费高清在线观看视频在线观看| 国产亚洲欧美精品永久| 亚洲婷婷狠狠爱综合网| 妹子高潮喷水视频| av视频免费观看在线观看| 久久国产精品大桥未久av| 国产精品无大码| 男女国产视频网站| 亚洲精品日本国产第一区| 中文字幕人妻熟人妻熟丝袜美| 久久精品国产亚洲av涩爱| 亚洲精品亚洲一区二区| 久久韩国三级中文字幕| 一区二区日韩欧美中文字幕 | 亚洲av成人精品一二三区| 日本欧美国产在线视频| 国产精品99久久久久久久久| 国产色婷婷99| 大香蕉久久网| 国产成人精品婷婷| 在线亚洲精品国产二区图片欧美 | 天堂俺去俺来也www色官网| 国产精品一区二区三区四区免费观看| 有码 亚洲区| 如何舔出高潮| 国产免费一级a男人的天堂| a级毛片免费高清观看在线播放| 中文字幕制服av| 永久网站在线| 亚洲精品av麻豆狂野| 国产日韩欧美在线精品| 国产一区二区在线观看av| 亚洲精品第二区| 五月开心婷婷网| 中文精品一卡2卡3卡4更新| 国产精品99久久99久久久不卡 | 久久久久久久国产电影| 九九在线视频观看精品| 日韩电影二区| 波野结衣二区三区在线| 亚洲国产精品国产精品| 桃花免费在线播放| 一级毛片 在线播放| 欧美日韩视频高清一区二区三区二| 99久久精品国产国产毛片| 一级爰片在线观看| 99国产综合亚洲精品| 日本av免费视频播放| av一本久久久久| 99久国产av精品国产电影| 亚洲美女搞黄在线观看| 欧美激情国产日韩精品一区| 日本与韩国留学比较| 成人漫画全彩无遮挡| 少妇熟女欧美另类| 免费看不卡的av| 婷婷色麻豆天堂久久| 欧美国产精品一级二级三级| 国产精品国产三级国产专区5o| 国产精品国产av在线观看| 女性生殖器流出的白浆| 精品人妻熟女av久视频| 狂野欧美白嫩少妇大欣赏| 十八禁高潮呻吟视频| 十八禁网站网址无遮挡| 91国产中文字幕| 高清在线视频一区二区三区| 久久久国产精品麻豆| 国产午夜精品久久久久久一区二区三区| 国国产精品蜜臀av免费| 久久久久网色| 新久久久久国产一级毛片| 国产成人精品在线电影| av播播在线观看一区| 成人影院久久| 精品一区二区三区视频在线| 美女中出高潮动态图| 亚洲美女黄色视频免费看| 一级毛片我不卡| a级片在线免费高清观看视频| 欧美日韩精品成人综合77777| 国产精品嫩草影院av在线观看| 一个人看视频在线观看www免费| 久久人人爽人人爽人人片va| av黄色大香蕉| 欧美日韩视频精品一区| av电影中文网址| 国产成人freesex在线| 精品午夜福利在线看| 免费黄色在线免费观看| 永久网站在线| 午夜91福利影院| 精品人妻熟女毛片av久久网站| 午夜激情久久久久久久| 天天影视国产精品| 最黄视频免费看| 国产精品嫩草影院av在线观看| 女人久久www免费人成看片| 夫妻午夜视频| 成人综合一区亚洲| 精品久久久久久电影网| 婷婷成人精品国产| 中文天堂在线官网| 美女内射精品一级片tv| 色94色欧美一区二区| 午夜久久久在线观看| 亚洲国产成人一精品久久久| av在线观看视频网站免费| 五月天丁香电影| 亚洲成色77777| 日韩成人av中文字幕在线观看| 精品一品国产午夜福利视频| 精品久久久久久久久亚洲| 在线免费观看不下载黄p国产| 狠狠婷婷综合久久久久久88av| 精品少妇内射三级| 岛国毛片在线播放| 黄色怎么调成土黄色| 亚洲av成人精品一区久久| 久久精品久久久久久噜噜老黄| 在线观看www视频免费| 91久久精品电影网| 五月天丁香电影| 国产精品久久久久久久电影| 午夜91福利影院| 看十八女毛片水多多多| xxxhd国产人妻xxx| 国产精品99久久久久久久久| 制服人妻中文乱码| h视频一区二区三区| 日韩大片免费观看网站| 少妇精品久久久久久久| 亚洲国产av影院在线观看| 国产欧美日韩一区二区三区在线 | 在线 av 中文字幕| 高清午夜精品一区二区三区| av国产久精品久网站免费入址| 国产成人精品福利久久| 91精品伊人久久大香线蕉| 欧美人与善性xxx| 丰满乱子伦码专区| 97超碰精品成人国产| 国国产精品蜜臀av免费| 另类亚洲欧美激情| 中国国产av一级| 国产午夜精品一二区理论片| 久久久精品94久久精品| 国产又色又爽无遮挡免| 国产亚洲最大av| 男女无遮挡免费网站观看| 久久久久久久久大av| 亚洲精品乱码久久久v下载方式| 精品国产乱码久久久久久小说| 国产一级毛片在线| 国产 一区精品| 热re99久久精品国产66热6| 日产精品乱码卡一卡2卡三| 水蜜桃什么品种好| 婷婷色麻豆天堂久久| 51国产日韩欧美| a级毛片在线看网站| 亚洲欧美中文字幕日韩二区| 男女边摸边吃奶| 国产老妇伦熟女老妇高清| 成人亚洲欧美一区二区av| 精品卡一卡二卡四卡免费| 在线播放无遮挡| 国产成人91sexporn| 国产一级毛片在线| 91aial.com中文字幕在线观看| 国语对白做爰xxxⅹ性视频网站| 亚洲在久久综合| 观看美女的网站| 蜜桃在线观看..| av天堂久久9| 日韩一区二区视频免费看| 日韩av在线免费看完整版不卡| 色视频在线一区二区三区| 国产免费福利视频在线观看| 精品国产一区二区三区久久久樱花| 99久久中文字幕三级久久日本| 少妇 在线观看| 黄色一级大片看看| 亚洲综合色惰| 九色亚洲精品在线播放| 国产成人精品福利久久| xxx大片免费视频| 日韩一区二区三区影片| 黄色配什么色好看| 国产男女内射视频| 丝袜在线中文字幕| 熟女电影av网| 国产综合精华液| 少妇精品久久久久久久| 大香蕉久久成人网| 国产在视频线精品| 在线播放无遮挡| 精品一区二区免费观看| 晚上一个人看的免费电影| 五月伊人婷婷丁香| 熟妇人妻不卡中文字幕| 色吧在线观看| 久久婷婷青草| 一级二级三级毛片免费看| 一区二区日韩欧美中文字幕 | 久久久a久久爽久久v久久| 蜜臀久久99精品久久宅男| 91精品伊人久久大香线蕉| 日韩一区二区视频免费看| 日韩中字成人| 水蜜桃什么品种好| 国产精品一区二区在线观看99| 国产男人的电影天堂91| 亚洲人成网站在线播| 国产精品偷伦视频观看了| 99久久精品国产国产毛片| 伦理电影大哥的女人| 伦理电影免费视频| 国产乱人偷精品视频| 亚洲av欧美aⅴ国产| 午夜福利视频精品| 男女无遮挡免费网站观看| av免费观看日本| a 毛片基地| 岛国毛片在线播放| √禁漫天堂资源中文www| 黑人巨大精品欧美一区二区蜜桃 | xxxhd国产人妻xxx| 大又大粗又爽又黄少妇毛片口| 精品久久久久久久久亚洲| 晚上一个人看的免费电影| 亚洲欧洲国产日韩| 在线观看一区二区三区激情| 黑人猛操日本美女一级片| 日韩成人伦理影院| 91精品国产国语对白视频| 99国产综合亚洲精品| 在现免费观看毛片| 日产精品乱码卡一卡2卡三| 欧美亚洲日本最大视频资源| 国产一区二区在线观看av| 欧美精品高潮呻吟av久久| 有码 亚洲区| 久久亚洲国产成人精品v| 最近中文字幕高清免费大全6| 国产成人精品福利久久| 美女cb高潮喷水在线观看| 两个人的视频大全免费| 丰满饥渴人妻一区二区三| 最黄视频免费看| 新久久久久国产一级毛片| 中文精品一卡2卡3卡4更新| av视频免费观看在线观看| 天堂8中文在线网| 成人免费观看视频高清| 春色校园在线视频观看| 午夜日本视频在线| 午夜精品国产一区二区电影| 国产成人91sexporn| 国产色婷婷99| 18禁在线播放成人免费| 欧美日本中文国产一区发布| 国产免费一区二区三区四区乱码| 在线亚洲精品国产二区图片欧美 | 一级毛片aaaaaa免费看小| 夫妻午夜视频| 亚洲国产日韩一区二区| 春色校园在线视频观看| 国产黄色免费在线视频| 国产爽快片一区二区三区| 亚洲一级一片aⅴ在线观看| av专区在线播放| 人人澡人人妻人| 亚洲经典国产精华液单| 美女国产高潮福利片在线看| 日本av免费视频播放| av线在线观看网站| 一级a做视频免费观看| 尾随美女入室| videossex国产| 日本黄大片高清| 99热全是精品| 精品国产一区二区久久| 亚洲av成人精品一区久久| 国产亚洲最大av| 国产欧美亚洲国产| 亚洲欧美清纯卡通| 免费高清在线观看视频在线观看| 亚洲不卡免费看| 国产欧美另类精品又又久久亚洲欧美| 日韩在线高清观看一区二区三区| 国产成人a∨麻豆精品| 大话2 男鬼变身卡| 啦啦啦啦在线视频资源| 一级毛片 在线播放| 两个人免费观看高清视频| 免费观看性生交大片5| 黑丝袜美女国产一区| 99久国产av精品国产电影| 日产精品乱码卡一卡2卡三| 成年av动漫网址| 亚州av有码| 精品人妻在线不人妻| av一本久久久久| av有码第一页| 亚洲欧美中文字幕日韩二区| 欧美人与性动交α欧美精品济南到 | 亚洲av.av天堂| 日韩欧美一区视频在线观看| 久久精品久久精品一区二区三区| 制服丝袜香蕉在线| 国产无遮挡羞羞视频在线观看| 久久久久久久久大av| 考比视频在线观看| 热re99久久国产66热| 91久久精品电影网| 中文字幕亚洲精品专区| 2018国产大陆天天弄谢| 久久鲁丝午夜福利片| videossex国产| 日韩人妻高清精品专区| 亚洲国产成人一精品久久久| 国产国拍精品亚洲av在线观看| 一个人看视频在线观看www免费| 国产在视频线精品| 国产黄频视频在线观看| 伊人久久国产一区二区| 一级毛片电影观看| 波野结衣二区三区在线| 亚洲五月色婷婷综合| 午夜av观看不卡| av在线app专区| 搡老乐熟女国产| 黑丝袜美女国产一区| 99热6这里只有精品| 在线观看免费日韩欧美大片 | 亚洲精品国产色婷婷电影| 黄色一级大片看看| 国产精品一区www在线观看| 久久精品国产自在天天线| 青春草视频在线免费观看| 国产高清有码在线观看视频| 永久免费av网站大全| 中文字幕制服av| 免费久久久久久久精品成人欧美视频 | 在线观看免费视频网站a站| 国精品久久久久久国模美| 纵有疾风起免费观看全集完整版| 亚洲av不卡在线观看| 中国三级夫妇交换| 99re6热这里在线精品视频| 国语对白做爰xxxⅹ性视频网站| 久久99精品国语久久久| 国产高清三级在线| 亚洲情色 制服丝袜| 国产av精品麻豆| 久久99热6这里只有精品| 中国三级夫妇交换| 一个人看视频在线观看www免费| 免费日韩欧美在线观看| 国产一区二区在线观看日韩| 久久这里有精品视频免费| 毛片一级片免费看久久久久| 日韩人妻高清精品专区| 久久精品国产鲁丝片午夜精品| 中文字幕最新亚洲高清| 美女脱内裤让男人舔精品视频| 亚洲五月色婷婷综合| 日日撸夜夜添| 欧美激情国产日韩精品一区| 99久久精品国产国产毛片| 日韩人妻高清精品专区| 韩国高清视频一区二区三区| 最黄视频免费看| 精品人妻一区二区三区麻豆| 亚洲综合色网址| 男女无遮挡免费网站观看| 男女国产视频网站| 人人妻人人爽人人添夜夜欢视频| 中文字幕av电影在线播放| 久久久久久久久久人人人人人人| 一本大道久久a久久精品| 伊人亚洲综合成人网| 青春草国产在线视频| 国产精品偷伦视频观看了| 亚洲精品国产av蜜桃| 亚洲av.av天堂| 一级毛片aaaaaa免费看小| 中国国产av一级| 国产欧美亚洲国产| 午夜91福利影院| 边亲边吃奶的免费视频| a级毛色黄片| 99热国产这里只有精品6| 国产亚洲av片在线观看秒播厂| 高清av免费在线| 日韩成人伦理影院| 少妇猛男粗大的猛烈进出视频| 美女脱内裤让男人舔精品视频| a 毛片基地| 国产 一区精品| 亚洲精品一区蜜桃| xxx大片免费视频| a级片在线免费高清观看视频| av在线播放精品| 一级毛片黄色毛片免费观看视频| 美女国产高潮福利片在线看| 日产精品乱码卡一卡2卡三| 女的被弄到高潮叫床怎么办| 色婷婷av一区二区三区视频| 少妇精品久久久久久久| 97在线视频观看| 日本黄色日本黄色录像| 男男h啪啪无遮挡| 寂寞人妻少妇视频99o| 国产乱来视频区| 久久精品国产自在天天线| tube8黄色片| 在线观看国产h片| 黄色一级大片看看| 大香蕉97超碰在线| 久久99精品国语久久久| 九九爱精品视频在线观看| 桃花免费在线播放| 考比视频在线观看| 免费观看无遮挡的男女| 精品熟女少妇av免费看| 99热全是精品| 亚洲综合色惰|