• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamic modeling of thermal conditions for hot-water district-heating networks*

    2014-04-05 21:44:04ZHOUShoujun周守軍
    關(guān)鍵詞:守軍

    ZHOU Shou-jun (周守軍)

    School of Thermal Energy Engineering, Shandong Jianzhu University, Jinan 250101, China,

    E-mail:zsjun7342@sina.com

    TIAN Mao-cheng (田茂誠)

    School of Energy and Power Engineering, Shandong University, Jinan 250061, China

    ZHAO You-en (趙有恩)

    Department of Computer Science and Technology, Shandong University of Finance and Economics, Jinan 250014, China

    GUO Min (郭敏)

    School of Thermal Energy Engineering, Shandong Jianzhu University, Jinan 250101, China

    Dynamic modeling of thermal conditions for hot-water district-heating networks*

    ZHOU Shou-jun (周守軍)

    School of Thermal Energy Engineering, Shandong Jianzhu University, Jinan 250101, China,

    E-mail:zsjun7342@sina.com

    TIAN Mao-cheng (田茂誠)

    School of Energy and Power Engineering, Shandong University, Jinan 250061, China

    ZHAO You-en (趙有恩)

    Department of Computer Science and Technology, Shandong University of Finance and Economics, Jinan 250014, China

    GUO Min (郭敏)

    School of Thermal Energy Engineering, Shandong Jianzhu University, Jinan 250101, China

    (Received March 23, 2013, Revised January 6, 2014)

    To investigate the dynamic characteristics of the thermal conditions of hot-water district-heating networks, a dynamic modeling method is proposed with consideration of the heat dissipations in pipes and the characteristic line method is adopted to solve it. Besides, the influences of different errors, space steps and initial values on the convergence of the dynamic model results are analyzed for a model network. Finally, a part of a certain city district-heating system is simulated and the results are compared with the actual operation data in half an hour from 6 secondary heat stations. The results indicate that the relative errors for the supply pressure and temperature in 5 stations are all within 2%, except in one station, where the relative error approaches 4%. So the proposed model and algorithm are validated.

    district-heating network, thermal conditions, dynamic modeling, characteristic line method

    Introduction

    With decades of the rapid economical development and urbanization in China, the district-heating is considerably developed. The heating scale is expanding, and the pipe networks become more and more complex[1]. As a result, the dynamic transition process during the operation regulation takes ever longer time, and its impact on the system operation becomes an important issue. Therefore, in order to realize a hydraulic and thermal balance and to provide the desired heating load for a district-heating system, the dynamic operation mechanism and characteristics of the district-heating network must be researched.

    So far, there are mainly two ways to investigate the dynamic operating characteristics of a district-heating network: the system identification method and the method based on the physical model law. The former is simpler because it does not concern the operating mechanism of the identification object, and it concentrates only on the relationship between the input and output parameters of the measured data. However, it also has many drawbacks: (1) Poor generalization ability. Once the structure of a pipe network changes, a new model is needed, to be obtained by analyzing the measured data of the new system. Thus this model can not be applied to continuously developing and expanding heating networks. (2) The influence of a network topology on the operation conditions is not considered, thus the operation mechanism of a network can not be obtained. This problem becomes more serious when the network is large. The latter method involves onerous modeling work because it deals withthe entire heating system, including the heat source, the heating network, and the heat users. However, the drawbacks of the former method are overcome. The related studies can be found in Denmark, Germany and other countries. Benny Bohm and his team proposed a node method to study the aggregated simulation model of the pipe network[2-5]. A. Loewen studied the simulation system and the structural simplification of the complex network to save the calculation time[6,7]. Some studies can also be found in China[8,9].

    1. The dynamic model of a hot-water district-heating network

    The flow in a hot-water heating network can be regarded as one-dimensional and incompressible. The pressure wave propagates in water at the sound speed, around 1 200 m/s, while the temperature wave spreads at the speed close to the flow rate in the pipes. Thus the pressure-wave transmission is about 1 000 times faster than that of the temperature wave in a heating network. So, it can be assumed that the flow becomes stable instantaneously. And we can set up the dynamic model of the thermal conditions based on the current steady flow. Finally, a quasi-dynamic model of a hotwater district-heating network is thus established.

    1.1 The thermal dynamic model of a district-heating system

    The plane network equations are used in the steady hydraulic model[10]. Its thermal conditions can further be simplified as follows: (1) the axial thermal conduction of the fluid and the wall in a pipe can be ignored because they are very small compared with the radial heat conduction, (2) the heat dissipation can be ignored because it has little effect on the fluid temperature under the low velocity condition, (3) the shear stress is the same as that of the steady flow and can be calculated by the Darcy-Weisbach formula[11].

    According to the mass conservation and the momentum conservation for one-dimensional incompressible fluid, we have

    where C is an arbitrary constant,qvis the volume flux,λis the fiction resistance coefficient,ρis the fluid density,Dis the pipe diameter,θis the angle between the pipe and the horizontal direction.

    Based on the energy conservation, we have

    whereq is the increased heat in the control volume per unit surface area and per unit time, the heat emission is positive and the heat absorption is negative, W.

    Because the constant-pressure specific heat of the hot-water changes little with the change of the fluid temperature and pressure, it can be regarded as constant . Thus the flui d enthalpy is only influ ence d by the fluidtemperature.SoEq.(10)representsthethermaldynamic model for one-dimensional incompressible flow in a pipeline. It is a first-order linear hyperbolic equation with constant coefficients.

    1.2 The heat-loss equation of directly buried hotwater pipelines

    Because the temperature of the undisturbed soil changes very slowly and has a certain time lag as the average temperature of the outdoor-air changes during the whole year, the variation of the pipe heat-loss mainly depends on the temperature change of the fluid in a pipe during a short term.

    Therefore, the method of least squares is used to obtain the heat-loss equations of the supply and return pipelines for different diameters and different insulation materials. The equations take the hot-water temperature as the variable. Then these equations can be used by the thermal dynamic model of the heating network[13].

    2. The solving algorithm for the thermal dynamic model

    2.1 Establishing the corresponding characteristic equation

    The characteristic method can translate a hyperbolic quasi-linear partial differential equation into an ordinary differential equation along the characteristic lines, and then its numerical solution can be obtained. So, we have

    When the current flux is constant, the corresponding characteristic line is a straight line. Substituting Eq.(11) into Eq.(10), we have

    Eqation (12) is the characteristic equation for the thermal dynamic model of a district-heating network.

    2.2 Establishing the characteristic differential equation

    The characteristic line method for one-dimensional unsteady flow problems includes a variety of finite difference grids and stepping algorithms. The inverse step method is selected in this paper[14]. To ensure the stability of the solution, the time step must meet the Courant-Friedrichs-Lewy (CFL) condition[15].

    Expanding Eq.(12) by first-order Tailor series and a forward explicit difference scheme, it becomes a finite difference equation along the characteristic line

    With further simplifications, it becomes

    where m is the node number,nis the index of the time layer.

    3. Thermal dynamic modeling of the primary network

    3.1 The primary network

    To analyze the proposed model and algorithm, we establish a primary heating network, which includes 10 secondary stations.

    The main features of a district-heating network are included with some details reasonably simplified to facilitate the modeling and the dynamic characteristic analyzing, as shown in Fig.1.

    3.2 Analyzing the thermal dynamic model of the primary network

    The intermediate user (U5) and the terminal user (U10) are selected as the main studying objects. 6 key nodes are identified, including the entrance node and the exit node of the two users, the supply node and the return node of the heat source, to analyze the temperature dynamic characteristics of the transition process from a disturbed state to the next stable state of the network, as shown in Fig.2.

    The simulated condition C1: assuming that the outdoor-air temperature rises, and the heat load of each user reduces to half of its designed heat load. Tohe supply temperature of the heat source is set to 120C. The program iterates 370 times to convergence.

    It can be seen from Fig.2 that the supply temperatures of the heat source and each user tend to rise under the influence of the initial temperature profile since the simulated conditions are identical to the designed conditions. The delay time of each user is related with its distance away from the heat source. Afterwards, the inlet temperatures of users keep stable.

    The outlet temperatures of the users have an obvious jump from the initial value (at the first node) since the heat load is reduced by 50%. Then they rise slowly and become stable under the influence of the initial temperatures. The varying trends of the inlet and outlet temperatures are the same for each user. The backwater temperature of the heat source changes most greatly.

    3.3 Influence of different errorsεon simulation results

    Under the condition C1, we compare the simulation results with different errors (0.1, 0.01 and 0.001). Comparing Fig.3 with Fig.2, we can see that the inlet and outlet temperatures of the users tend to be steady, and the final temperatures of various nodes in Fig.3 are almost the same as the corresponding ones in Fig.2. The heat-source backwater temperature in Fig.3 can not reach the final steady state in Fig.2. As a result, the final heat-source backwater temperatures are quite different in the two figures.

    Comparing Fig.4 with Fig.2, we can see that the temperature difference is the greatest at the node of the heat-source backwater temperature, about 1oC. The iterative count increases by 212, and the transient transition process extends by 1.73 h.

    3.4 Influence of different step sizes h on simulation results

    In order to ensure that the final state is identical for different step sizes, we must choose the temperature gradient as the criterion for convergence, which is the ratio of the temperature difference between two iterations to the corresponding time step.

    Under the condition C1, the results for different step sizes are shown in Fig.5 and Fig.6. The iteration counts are 603 and 788, respectively. From the two figures, we can see that the varying trend of temperatures and the final state of each node are consistent. Therefore, we can choose the larger step size (50 m) to save the calculation time.

    3.5 Influence of initial value on convergence

    The designed operation condition of a districtheating system is easily available, so it is reasonable to take it as the initial operation condition of the program. If the operation condition of any time can be obtained by the district-heating automatic monitoring system and used to be the initial operation condition in the actual operation, it would be much easier to reach the ultimate convergence state compared with the designed condition. So, the designed condition may be the worst initial condition than any actual condition.

    4. Validation of dynamic model and algorithm for district-heating networks

    We take the district-heating system of Linyi city, Shandong province as the research object, and focus on its eastern trunk heating network (known as the East Route).

    4.1 The topology and corresponding network parameters of the East Route

    The main structural parameters of the East Route are shown in Fig.7. An on-line monitoring system is installed, to monitor mainly the temperatures and the pressures of the supply and return water for the primary and secondary sides, and the operation of the pumps at each secondary heat station, also the local outdoor-air temperature. The monitoring system issues reports once per minute.

    The heating pipes are mainly directly buried in Linyi network, some pipes across rivers are overhead and few pipes are laid by trench. The prefabricated insulation pipes are chosen for the buried pipes, with the high-temperature rigid polyurethane as insulation materials and the high density polyethylene pipe is used for the pipes in open places.

    The actual heating area in the 2008-2009 heating season of Linyi heating network is 5.797×106m2. The heating area of the East Route is 1.7495×106m2, which is nearly one-third of the total heating area.

    4.2 The validity and accuracy of the model and algorithm

    The thermal model of the East Route is established by the above mentioned method. The supplytemperature and pressure at 6 typical secondary heat stations from 8:00 to 8:30 at 12 December, 2008 are used as the validation data. According to the records, the average circulation flux is 5484 t/h, the average lift of the circulation pump is 135 m H2O, the supply temperature of the heat source is 93.5oC, and the average out-door-air temperature is 5oC.

    The measured and simulated supply temperatures and pressures for each typical station are shown in Table 1 and Table 2.

    A certain deviation can be seen between the measured and the simulated data, due to three reasons: (1) the simulation model needs a lot of network parameters for the pipeline structure, the pipe roughness, the pipe insulation, the valve type and the valve location and so on. And some parameters will change during the running of the actual network. Sometimes, it is hard to determine the accurate network data, (2) some actual pipelines are laid by trench or overhead, but the simulation model deals only with a direct burial, (3) the measured data have instrumental error since the supply temperature and pressure on the primary side are obtained by the field thermal resistance and the remote transmitting pressure gauge.

    5. Conclusion

    Based on reasonable simplifications, the thermal dynamic model and its solution algorithm for a hotwater district-heating system are developed, and the many influencing factors, including the initial value, the error and the space step are analyzed. The East Route in Linyi heating network is selected as the simulation object. The monitoring data of the supply temperature and pressure on the primary side in half an hour at 6 typical stations are selected as the verifying data. It is found that the relative error of the supply temperature and pressure at 5 stations are all within 2%. For the 13th station, the relative errors are 3.07% and -3.95%, respectively. Thus the validity and accuracy of the proposed model and algorithm are established. In this paper, the tree-like city hot-water district-heating system of a single heat source is simulated and analyzed. This study will provide some food for thought for further research of large and complex heating networks, such as the networks with multiple heat sources, the annular pipe networks and so on.

    Acknowledgement

    This work was supported by the Doctoral Scientific Research Fund Program of Shandong Jianzhu University (Grant No. XNBS1225), the School Scientific Research Fund Program of Shandong Jianzhu University (Grant No. XN110108), the Key Laboratory of Renewable Energy Utilization Technologies in Buildings, Ministry of Education and the Key Laboratory of Renewable Energy Application Technologies in Buildings, Shandong Province.

    [1] JIANG Yi. Problems in improvement of central heating systems in China and possible solutions[J]. Journal of Heating, Ventilating and Air Conditioning, 2006, 36(3): 37-41(in Chinese).

    [2] GARIELAITIENE I., BOHM B. and SUNDEN B. Modelling temperature dynamics of a district heating system in Naestved, Denmark–A case study[J]. Energy Conversition and Management, 2007, 48(1): 78-86.

    [3] GARIELAITIENE I., BOHM B. and SUNDEN B. Evaluation of approaches for modeling temperature wave propagation in district heating pipelines[J]. Heat Transfer Engineering, 2008, 29(1): 45-56.

    [4] LARSEN H. V., BOHM B. and WIGBELS M. A comparison of aggregated models for simulation and operational optimization of district heating networks[J]. Energy Conversion and Management, 2004, 45(6): 1119-1139.

    [5] LARSEN H. V., PALSSON H. and BOHM B. et al. Aggregated dynamic simulation model of district heating networks[J]. Energy Conversion and Management, 2002, 43(8): 995-1019.

    [6] LOEWEN A., WIGBELS M. and ALTHAUS W. et al. Structural simplification of complex DH-networks[J]. Euroheat and Power/Fernwarme internation, 2001,30(5): 42-44.

    [7] LOEWEN A., WIGBELS M. and ALTHAUS W et al. Structural simplification of complex DH-networks-Part 2[J]. Euroheat and Power/Fernwarme internation, 2001, 30(6): 46-50.

    [8] ZHOU Xue-ling, JIANG Yong-cheng and LI Feng. Thermal condition model of the central heating network[J]. Journal of Harbin Institute of Technology, 2005, 37(12): 1683-1685(in Chinese).

    [9] WANG Si-ying, ZOU Ping-hua and ZHOU Zhi-gang et al. Thermal condition calculation model of direct connection hot water heating system based on graph theory[J]. Journal of Heating, Ventilating and Air Conditioning, 2011, 41(8): 106-109(in Chinese).

    [10] ZHOU Shou-jun, ZHAO You-en and CHEN Ming-jiu et al. Research of the hydraulic adjustment method for a district heating system[J]. Journal of Shandong University (Engineering Science), 2009, 39(3): 151-153, 158(in Chinese).

    [11] WU Chi-gong. Hydraulics[M]. Forth Edition, Beijing, China: Higher Education Press, 2008, 81-86(in Chinese).

    [12] WANG Yong-zhen, CHEN Gui-tang. Advanced engineering thermodynamics[M]. Beijing, China: Tsinghua University Press, 2013, 75-76(in Chinese).

    [13] ZHOU Shou-jun. Operational parameter prediction and optimization research of district heating system based on pipe network dynamic model[D]. Doctoral Thesis, Jinan, China: Shandong University, 2012(in Chinese).

    [14] TANG Jian-feng, DUAN Chang-gui and LV Wen-zhe. The application of characteristic line method for dynamic simulation of a gas pipeline[J]. Oil and Gas Storage and Transportation, 2001, 20(8): 12-17(in Chinese).

    [15] LU Jin-pu, GUAN Ye. Numerical solution of partial differential equations[M]. Second Edition, Beijing, China: Tsinghua University Press, 2004, 13-36, 49-53(in Chinese).

    10.1016/S1001-6058(14)60060-3

    * Project supported by the Scientific Development Program of Shandong Province (Grant No. 2012GGB01071).

    Biography: ZHOU Shou-jun (1974-), Male, Ph. D.,

    Associate Professor

    猜你喜歡
    守軍
    聶守軍:只為一粒好種子
    民生周刊(2022年13期)2022-06-22 22:09:42
    聶守軍:只為一粒好種子
    民生周刊(2022年13期)2022-06-22 14:30:18
    液動(dòng)機(jī)引流式液氧煤油運(yùn)載火箭推力矢量伺服控制系統(tǒng)
    每天“泡”稻田,從1.4萬個(gè)可能中挑出一粒種子
    華聲文萃(2021年12期)2021-12-21 05:28:37
    每天“泡”稻田,從1.4萬個(gè)可能中挑出一粒種子
    聶守軍:東風(fēng)來報(bào)稻花香
    徐守軍
    王守軍 藏石欣賞
    寶藏(2017年3期)2017-05-09 03:21:39
    巧奪千金堡
    特別文摘(2016年20期)2016-10-24 20:07:01
    絞城之失
    cao死你这个sao货| 国产有黄有色有爽视频| 国产免费福利视频在线观看| 国产精品偷伦视频观看了| 高清av免费在线| 法律面前人人平等表现在哪些方面 | 国产一区二区在线观看av| 大码成人一级视频| 一本久久精品| 国产成人欧美| 久久精品aⅴ一区二区三区四区| 亚洲九九香蕉| 狂野欧美激情性xxxx| 久久精品国产综合久久久| 免费日韩欧美在线观看| 啦啦啦免费观看视频1| 日韩视频一区二区在线观看| 国产区一区二久久| 在线 av 中文字幕| av视频免费观看在线观看| 99国产精品一区二区蜜桃av | 制服诱惑二区| 91精品国产国语对白视频| 午夜91福利影院| 91字幕亚洲| 成年人免费黄色播放视频| 国产色视频综合| 国产高清videossex| 国产老妇伦熟女老妇高清| 人人妻,人人澡人人爽秒播| 啦啦啦 在线观看视频| 嫁个100分男人电影在线观看| 亚洲综合色网址| 亚洲专区字幕在线| 国产精品久久久av美女十八| 欧美精品人与动牲交sv欧美| 高清av免费在线| 岛国在线观看网站| av视频免费观看在线观看| 亚洲国产欧美一区二区综合| 欧美大码av| 黄色视频在线播放观看不卡| 1024香蕉在线观看| 欧美日韩视频精品一区| 看免费av毛片| av线在线观看网站| 99精品欧美一区二区三区四区| 免费高清在线观看视频在线观看| 母亲3免费完整高清在线观看| 91麻豆av在线| 国产精品熟女久久久久浪| 欧美av亚洲av综合av国产av| 欧美日韩亚洲综合一区二区三区_| 国产精品秋霞免费鲁丝片| 免费一级毛片在线播放高清视频 | 久久久精品免费免费高清| 纵有疾风起免费观看全集完整版| 亚洲第一欧美日韩一区二区三区 | 日韩一区二区三区影片| 亚洲,欧美精品.| 18在线观看网站| 亚洲欧洲精品一区二区精品久久久| 97精品久久久久久久久久精品| 国产主播在线观看一区二区| 国产精品偷伦视频观看了| 精品第一国产精品| 亚洲精品在线美女| 90打野战视频偷拍视频| 色综合欧美亚洲国产小说| 亚洲va日本ⅴa欧美va伊人久久 | 大码成人一级视频| 国产亚洲av高清不卡| 1024香蕉在线观看| 黄色片一级片一级黄色片| 国产1区2区3区精品| 999久久久国产精品视频| 欧美日韩中文字幕国产精品一区二区三区 | 交换朋友夫妻互换小说| 搡老乐熟女国产| 久久人人爽人人片av| 宅男免费午夜| 亚洲欧美成人综合另类久久久| 国产成人a∨麻豆精品| 99久久人妻综合| 国产男女超爽视频在线观看| 国产男人的电影天堂91| 亚洲精品第二区| 午夜福利,免费看| tocl精华| 精品少妇内射三级| 精品亚洲成国产av| av超薄肉色丝袜交足视频| 国产高清videossex| 亚洲五月色婷婷综合| 欧美av亚洲av综合av国产av| 国产伦理片在线播放av一区| 亚洲精品国产色婷婷电影| 色老头精品视频在线观看| 嫩草影视91久久| 午夜影院在线不卡| 成在线人永久免费视频| av福利片在线| 亚洲av电影在线观看一区二区三区| 国产在视频线精品| 国产精品久久久人人做人人爽| 久久精品成人免费网站| 亚洲国产欧美在线一区| 欧美日韩国产mv在线观看视频| 久久久久久免费高清国产稀缺| www.自偷自拍.com| av欧美777| 国产福利在线免费观看视频| 国产成人欧美在线观看 | 国产伦理片在线播放av一区| 国产精品久久久久久人妻精品电影 | 蜜桃在线观看..| 久久人妻熟女aⅴ| 操出白浆在线播放| 欧美国产精品一级二级三级| xxxhd国产人妻xxx| 午夜精品国产一区二区电影| www.999成人在线观看| 日韩欧美免费精品| 日本vs欧美在线观看视频| 欧美久久黑人一区二区| 男人爽女人下面视频在线观看| 999久久久国产精品视频| 国产一区二区三区综合在线观看| 久久久久久久久久久久大奶| 亚洲精品乱久久久久久| av国产精品久久久久影院| 亚洲精品一卡2卡三卡4卡5卡 | 成在线人永久免费视频| 久久性视频一级片| 99久久精品国产亚洲精品| 中亚洲国语对白在线视频| 69av精品久久久久久 | 国产精品久久久久久人妻精品电影 | 女人被躁到高潮嗷嗷叫费观| 久久久久久久国产电影| 深夜精品福利| 国产麻豆69| 国产免费一区二区三区四区乱码| 亚洲国产毛片av蜜桃av| 人成视频在线观看免费观看| 99久久精品国产亚洲精品| 精品少妇内射三级| 亚洲专区国产一区二区| 成人免费观看视频高清| 久久精品久久久久久噜噜老黄| 国产99久久九九免费精品| 老汉色∧v一级毛片| 深夜精品福利| 久久久久国产一级毛片高清牌| a级毛片黄视频| 日韩视频在线欧美| 一区二区三区精品91| 亚洲 欧美一区二区三区| 韩国精品一区二区三区| 91av网站免费观看| av一本久久久久| 国产无遮挡羞羞视频在线观看| 亚洲精品美女久久久久99蜜臀| 久久精品久久久久久噜噜老黄| 午夜福利影视在线免费观看| 欧美老熟妇乱子伦牲交| 日韩制服骚丝袜av| 久热爱精品视频在线9| 午夜福利,免费看| 精品熟女少妇八av免费久了| 国产老妇伦熟女老妇高清| 他把我摸到了高潮在线观看 | 淫妇啪啪啪对白视频 | 汤姆久久久久久久影院中文字幕| 丝袜美足系列| 另类亚洲欧美激情| 国产一区二区在线观看av| 亚洲va日本ⅴa欧美va伊人久久 | www.熟女人妻精品国产| 国产深夜福利视频在线观看| 丝袜人妻中文字幕| 91九色精品人成在线观看| 男人添女人高潮全过程视频| 亚洲一卡2卡3卡4卡5卡精品中文| 免费日韩欧美在线观看| 日本黄色日本黄色录像| 中文精品一卡2卡3卡4更新| 久久人人爽人人片av| 日韩三级视频一区二区三区| 久久久国产一区二区| 亚洲欧美激情在线| 精品国产乱码久久久久久男人| 法律面前人人平等表现在哪些方面 | 亚洲自偷自拍图片 自拍| 午夜福利乱码中文字幕| 国产成人av教育| 国产精品熟女久久久久浪| 天天影视国产精品| 欧美激情高清一区二区三区| 精品第一国产精品| 男女高潮啪啪啪动态图| 精品久久蜜臀av无| 成年人免费黄色播放视频| 成年人免费黄色播放视频| 国产日韩欧美亚洲二区| 国产日韩欧美视频二区| 国产真人三级小视频在线观看| 国产一区二区三区综合在线观看| 99精国产麻豆久久婷婷| 99香蕉大伊视频| 搡老乐熟女国产| 欧美激情久久久久久爽电影 | 国产精品二区激情视频| 黑丝袜美女国产一区| 亚洲国产精品一区二区三区在线| 免费观看人在逋| 男女下面插进去视频免费观看| 久久精品国产亚洲av高清一级| 在线天堂中文资源库| 亚洲第一av免费看| 国产免费av片在线观看野外av| 亚洲男人天堂网一区| 另类亚洲欧美激情| www.999成人在线观看| 国产一区二区激情短视频 | 丰满迷人的少妇在线观看| 多毛熟女@视频| 久久影院123| 国产成人免费无遮挡视频| 一区二区三区四区激情视频| 免费一级毛片在线播放高清视频 | 亚洲精品av麻豆狂野| 下体分泌物呈黄色| 免费黄频网站在线观看国产| 视频区欧美日本亚洲| 成年美女黄网站色视频大全免费| 日韩有码中文字幕| 国产精品一区二区免费欧美 | 国产免费福利视频在线观看| 免费不卡黄色视频| 一区二区三区四区激情视频| 国产日韩欧美视频二区| 欧美激情 高清一区二区三区| 国产有黄有色有爽视频| 后天国语完整版免费观看| 国产97色在线日韩免费| 久久午夜综合久久蜜桃| av国产精品久久久久影院| xxxhd国产人妻xxx| av在线播放精品| 久久国产亚洲av麻豆专区| 看免费av毛片| 亚洲国产欧美网| 午夜福利影视在线免费观看| 中文字幕精品免费在线观看视频| 国产免费一区二区三区四区乱码| 国产日韩一区二区三区精品不卡| 成年人黄色毛片网站| 久久精品成人免费网站| 亚洲五月婷婷丁香| 国产成人av教育| 搡老乐熟女国产| svipshipincom国产片| 2018国产大陆天天弄谢| 成人影院久久| 熟女少妇亚洲综合色aaa.| 可以免费在线观看a视频的电影网站| 精品久久蜜臀av无| 国产激情久久老熟女| 法律面前人人平等表现在哪些方面 | 日本av免费视频播放| 国产精品成人在线| 精品熟女少妇八av免费久了| 十分钟在线观看高清视频www| 女人精品久久久久毛片| 超色免费av| 亚洲精品久久久久久婷婷小说| 久久99一区二区三区| 亚洲av欧美aⅴ国产| 国产精品.久久久| 亚洲精品美女久久av网站| 19禁男女啪啪无遮挡网站| 国产91精品成人一区二区三区 | 欧美日韩亚洲高清精品| 蜜桃国产av成人99| 极品少妇高潮喷水抽搐| 99国产综合亚洲精品| 操美女的视频在线观看| 精品少妇久久久久久888优播| 我要看黄色一级片免费的| 国产日韩欧美视频二区| 久久精品国产亚洲av香蕉五月 | 国产成人一区二区三区免费视频网站| 国产极品粉嫩免费观看在线| 法律面前人人平等表现在哪些方面 | 每晚都被弄得嗷嗷叫到高潮| 国产精品偷伦视频观看了| 两性午夜刺激爽爽歪歪视频在线观看 | 高清在线国产一区| 国产精品香港三级国产av潘金莲| 可以免费在线观看a视频的电影网站| 国产深夜福利视频在线观看| 欧美日韩一级在线毛片| 亚洲精品中文字幕在线视频| 香蕉国产在线看| 热99国产精品久久久久久7| 久久影院123| 韩国精品一区二区三区| 超色免费av| 色老头精品视频在线观看| 国产免费现黄频在线看| av国产精品久久久久影院| 国产不卡av网站在线观看| 亚洲成国产人片在线观看| 欧美日韩亚洲高清精品| 久9热在线精品视频| 国产视频一区二区在线看| 天堂中文最新版在线下载| 热re99久久国产66热| 十八禁网站免费在线| 精品一区在线观看国产| 少妇被粗大的猛进出69影院| 亚洲avbb在线观看| 日韩电影二区| 大码成人一级视频| 搡老岳熟女国产| 精品国产一区二区久久| 999精品在线视频| 午夜福利在线观看吧| 欧美 亚洲 国产 日韩一| 女性生殖器流出的白浆| av国产精品久久久久影院| 宅男免费午夜| 国产片内射在线| 巨乳人妻的诱惑在线观看| 精品一区二区三区四区五区乱码| 女人被躁到高潮嗷嗷叫费观| 99精品久久久久人妻精品| 国产精品一二三区在线看| 一级,二级,三级黄色视频| 免费在线观看视频国产中文字幕亚洲 | av天堂久久9| 亚洲国产看品久久| 大码成人一级视频| 欧美97在线视频| 老司机午夜福利在线观看视频 | 一区福利在线观看| 午夜激情久久久久久久| 免费少妇av软件| 欧美黄色淫秽网站| 欧美av亚洲av综合av国产av| 最新在线观看一区二区三区| 日本五十路高清| 欧美精品一区二区免费开放| 亚洲专区国产一区二区| 亚洲av国产av综合av卡| 久久国产精品影院| 久久免费观看电影| 九色亚洲精品在线播放| 老鸭窝网址在线观看| 亚洲一区中文字幕在线| 满18在线观看网站| 老司机影院成人| 精品国产乱码久久久久久男人| 黄色毛片三级朝国网站| 国产欧美亚洲国产| 亚洲色图综合在线观看| 啦啦啦 在线观看视频| 久久热在线av| 亚洲第一青青草原| 国产日韩一区二区三区精品不卡| 人人妻人人爽人人添夜夜欢视频| 国产一区二区 视频在线| 国产免费av片在线观看野外av| 国产激情久久老熟女| 青春草视频在线免费观看| 少妇的丰满在线观看| 免费黄频网站在线观看国产| 久久久久国产一级毛片高清牌| 免费黄频网站在线观看国产| 91麻豆av在线| 国产精品香港三级国产av潘金莲| 午夜久久久在线观看| 精品视频人人做人人爽| 欧美大码av| 国产91精品成人一区二区三区 | 婷婷色av中文字幕| 亚洲熟女精品中文字幕| 亚洲av成人不卡在线观看播放网 | 欧美变态另类bdsm刘玥| 久久午夜综合久久蜜桃| 老汉色av国产亚洲站长工具| 久久 成人 亚洲| 亚洲中文av在线| 黄色毛片三级朝国网站| 国产有黄有色有爽视频| 人妻人人澡人人爽人人| 亚洲欧美精品自产自拍| 老熟妇乱子伦视频在线观看 | 亚洲欧美清纯卡通| 满18在线观看网站| 秋霞在线观看毛片| 丝袜人妻中文字幕| 999久久久精品免费观看国产| 麻豆国产av国片精品| 亚洲专区中文字幕在线| 性少妇av在线| 男人添女人高潮全过程视频| 国产精品一区二区在线不卡| 啦啦啦 在线观看视频| 国产成人精品久久二区二区免费| 久久中文字幕一级| 欧美日韩精品网址| 欧美亚洲 丝袜 人妻 在线| 999久久久精品免费观看国产| 美女主播在线视频| 99久久人妻综合| 夜夜夜夜夜久久久久| 午夜福利视频在线观看免费| 国产精品 欧美亚洲| 亚洲第一青青草原| 少妇猛男粗大的猛烈进出视频| 国产av精品麻豆| 夜夜骑夜夜射夜夜干| 人成视频在线观看免费观看| 丰满饥渴人妻一区二区三| 欧美日韩视频精品一区| 久久人人97超碰香蕉20202| 桃花免费在线播放| 亚洲第一av免费看| 欧美大码av| 欧美日本中文国产一区发布| 国产亚洲精品一区二区www | 日韩视频一区二区在线观看| 欧美激情久久久久久爽电影 | 亚洲欧洲精品一区二区精品久久久| 亚洲精品一二三| 久久久久久久久免费视频了| av有码第一页| 夜夜骑夜夜射夜夜干| 中文字幕另类日韩欧美亚洲嫩草| 精品免费久久久久久久清纯 | 成人三级做爰电影| 久久精品国产亚洲av香蕉五月 | 狂野欧美激情性xxxx| 久久狼人影院| 国产成人av激情在线播放| 精品少妇黑人巨大在线播放| 大片免费播放器 马上看| 亚洲欧美一区二区三区黑人| 久久久久国产精品人妻一区二区| 两性夫妻黄色片| 老熟妇仑乱视频hdxx| 极品人妻少妇av视频| 美女午夜性视频免费| 欧美精品亚洲一区二区| 亚洲精品久久久久久婷婷小说| 飞空精品影院首页| 亚洲av男天堂| 国产主播在线观看一区二区| 人人澡人人妻人| 国产亚洲欧美在线一区二区| www日本在线高清视频| 久久天躁狠狠躁夜夜2o2o| 国产日韩欧美视频二区| 一区二区av电影网| 国产又爽黄色视频| 中国国产av一级| 女人久久www免费人成看片| 男男h啪啪无遮挡| 国内毛片毛片毛片毛片毛片| 又紧又爽又黄一区二区| 视频区图区小说| 在线观看人妻少妇| 国产高清国产精品国产三级| 岛国毛片在线播放| 中文字幕精品免费在线观看视频| 汤姆久久久久久久影院中文字幕| 日韩制服丝袜自拍偷拍| 十分钟在线观看高清视频www| 精品人妻在线不人妻| 亚洲情色 制服丝袜| 国产一区二区三区在线臀色熟女 | 香蕉国产在线看| 十八禁高潮呻吟视频| 国产成人啪精品午夜网站| 久久av网站| 亚洲中文日韩欧美视频| 老鸭窝网址在线观看| 每晚都被弄得嗷嗷叫到高潮| 老司机午夜福利在线观看视频 | 国产精品一区二区在线观看99| av不卡在线播放| 中国美女看黄片| 18禁观看日本| 亚洲国产中文字幕在线视频| 黄色视频不卡| 热99国产精品久久久久久7| 亚洲五月婷婷丁香| 国产亚洲精品第一综合不卡| av天堂久久9| 一个人免费在线观看的高清视频 | 免费观看av网站的网址| 侵犯人妻中文字幕一二三四区| 亚洲一卡2卡3卡4卡5卡精品中文| 日本欧美视频一区| av天堂久久9| 亚洲人成77777在线视频| 女性被躁到高潮视频| 一区二区三区精品91| 极品少妇高潮喷水抽搐| 久久午夜综合久久蜜桃| 99国产综合亚洲精品| 亚洲精品成人av观看孕妇| 欧美人与性动交α欧美精品济南到| 国产精品麻豆人妻色哟哟久久| 亚洲精品国产色婷婷电影| 亚洲精品粉嫩美女一区| 欧美精品啪啪一区二区三区 | 久热爱精品视频在线9| 亚洲一卡2卡3卡4卡5卡精品中文| 精品一区二区三卡| 日本av手机在线免费观看| 久久中文字幕一级| 在线观看www视频免费| 亚洲伊人久久精品综合| 亚洲精品一二三| 咕卡用的链子| 又大又爽又粗| 国产精品影院久久| 国产激情久久老熟女| 久久中文看片网| 午夜免费鲁丝| 日本黄色日本黄色录像| 日本猛色少妇xxxxx猛交久久| 亚洲精品乱久久久久久| 亚洲精品久久成人aⅴ小说| 人人澡人人妻人| 欧美激情极品国产一区二区三区| 午夜日韩欧美国产| 性高湖久久久久久久久免费观看| 午夜福利视频精品| 天天添夜夜摸| 超碰成人久久| a级毛片在线看网站| 一边摸一边做爽爽视频免费| 中文字幕人妻丝袜制服| 99久久99久久久精品蜜桃| 黄频高清免费视频| 岛国在线观看网站| 亚洲人成电影观看| 999久久久精品免费观看国产| 一进一出抽搐动态| 老熟女久久久| 日本vs欧美在线观看视频| 日本欧美视频一区| 国产高清国产精品国产三级| kizo精华| 精品少妇久久久久久888优播| 啦啦啦 在线观看视频| 窝窝影院91人妻| 日韩熟女老妇一区二区性免费视频| 国产免费一区二区三区四区乱码| 国产精品av久久久久免费| 下体分泌物呈黄色| 波多野结衣一区麻豆| 97在线人人人人妻| 多毛熟女@视频| www.av在线官网国产| 国产成+人综合+亚洲专区| 久久99一区二区三区| 国产精品国产三级国产专区5o| 69精品国产乱码久久久| 亚洲全国av大片| 黄色片一级片一级黄色片| 亚洲伊人色综图| 亚洲成国产人片在线观看| 久久精品aⅴ一区二区三区四区| 欧美久久黑人一区二区| 久久亚洲国产成人精品v| 精品高清国产在线一区| 女性生殖器流出的白浆| 国产精品熟女久久久久浪| 十八禁人妻一区二区| 欧美+亚洲+日韩+国产| 美女扒开内裤让男人捅视频| 亚洲 国产 在线| 免费久久久久久久精品成人欧美视频| 亚洲国产精品999| 窝窝影院91人妻| 狠狠婷婷综合久久久久久88av| 久久人人爽人人片av| 久久精品亚洲av国产电影网| 999精品在线视频| 99热网站在线观看| 久久久精品免费免费高清| 一级毛片电影观看| 欧美午夜高清在线| 精品一区在线观看国产| 国产欧美亚洲国产| 美女福利国产在线| 精品免费久久久久久久清纯 | 国产精品自产拍在线观看55亚洲 | 久久精品亚洲av国产电影网| 99国产极品粉嫩在线观看| 一级片'在线观看视频| 久久精品国产a三级三级三级| 女人精品久久久久毛片| 蜜桃在线观看..| 两个人看的免费小视频| 国产在线免费精品| 9191精品国产免费久久| 成年美女黄网站色视频大全免费| 国产日韩欧美视频二区| 欧美日韩一级在线毛片|