• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hydrodynamic performance of distributed pump-jet propulsion system for underwater vehicle*

    2014-04-05 21:44:04Xiaojun呂曉軍ZHOUQidou周其斗FANGBin方斌

    Lü Xiao-jun (呂曉軍), ZHOU Qi-dou (周其斗), FANG Bin (方斌)

    Department of Ship Engineering, Naval University of Engineering, Wuhan 430033, China, E-mail: lvxj03@126.com

    Hydrodynamic performance of distributed pump-jet propulsion system for underwater vehicle*

    Lü Xiao-jun (呂曉軍), ZHOU Qi-dou (周其斗), FANG Bin (方斌)

    Department of Ship Engineering, Naval University of Engineering, Wuhan 430033, China, E-mail: lvxj03@126.com

    (Received January 29, 2013, Revised June 28, 2013)

    A type of distributed pump-jet propulsion system (DPJP) is developed with two or four specially designed pump-jet pods located around the axisymmetric underwater vehicle body symmetrically. The flow field is numerically simulated by solving the RANS equations with the finite volume method. The computational method is validated by comparing the calculated hull resistances of the SUBOFF AFF-3 model and the open water performance of a ducted propeller with experimental data. The hydrodynamic performances of the DPJP with different axial or radial positions and numbers of pump-jet pods are obtained to analyze the interactions between the hull and the pump-jet pods. It is shown in the calculated results that the decrease of the distance between the pods and the hull leads to an increase both in the efficiency of the pods and the thrust deduction factor due to the effect of the stern wake. And, a negative thrust deduction factor can be obtained by locating the DPJP at the parallel middle body near the aftbody of the vehicle to improve the hydrodynamic performance of the DPJP. Besides, the increase of the number of pods will cause a remarkable decrease of the total propulsive efficiency of the DPJP with the pods mounted on the stern planes, while a small decline of the total propulsive efficiency of the DPJP is observed with the pods mounted on the parallel middle body.

    distributed pump-jet propulsion system (DPJP), hydrodynamic performance, pump-jet pod, self propulsion point, underwater Vehicle

    Introduction

    The underwater vehicle faces the difficulties associated with low-speed maneuverability, because the effectiveness of the traditional control surface decreases significantly at low speeds. One effective way out is to equip the vehicle with a distributed pump-jet propulsion system (DPJP) consisting of several pump-jet pods, so that the course can be controlled by regulating vectored forces of the pods[1,2].

    Such a propulsion system was not well studied, and related studies mainly focused on the hydrodynamic performances and noises of the pump-jet pods attached to the hulls of the surface ships. For example, Bellevre et al.[3]presented numerical and experimental studies that show a good behavior of the pump-jet pod related to the hydrodynamic efficiency, the maneuverability, the loads on pods, the cavitations and the pressure pulses. Saussereau et al.carried out similar studies[4]. In addition, efforts were made to optimize the performance of the pump-jet propulsor[5-11].

    In view of the importance of the pod-hull interaction, it is therefore necessary to study the influences of the axial and radial positions and the number of pump-jet pods on the hydrodynamic performances of the DPJP.

    As is mentioned above, a type of pump-jet pod is developed, of which a cylindrical housing with a duct provides a flow path for water and a rotor blade row followed by an array of stator vanes. Two different connection types are selected for the installation of the DPJP, one is to support the pod by an airfoil-shaped strut mounted on the parallel middle body of the vehicle, the other is to fix the pod on the tip of the stern plane. Accordingly, the distributed pump-jet propulsion system (DPJP) is built up by locating two or four pods around the vehicle body symmetrically.

    Since the RANS method is developed for the computation of the propeller-hull interaction and isvalidated[12,13], the hydrodynamic performances of the distributed pump-jet propulsion system with different axial or radial positions and different numbers of pump-jet pods can be simulated by the CFD methodology. Results can be used to analyze the interaction between the DPJP and the vehicle hull. Then, the self propulsion point (SPP) and the powering performance can be analyzed and compared to validate the feasibility of applying the DPJP to propel the axisymmetric underwater vehicle.

    1. Physical model

    1.1 Underwater vehicle

    The underwater vehicle model studied here is the SUBOFF AFF-3 model. It has an axisymmetric hull body as shown in Fig.1 with an overall length of 4.356 m and a maximum radius of 0.254 m, four identical stern planes mounted on the model hull symmetrically.

    1.2 Pump-jet pod

    The pump-jet pod consists of 9 rotor blades and 7 stator vanes operating within an axisymmetric housing. The duct provides a flow path for water, and a stator to remove the swirl from the flow. Figure 2 shows the geometry of the pump-jet pod. This pump-jet pod is a type of rim driven thruster similar to that described in Ref.[14]. So the duct internal diameter is equal to the rotor blade diameter. The effect of the airgap flow on the thrust and the torque of the rotor blade is ignored here.

    In this paper, a fix sized pump-jet pod is adopted during all CFD calculations, and the main parameters of the pod are shown in Table 1. It is important to point out that the duct internal diameter is equal to the rotor blade diameter.

    Figure 3 shows two different connection types for the installation of the DPJP, one is to fix the housing by an airfoil-shaped strut mounted on the parallel middle body of the vehicle, the other is to fix the pod on the tip of the stern plane. It is important to point out that the starboard pump-jet pod is in the right hand, while the larboard one in the left hand, so that the fluid field around the vehicle is symmetrical.

    2. Computational method

    2.1 Numerical method

    The three-dimensional incompressible viscous Reynolds averaged Navier Stokes (RANS) equations for steady flows are applied to calculate the flow fields around the pump-jet pods and the underwater vehicle body, and they are expressed as

    where uiand ujare the absolute time averaged velocity components,pis the time averaged pressure, Re the Reynolds number,ajthe propeller revolution rate, andthe Reynolds stress term.

    To close the RANS equations, thek-ωturbulence model is adopted in this paper, in which the turbulence viscosity is assumed to be linked to the turbulence kinetic energy and the specific dissipation rate as

    where μtis the turbulence viscosity,ρthe fluid density,k the turbulence kinetic energy, andωthe specific dissipation rate.

    Two transport equations presented below are to be solved. The stress tensor is computed from the eddy-viscosity concept.

    where pkis the production rate of turbulence,μthe viscosity coefficient,β′,α,β,σkand σωare the model constants.

    The default near wall treatment of thek-ωturbulence model, which allows for a smooth shift from a low-Reynolds number form to a wall function formulation, is adopted to acquire more accurate results. The second order upwind advection scheme is selected to calculate the advection terms in the discrete finite volume equations. The stage model is adopted to model the frame change between the rotor and the stator, and a steady state solution is obtained by performing a circumferential averaging of the fluxes through bands on the interface.

    2.2 Domains, grids, and boundary conditions

    Figure 4(a) shows the computational domain used for the prediction of the pump-jet pod open water performance, which is a concentric cylinder on the rotor rotating axis, with a radius of 12Rp. The uniform inflow is used to initialize the inlet, which is set at 8Rpbefore the pump-jet pod and a pressure outlet is set at the exit which is mounted at20Rpbehind the pump-jet pod.

    The computational domain used for the simulation of the self-propulsion of the vehicle is simplified to be a semi-cylinder as shown in Fig.4(b), with the symmetry of the problem considered. The radius of the semi-cylinder is 1L , where Lis the length of the vehicle. The uniform inflow is used to initialize the inlet, which is set at1Lbefore the vehicle and a pressure outlet is set at the exit, which is mounted at2L behind the vehicle.

    In view of the geometrical complexity of the underwater vehicle and the pump-jet pod, the computational domain is split up into simple blocks so that the hexahedral grids can be applied in the whole region. Boundary layers are attached to the surface of the vehicle and the pod so as to define the location of the first node away from the wall. Local grid refinements are made at stern planes and blades by applying size functions.

    In order to determine the influences of the element number on the computational error of the hull resistance, a group of grids is generated, which consists of three different grids. Figure 5 shows the meshes on the surfaces of stern planes. The sizes of Grid 1 (the coarsest) through 3 (the finest) are 0.9×106, 2.3×106and 6.1×106, and the grid refinement ratio is2. All three grids have the same mesh size at the boundary layer, and the value ofy+is about 100 on average.

    Figure 6 shows the meshes on the surfaces of the pump-jet pod and the vehicle body. The quality criteria necessary for thek-ωturbulence is measuredby the y+value model, which mounts up 125 on average for the pump-jet pod and about 100 for the underwater vehicle. The total number of elements is about 2.2×106for the prediction of the pump-jet pod open water performance, and 6.0×106for the simulation of the self-propulsion of the vehicle.

    3. CFD results

    3.1 Validation of calculation method

    Since the calculation of the open water performance of the duct propeller was already validated in Ref.[15], only the validation of the calculation of the hull resistance is presented here.

    The calculation of the vehicle hull resistance at speed of 5.92 knots is carried out with the three different grids. The comparison of calculated results and experimental data is shown in Table 2. It can be concluded that the increase of element number can decrease the computational error. Besides, for coarser grids with an average y+value lower than 100, the computational error of the hull resistance can also be controlled within 3% by applying the second order accuracy discretization scheme.

    3.2 Hull resistance of the vehicle

    Before the propulsive performances analysis, a calculation without pump-jet pods is performed to determine the hull resistances over the speed range of 1 m/s-5 m/s. Results are shown in Fig.7.

    3.3 Open water performance of the pump-jet pod

    For reference and comparison, the open water performance of the pump-jet pod is calculated. Results of the total thrust coefficient KT, the duct thrust coefficient KTN, the blade thrust coefficient KTP, the torque coefficient KQand the open water efficiency η0are presented in Fig.8 for different advance coefficientsJ at speed of 4 m/s.

    3.4 Effect of propulsion system on the hull resistance

    In order to study the interaction between the hull and the propulsion system, four different axial positions of the DPJP with two pump-jet pods are selected and shown in Fig.9. The two pump-jet pods are mounted on the tips of the horizontal stern plane in Case 1, while two identical struts connecting the pump-jet pods are mounted on the hull at angles of 90oand 270oin Cases 2 to 4 (0oat the top dead center).

    In order to study the propulsion characteristics, calcul atio ns of th e hydrody namic performa nce o f the DPJParecarriedoutoverthespeedrangeof1m/s-5 m/s. The rotor blades operate at the self propulsion point with zero net longitudinal force in a steady motion with all control surfaces at zero angle and with no drift or pitch angle.

    The calculated thrust deduction factorst, the wake fractionswand the total propulsive efficiencies of the DPJPηare shown in Fig.10. It can be seen from the figure that the thrust deduction factors in Case 1 are larger than that in other three cases, which does not result in a decrease of the total propulsive efficiencies, mainly due to the larger wake fractions.

    Especially, the thrust deduction factor in Case 2 is negative, which means that the hull resistance of the vehicle with the DPJP is smaller than that of the vehicle without pods. It is important to note that the resistance of the struts includes the hull resistance.

    This phenomenon can be explained by a comparison of the pressure coefficientCp along the right meridian line of the hull as shown in Fig.11, in which the curve peaks are caused by the presence of the struts and the stern planes. The pump-jet pods in Case 2 reduce the fow velocities at the aftbody of the vehicle and the frictional resistance and increase the pressure in the aftbody, thus the inviscid resistance is reduced. A negative thrust deduction factor as such may improve the hydrodynamic performance of the DPJP and will be discussed later.

    3.5 Effect of stern wake on the propulsive performance

    To study the effect of the stern wake on the propulsive performance, a dimensionless parameterk is defined as followswhere dis the perpendicular distance between the rotor axis and the vehicle axis,Rmaxthe maximum radius of the vehicle body.

    The axial position of the DPJP adopted here is the same as in Case 1, andkvaries from 0.9 to 1.3 as shown in Fig.12.

    The propulsive performance of the pump-jet pod is calculated for 1.3<J<1.75at the speed of 4 m/s. As shown in Fig.13, the average axial velocityV′in front of the rotor blade decreases slightly when the pod moves towards the stern hull. The increasing trend of the total thrust and the duct thrust coefficients with the decrease of parameter kis shown in Figs.14 and 15, respectively. And, the efficiencies of the pump-jet podη′at different advanced coefficients are presented in Fig.16. It should be noted that the increase of the total thrust is mainly due to the duct thrust. In addition, the decrease of parameterk will cause an increase of the thrust deduction factor.

    The maximum efficiency at k=0.9 is about 5 percents higher than that of the open water efficiency, because the stern wake enhances the hydrodynamic performance of the DPJP.

    3.6 Influence of the number of pods on the propulsive performance

    One of the parameters influencing the propulsive performance of the DPJP is the number of the pumpjet pods, which is selected to be 2 or 4 here so as to maintain the symmetry of the flow field.

    On the basis of the calculated results, two different installation positions, marked as Schemes A and B respectively, are selected for studying the influence of the number of pods on the hydrodynamic performance of the DPJP. Figure 17(a) presents the installation position of Scheme A, corresponding to the axial position in Case 1 withkequal to 0.9, and Fig.17(b) shows the installation position of Scheme B, representing the axial position in Case 2. The pods are located at the angles of45o,135o,225oand 315ofor the DPJP with four pump-jet pods.

    Calculations of the hydrodynamic performance of the DPJP with two and four pump-jet pods are con-ducted at the self propulsion point over the speed range of 1 m/s-5 m/s. Comparisons of the thrust deduction factors and the total propulsive efficiencies of the DPJP are presented in Fig.18, which shows the influence of the number of pump-jet pods.

    It is indicated that the increase of the number of pump-jet pods increases the thrust deduction factor in Scheme A, and decreases the thrust deduction factor in Scheme B. On the other hand, the total propulsive efficiencies of the DPJP in both cases decrease if the number of pump-jet pods increases. However, the decreased amplitude of the total propulsive efficiency of the DPJP in Scheme B is much lower than that in Scheme A. This is mainly due to the different change trends of the thrust deduction factors in two schemes.

    4. Conclusions and future work

    A type of DPJP is developed with two or four specially designed pump-jet pods located around the axisymmetric underwater vehicle body symmetrically. Two different connection types are selected for the installation of the DPJP, one is to support the pod by an airfoil-shaped strut mounted on the parallel middle body of the vehicle, and the other is to fix the pod on the tip of the stern plane.

    The hydrodynamic performances of the DPJP with diverse axial or radial positions and different numbers of pump-jet pods are calculated to analyze the interactions between the hull and the pump-jet pods. The conclusions are as follows:

    (1) The decrease of the distance between the pod and the hull increases both the efficiency of the pod and the thrust deduction factor due to the effect of the stern wake. This can be applied to improve the hydrodynamic performance of the DPJP on the only occasion that the number of the pump-jet pods is small.

    (2) A negative thrust deduction factor can be obtained by locating the DPJP at the parallel middle body near the aftbody of the vehicle, which enhances the hydrodynamic performance of the DPJP when more pump-jet pods are installed.

    (3) The increase of the number of pods will cause a remarkable decrease of the total propulsive efficiency of the DPJP with the pods mounted on the stern planes, while a small decline of the total propulsive efficiency of the DPJP is observed with the pods mounted on the parallel middle body.

    Overally, the results have validated the feasibility of applying the DPJP to propel an axisymmetric underwater vehicle. However, issues and questions listed below are still open:

    (1) To achieve better performance of the DPJP, the optimization design of the pump-jet pod has to be carried out with the consideration of the real inflow conditions and the cavitation performance.

    (2) The benefits of the DPJP on the low-speed maneuverability require further investigation.

    [1] WOODWARD M. D., ATLA M. and CLARKE D. Application of the IMO maneuvering criteria for poddriven ships[J]. Journal of Ship Research, 2009, 53(2): 106-120.

    [2] GAO Fudong, PAN Cunyun and YANG Zheng et al. Nonlinear mathematics modeling and analysis of the vectored thruster autonomous underwater vehicle in 6-DOF motions[J]. Journal of Mechanical Engineering, 2011, 47(5): 93-100(in Chinese).

    [3] BELLEVRE D., COPEAUX P. and GAUDIN C. The pump jet POD an ideal means to propel large military and merchant ships[C]. Proceedings of 2nd T-POD conference. Brest, France, 2006.

    [4] SAUSSEREAU B., CHEVALIER F. and D’HAMONVILLE T. T. Innovative pod propulsive and noise performances assessment[C]. 14th International Congress of International Maritime Association of Mediterranean. Genova, Italia, 2011, 981-989.

    [5] IVANELL S. Hydrodynamic simulation of a torpedo with pumpjet propulsion system[D]. Master Thesis, Stockholm, Sweden: Royal Institute of Technology, 2001.

    [6] SURYANARAYANA C., ROY S. P. and SATEESH KUMAR M. Hydrodynamic performance evaluation of an underwater body by model testing in cavitation tunnel[C]. International Conference in Marine Hydrodynamics, NSTL. Visakhapatnam, India, 2006, 589-602.

    [7] DAS H. N., JAYAKUMAR P. and SAJI V. F. et al. CFD examination of interaction of flow on high-speed submerged body with pumpjet propulsor[C]. 5th International Conference on High Performance Marine Vehicles. Launceston, Australia, 2006, 466-479.

    [8] SURYANARAYANA C., SATYANARAYANA B. and RAMJI K. et al. Experimental evaluation of pumpjet propulsor for an axisymmetric body in wind tunnel[J].International Journal of Naval Architecture and Ocean Engineering, 2010, 2(1): 24-33.

    [9] LIU Zhan-yi, SONG Bao-wei and HUANG Qiao-gao et al. Apply CFD technique to calculating successfully hydrodynamic performance of water jet pump[J]. Journal of Northwestern Polytechnical University, 2010, 28(5): 724-729(in Chinese).

    [10] DUAN Xiang-jie, DONG Yong-xiang and FENG Shunshan et al. The numerical simulation of flow field for underwater vehicle with pump jet propulsion[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2012, 32(3):161-170(in Chinese).

    [11] RAO Zhi-qiang. Numerical simulation of hydrodynamical performance of pump jet propulsor[D]. Master Thesis, Shanghai, China: Shanghai Jiao Tong University, 2012(in Chinese).

    [12] CHEN H.-C., LEE S.-K. Chimera RANS simulation of propeller-ship interactions including crash-astern conditions[C]. Proceedings of the Thirteenth International Offshore and Polar Engineering Conference. Honolulu, Hawaii, USA, 2003, 334-343.

    [13] ZHOU Lian-di, ZHAO Feng. Investigation of viscous flow field around an appended revolution body with guide vane propeller[J]. Journal of Hydrodynamics, Ser. B, 2000, 12(1): 79-86.

    [14] CAO Qing-ming, HONG Fang-wen and TANG Denghai et al. Prediction of loading distribution and hydrodynamic measurements for propeller blades in a rim driven thruster[J]. Journal of Hydrodynamics, 2012, 24(1): 50-57.

    [15] Lü Xiao-jun, ZHOU Qi-dou and JI Gang et al. Prediction and comparison of the open water performance of a ducted propeller[J]. Journal of Naval University of Engineering, 2010, 22(1): 24-30(in Chinese).

    10.1016/S1001-6058(14)60059-7

    * Biography: Lü Xiao-jun (1985-), Male, Ph. D.

    ZHOU Qi-dou,

    E-mail: Qidou_Zhou@126.com

    久久人妻福利社区极品人妻图片| 欧美不卡视频在线免费观看 | 午夜免费成人在线视频| 亚洲熟妇熟女久久| 制服诱惑二区| 黄色a级毛片大全视频| 美女国产高潮福利片在线看| 国产精品香港三级国产av潘金莲| cao死你这个sao货| e午夜精品久久久久久久| 国产99久久九九免费精品| 在线观看66精品国产| 欧美亚洲日本最大视频资源| 飞空精品影院首页| 美女视频免费永久观看网站| 日本黄色视频三级网站网址 | 欧美精品人与动牲交sv欧美| 大型av网站在线播放| 国产av精品麻豆| 老司机影院毛片| 黑丝袜美女国产一区| 久久中文字幕一级| 老司机午夜十八禁免费视频| 看片在线看免费视频| 精品国产超薄肉色丝袜足j| 久久精品国产亚洲av香蕉五月 | 欧美精品亚洲一区二区| 在线观看免费视频网站a站| 香蕉丝袜av| 亚洲人成伊人成综合网2020| 又黄又粗又硬又大视频| 国产在线观看jvid| 午夜亚洲福利在线播放| av网站在线播放免费| 又黄又粗又硬又大视频| av在线播放免费不卡| 日本a在线网址| 女人被狂操c到高潮| 搡老熟女国产l中国老女人| 久久人人97超碰香蕉20202| 天堂√8在线中文| 成年人黄色毛片网站| 制服人妻中文乱码| 国产无遮挡羞羞视频在线观看| a级片在线免费高清观看视频| a级毛片在线看网站| 免费久久久久久久精品成人欧美视频| 少妇 在线观看| 亚洲片人在线观看| a在线观看视频网站| 国内久久婷婷六月综合欲色啪| 欧美日韩av久久| 巨乳人妻的诱惑在线观看| 午夜亚洲福利在线播放| aaaaa片日本免费| 中文字幕av电影在线播放| 欧美亚洲日本最大视频资源| 天天添夜夜摸| 极品人妻少妇av视频| 91精品国产国语对白视频| 免费在线观看影片大全网站| 国产亚洲欧美在线一区二区| 女人精品久久久久毛片| 国产在视频线精品| tube8黄色片| 国产精品av久久久久免费| 精品国产一区二区久久| 美女福利国产在线| 日韩成人在线观看一区二区三区| 欧美日韩乱码在线| 亚洲成a人片在线一区二区| 国产成人精品久久二区二区免费| 搡老岳熟女国产| 伦理电影免费视频| 91在线观看av| 国产xxxxx性猛交| 国产男女超爽视频在线观看| 亚洲一区二区三区欧美精品| 免费在线观看黄色视频的| 自拍欧美九色日韩亚洲蝌蚪91| 成人永久免费在线观看视频| 夜夜夜夜夜久久久久| 黑人操中国人逼视频| 日本五十路高清| 国内毛片毛片毛片毛片毛片| 国产精品久久电影中文字幕 | 视频区欧美日本亚洲| 日本wwww免费看| 丝袜美足系列| 精品视频人人做人人爽| av超薄肉色丝袜交足视频| 国产精品 欧美亚洲| 九色亚洲精品在线播放| 黄色女人牲交| 中文字幕另类日韩欧美亚洲嫩草| 自拍欧美九色日韩亚洲蝌蚪91| xxx96com| 每晚都被弄得嗷嗷叫到高潮| 国内毛片毛片毛片毛片毛片| 成人影院久久| 91字幕亚洲| 久久久国产精品麻豆| 极品人妻少妇av视频| 国产亚洲精品一区二区www | 国产片内射在线| 午夜两性在线视频| 国产一区二区三区在线臀色熟女 | 精品久久久精品久久久| 在线观看一区二区三区激情| 亚洲精华国产精华精| 国内久久婷婷六月综合欲色啪| 日本黄色视频三级网站网址 | 午夜福利影视在线免费观看| 国产一区有黄有色的免费视频| 久久中文字幕一级| 亚洲精品国产色婷婷电影| 久热爱精品视频在线9| 国产精品久久久人人做人人爽| av超薄肉色丝袜交足视频| 久久久久精品国产欧美久久久| 少妇 在线观看| www.999成人在线观看| 精品熟女少妇八av免费久了| 岛国在线观看网站| 亚洲av成人av| 成人国语在线视频| 久热爱精品视频在线9| 99re6热这里在线精品视频| 国产av又大| 真人做人爱边吃奶动态| 精品一品国产午夜福利视频| 精品福利永久在线观看| 日本wwww免费看| 91麻豆av在线| 两个人看的免费小视频| 成人永久免费在线观看视频| 午夜福利乱码中文字幕| 别揉我奶头~嗯~啊~动态视频| 一区二区三区国产精品乱码| 国产精品香港三级国产av潘金莲| 在线观看免费午夜福利视频| 美女国产高潮福利片在线看| 19禁男女啪啪无遮挡网站| 视频区图区小说| 欧美人与性动交α欧美软件| 国产免费av片在线观看野外av| 成年人黄色毛片网站| 中文字幕高清在线视频| 亚洲片人在线观看| 热99re8久久精品国产| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲第一av免费看| 波多野结衣一区麻豆| 色播在线永久视频| 一区福利在线观看| 欧美日韩一级在线毛片| 美女国产高潮福利片在线看| 深夜精品福利| 无人区码免费观看不卡| 亚洲精品成人av观看孕妇| 国产欧美亚洲国产| 人妻久久中文字幕网| 成人特级黄色片久久久久久久| 人人妻人人爽人人添夜夜欢视频| av片东京热男人的天堂| 国产亚洲一区二区精品| 91成年电影在线观看| 精品欧美一区二区三区在线| 悠悠久久av| 久久中文字幕一级| 国产精品一区二区免费欧美| 91成人精品电影| 满18在线观看网站| av天堂久久9| 老熟妇仑乱视频hdxx| 91av网站免费观看| 夜夜躁狠狠躁天天躁| 午夜免费成人在线视频| 中亚洲国语对白在线视频| 人人妻人人添人人爽欧美一区卜| 99re在线观看精品视频| 亚洲人成电影免费在线| 亚洲专区国产一区二区| 欧美日韩中文字幕国产精品一区二区三区 | av欧美777| 国产精华一区二区三区| 超碰成人久久| 国产精品二区激情视频| 成熟少妇高潮喷水视频| av线在线观看网站| 一区二区三区精品91| 精品高清国产在线一区| 99热只有精品国产| 精品午夜福利视频在线观看一区| 91字幕亚洲| av网站免费在线观看视频| 国产激情欧美一区二区| 久久精品国产清高在天天线| 最新在线观看一区二区三区| 黄色 视频免费看| 丝袜美腿诱惑在线| 夜夜躁狠狠躁天天躁| 精品亚洲成a人片在线观看| 啪啪无遮挡十八禁网站| 黑人操中国人逼视频| 国产精品国产av在线观看| 国产精品美女特级片免费视频播放器 | 亚洲国产中文字幕在线视频| 欧美+亚洲+日韩+国产| 51午夜福利影视在线观看| 久久久久久久久免费视频了| av欧美777| 一区二区三区激情视频| 国产精品一区二区在线观看99| 国产成人啪精品午夜网站| 老司机靠b影院| 精品免费久久久久久久清纯 | 又黄又粗又硬又大视频| 深夜精品福利| www.熟女人妻精品国产| 免费少妇av软件| 制服诱惑二区| 一级黄色大片毛片| 国产有黄有色有爽视频| 怎么达到女性高潮| 婷婷精品国产亚洲av在线 | 欧美 日韩 精品 国产| а√天堂www在线а√下载 | 男女免费视频国产| 看黄色毛片网站| 精品人妻在线不人妻| 在线观看免费午夜福利视频| 一区二区三区激情视频| 欧美精品人与动牲交sv欧美| 国产成人免费无遮挡视频| 搡老岳熟女国产| 欧美色视频一区免费| 成年人午夜在线观看视频| 日本黄色日本黄色录像| 国产精品永久免费网站| 日韩 欧美 亚洲 中文字幕| 国产极品粉嫩免费观看在线| 在线观看66精品国产| 俄罗斯特黄特色一大片| 一级毛片精品| 91精品三级在线观看| 精品久久蜜臀av无| 国产在线一区二区三区精| 在线观看免费日韩欧美大片| 欧美精品亚洲一区二区| а√天堂www在线а√下载 | av网站免费在线观看视频| 在线观看免费高清a一片| 少妇被粗大的猛进出69影院| 自拍欧美九色日韩亚洲蝌蚪91| 飞空精品影院首页| 亚洲五月婷婷丁香| 国产精品免费视频内射| 亚洲一码二码三码区别大吗| 韩国av一区二区三区四区| 日韩欧美三级三区| 国产成人欧美在线观看 | 国产单亲对白刺激| 午夜视频精品福利| 欧美精品一区二区免费开放| 一二三四在线观看免费中文在| 国产一区二区三区在线臀色熟女 | 久久久精品区二区三区| 久久精品91无色码中文字幕| 亚洲欧美一区二区三区久久| 日韩熟女老妇一区二区性免费视频| 免费av中文字幕在线| 国产日韩欧美亚洲二区| 无人区码免费观看不卡| 少妇粗大呻吟视频| 在线观看免费日韩欧美大片| 久热爱精品视频在线9| 女性生殖器流出的白浆| e午夜精品久久久久久久| 午夜91福利影院| 国产深夜福利视频在线观看| 国产亚洲欧美在线一区二区| 免费观看a级毛片全部| 99国产精品99久久久久| 久久久国产欧美日韩av| 国产成人精品无人区| 色尼玛亚洲综合影院| 亚洲欧美激情在线| 亚洲男人天堂网一区| 69精品国产乱码久久久| 王馨瑶露胸无遮挡在线观看| 欧美在线黄色| 麻豆av在线久日| 怎么达到女性高潮| 亚洲精品在线观看二区| 国产成人精品久久二区二区91| 怎么达到女性高潮| a级片在线免费高清观看视频| 婷婷丁香在线五月| 村上凉子中文字幕在线| 在线观看日韩欧美| 中文字幕制服av| 男人的好看免费观看在线视频 | 日韩 欧美 亚洲 中文字幕| 久久这里只有精品19| 精品国产超薄肉色丝袜足j| 亚洲国产欧美一区二区综合| 国产在视频线精品| 免费观看人在逋| 男男h啪啪无遮挡| 99re6热这里在线精品视频| 多毛熟女@视频| 人人妻,人人澡人人爽秒播| 波多野结衣一区麻豆| 亚洲精品成人av观看孕妇| 亚洲av日韩在线播放| 色播在线永久视频| 天堂√8在线中文| 成人18禁高潮啪啪吃奶动态图| 国产真人三级小视频在线观看| 免费不卡黄色视频| 黑人巨大精品欧美一区二区蜜桃| 一进一出抽搐动态| 国产亚洲av高清不卡| 国产精品久久久久久人妻精品电影| 亚洲中文日韩欧美视频| 国产一区二区激情短视频| 夜夜躁狠狠躁天天躁| 久久精品国产清高在天天线| av天堂久久9| 在线观看免费视频网站a站| 国产亚洲欧美98| 纯流量卡能插随身wifi吗| 国产精品成人在线| 热re99久久精品国产66热6| 亚洲精华国产精华精| www日本在线高清视频| 国产精品自产拍在线观看55亚洲 | 亚洲欧美一区二区三区黑人| av不卡在线播放| 午夜福利免费观看在线| 国产1区2区3区精品| 一进一出好大好爽视频| 久久午夜综合久久蜜桃| 国产不卡av网站在线观看| 成熟少妇高潮喷水视频| avwww免费| 少妇的丰满在线观看| av线在线观看网站| 夜夜夜夜夜久久久久| 人人妻,人人澡人人爽秒播| 三级毛片av免费| 纯流量卡能插随身wifi吗| 国产欧美日韩一区二区精品| 女人被躁到高潮嗷嗷叫费观| 女警被强在线播放| 99国产极品粉嫩在线观看| 精品国产一区二区久久| 十八禁高潮呻吟视频| x7x7x7水蜜桃| 亚洲美女黄片视频| 成人国语在线视频| 日韩 欧美 亚洲 中文字幕| 自拍欧美九色日韩亚洲蝌蚪91| 日韩成人在线观看一区二区三区| 国产成人欧美在线观看 | 久久久国产成人免费| 在线观看66精品国产| 午夜福利免费观看在线| 国产日韩一区二区三区精品不卡| 亚洲国产看品久久| 久久精品亚洲av国产电影网| 免费日韩欧美在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 一本综合久久免费| 国产精品二区激情视频| 老司机午夜福利在线观看视频| 亚洲中文字幕日韩| 久久精品人人爽人人爽视色| 制服诱惑二区| 黄色 视频免费看| 久9热在线精品视频| 国产成人欧美| 黄色片一级片一级黄色片| 韩国精品一区二区三区| 亚洲成a人片在线一区二区| 免费看a级黄色片| 久久久精品国产亚洲av高清涩受| 色在线成人网| 亚洲一区高清亚洲精品| 国产精品久久久av美女十八| 欧洲精品卡2卡3卡4卡5卡区| 少妇被粗大的猛进出69影院| 9色porny在线观看| 天堂√8在线中文| 欧美最黄视频在线播放免费 | 久久久久久久午夜电影 | 新久久久久国产一级毛片| 黄色片一级片一级黄色片| 国产欧美日韩一区二区三区在线| 亚洲人成伊人成综合网2020| 亚洲国产毛片av蜜桃av| 美女扒开内裤让男人捅视频| 1024香蕉在线观看| 9色porny在线观看| 久久久水蜜桃国产精品网| 黄色怎么调成土黄色| 黄色视频不卡| 在线观看舔阴道视频| 欧美日韩亚洲综合一区二区三区_| 欧美日韩国产mv在线观看视频| 人人妻人人澡人人爽人人夜夜| 亚洲欧美一区二区三区久久| 亚洲国产精品一区二区三区在线| 欧美国产精品va在线观看不卡| 久久99一区二区三区| 成年版毛片免费区| 在线观看免费日韩欧美大片| 亚洲全国av大片| 精品国产一区二区久久| 亚洲国产毛片av蜜桃av| 夫妻午夜视频| 99精品欧美一区二区三区四区| 亚洲精品久久午夜乱码| 一个人免费在线观看的高清视频| 国产免费男女视频| 久久精品91无色码中文字幕| 悠悠久久av| 国产麻豆69| 免费看a级黄色片| 欧美成人免费av一区二区三区 | 老司机午夜十八禁免费视频| 搡老岳熟女国产| √禁漫天堂资源中文www| 宅男免费午夜| 中文字幕av电影在线播放| 午夜福利在线免费观看网站| 国产精品国产高清国产av | 欧美日韩亚洲高清精品| 精品一区二区三区四区五区乱码| 丁香欧美五月| 亚洲欧洲精品一区二区精品久久久| 精品乱码久久久久久99久播| 成人精品一区二区免费| 51午夜福利影视在线观看| 国产精品1区2区在线观看. | 亚洲五月色婷婷综合| 国产黄色免费在线视频| 国产欧美日韩一区二区三区在线| 欧美黄色淫秽网站| 人妻 亚洲 视频| 国产日韩一区二区三区精品不卡| 国产欧美日韩综合在线一区二区| 在线观看舔阴道视频| 亚洲精品粉嫩美女一区| 精品第一国产精品| 国产高清激情床上av| 成人三级做爰电影| 亚洲国产毛片av蜜桃av| 极品人妻少妇av视频| 亚洲全国av大片| 欧美色视频一区免费| 丰满饥渴人妻一区二区三| 交换朋友夫妻互换小说| 又黄又爽又免费观看的视频| 久久中文字幕一级| 国产在视频线精品| 在线观看午夜福利视频| 好男人电影高清在线观看| 精品久久蜜臀av无| 午夜福利,免费看| 热re99久久国产66热| 高清黄色对白视频在线免费看| 中文亚洲av片在线观看爽 | 在线视频色国产色| av一本久久久久| 老汉色av国产亚洲站长工具| 午夜福利影视在线免费观看| 又大又爽又粗| 日韩制服丝袜自拍偷拍| 高清av免费在线| 男女床上黄色一级片免费看| 国产亚洲精品一区二区www | 99久久人妻综合| 亚洲avbb在线观看| 99精品欧美一区二区三区四区| 9191精品国产免费久久| 中亚洲国语对白在线视频| 悠悠久久av| 国产成人欧美在线观看 | 亚洲av成人一区二区三| av网站免费在线观看视频| 999精品在线视频| 国产97色在线日韩免费| 国产不卡av网站在线观看| 一级毛片高清免费大全| 欧美精品人与动牲交sv欧美| 午夜精品国产一区二区电影| 精品欧美一区二区三区在线| 99国产精品免费福利视频| 久久精品国产综合久久久| 母亲3免费完整高清在线观看| 每晚都被弄得嗷嗷叫到高潮| 久久久久国产一级毛片高清牌| 日韩欧美三级三区| 一本综合久久免费| 大香蕉久久成人网| ponron亚洲| 成熟少妇高潮喷水视频| 亚洲精品美女久久av网站| 超碰成人久久| 男人操女人黄网站| 国产成人系列免费观看| 亚洲欧美日韩高清在线视频| 狠狠婷婷综合久久久久久88av| 中文亚洲av片在线观看爽 | 日韩欧美一区二区三区在线观看 | 18禁国产床啪视频网站| 欧美日韩国产mv在线观看视频| 午夜福利在线观看吧| 日韩制服丝袜自拍偷拍| 免费av中文字幕在线| 视频区欧美日本亚洲| 精品福利观看| 三级毛片av免费| 精品人妻在线不人妻| 少妇猛男粗大的猛烈进出视频| 亚洲aⅴ乱码一区二区在线播放 | 国产亚洲欧美在线一区二区| 手机成人av网站| 欧美日韩福利视频一区二区| 久久亚洲精品不卡| 精品高清国产在线一区| 亚洲精品自拍成人| 亚洲精品在线观看二区| 制服人妻中文乱码| 99国产综合亚洲精品| 建设人人有责人人尽责人人享有的| 亚洲免费av在线视频| 欧美老熟妇乱子伦牲交| 国产成+人综合+亚洲专区| 18禁裸乳无遮挡免费网站照片 | 国产欧美日韩综合在线一区二区| 美女午夜性视频免费| 亚洲色图综合在线观看| av网站免费在线观看视频| 大型黄色视频在线免费观看| 黑人猛操日本美女一级片| 国产精品一区二区在线观看99| 久久国产精品影院| 精品久久久久久电影网| 午夜免费观看网址| 久久精品亚洲精品国产色婷小说| 如日韩欧美国产精品一区二区三区| 搡老岳熟女国产| 日日夜夜操网爽| 国产精品 国内视频| av线在线观看网站| 最近最新中文字幕大全电影3 | 成人精品一区二区免费| 中国美女看黄片| 91成人精品电影| 人人妻人人添人人爽欧美一区卜| 高清黄色对白视频在线免费看| 午夜精品国产一区二区电影| 国产精品永久免费网站| 亚洲九九香蕉| 999久久久精品免费观看国产| 精品久久蜜臀av无| 大香蕉久久网| 国产精品1区2区在线观看. | 老熟妇仑乱视频hdxx| √禁漫天堂资源中文www| 国产一区二区三区在线臀色熟女 | 亚洲熟妇中文字幕五十中出 | 日韩熟女老妇一区二区性免费视频| 一二三四在线观看免费中文在| 色婷婷av一区二区三区视频| 高清视频免费观看一区二区| 成年人午夜在线观看视频| 99久久国产精品久久久| 1024香蕉在线观看| 亚洲va日本ⅴa欧美va伊人久久| 国产欧美日韩一区二区精品| 久久精品aⅴ一区二区三区四区| 亚洲中文日韩欧美视频| 日韩大码丰满熟妇| 欧美av亚洲av综合av国产av| 啦啦啦在线免费观看视频4| 久久精品91无色码中文字幕| 午夜福利视频在线观看免费| 99精品在免费线老司机午夜| 久久天躁狠狠躁夜夜2o2o| 日本五十路高清| 怎么达到女性高潮| 精品福利永久在线观看| 亚洲 国产 在线| 丰满迷人的少妇在线观看| 亚洲欧美一区二区三区黑人| 好男人电影高清在线观看| 成人18禁高潮啪啪吃奶动态图| 狠狠狠狠99中文字幕| www.自偷自拍.com| 久久热在线av| 高清黄色对白视频在线免费看| 国产深夜福利视频在线观看| 91老司机精品| 亚洲av欧美aⅴ国产| videos熟女内射| 啦啦啦在线免费观看视频4| 18在线观看网站| 精品一区二区三卡| 91在线观看av| 69精品国产乱码久久久| 热99久久久久精品小说推荐|