• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Non-hydrostatic versus hydrostatic modelings of free surface flows*

    2014-04-05 21:44:04ZHANGJingxin張景新

    ZHANG Jing-xin (張景新)

    MOE Key Laboratory of Hydrodynamics, Shanghai Jiao Tong University, Shanghai 200240, China

    Key Laboratory of Estuarine and Coastal Engineering, Ministry of Transport, Shanghai 201201, China

    School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China, E-mail: zhangjingxin@sjtu.edu.cn SUKHODOLOV Alexander N.

    Department of Ecohydrology, Institute of Fresh-water Ecology and Inland Fisheries, Berlin 12587, Germany

    LIU Hua (劉樺)

    MOE Key Laboratory of Hydrodynamics, Shanghai Jiaotong University, Shanghai 200240, China

    School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

    Non-hydrostatic versus hydrostatic modelings of free surface flows*

    ZHANG Jing-xin (張景新)

    MOE Key Laboratory of Hydrodynamics, Shanghai Jiao Tong University, Shanghai 200240, China

    Key Laboratory of Estuarine and Coastal Engineering, Ministry of Transport, Shanghai 201201, China

    School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China, E-mail: zhangjingxin@sjtu.edu.cn SUKHODOLOV Alexander N.

    Department of Ecohydrology, Institute of Fresh-water Ecology and Inland Fisheries, Berlin 12587, Germany

    LIU Hua (劉樺)

    MOE Key Laboratory of Hydrodynamics, Shanghai Jiaotong University, Shanghai 200240, China

    School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

    (Received December 7, 2012, Revised May 15, 2014)

    The hydrodynamics of geophysical flows in oceanic shelves, estuaries, and rivers are often studied by solving shallow water equations under either hydrostatic or non-hydrostatic assumptions. Although the hydrostatic models are quite accurate and cost-efficient for many practical applications, there are situations when the fully hydrodynamic models are preferred despite a larger cost for computations. The present numerical model is implemented by the finite volume method (FVM) based on unstructured grids. The model can be efficiently switched between hydrostatic and non-hydrostatic modules. The case study shows that for waves propagating along the bar a criterion with respect to the shallowness alone, the ratio between the depth and the wave length, is insufficient to warrant the performance of shallow flow equations with a hydrostatic approach and the nonlinearity in wave dynamics can be better accounted with a hydrodynamic approach. Besides the prediction of the flows over complex bathymetries, for instance, over asymmetrical dunes, by a hydrodynamic approach is shown to be superior in accuracy to the hydrostatic simulation.

    hydrostatic, non-hydrostatic, TVD scheme, non-orthogonal grid

    Introduction

    The flows in natural environments are often characterized by a vertical confinement between a solid boundary beneath and a free surface above the flow. These kinds of flows are common in oceanic shelves, estuaries, and rivers and they are generally referred to as shallow flows. The prediction of shallow flows is important for practical applications in coastal and civil engineering in the designs of nautical constructions, the management of waterways and for the prevention of natural disasters as floods and accidental spills.

    Numerical modeling is one of the primary tools used in engineering practice for the prediction of shallow flows. The shallow flow models are mostly based on the hydrostatic assumption for the pressure distribution which allows considerable simplifications[1]. An advantage of these simplifications is the high efficiency of the models because of the neglecting of the vertical momentum equation and the relatively low computation costs. However, there are situations when the assumption about the hydrostatic pressure distribution might not be valid for physical processes and the computations would involve large errors.

    To improve the predictions of shallow flows, models were developed to account for a non-hydrostatic pressure. Casulli[1,2]proposed a model with full hydro-dynamic pressure terms, in which the pressure is represented as a sum of hydrostatic and non-hydrostatic constituents. Jankowski[3]presented the details of a predictor-corrector method for calculation of the pressure field. In this method, the predictor step is used to calculate the hydrostatic pressure while the non-hydrostatic pressure is calculated in the following corrector step. Li[4]simulated the water wave by directly solving Navier-Stokes equations using a similar decomposition scheme for the pressure and adopting a fractional method to implement the numerical model. Kocyigit et al.[5]and Chen[6]solved the three-dimensional non-hydrostatic equations in the Cartesian coordinate system. Fringer et al.[7]presented a non-hydrostatic model for ocean flows based on unstructured grids with the finite volume method (FVM) and implemented it by highly efficient parallel computational codes. Because of these improvements the non-hydrostatic modelings become feasible for large scale characteristics of flows in natural environments.

    An important aspect of the hydrodynamic modeling is the accurate representation of the flow domain with computational grids. Although Cartesian grids used in early models are highly efficient, they are unsuitable for the accurate fitting of complex boundaries with a stair-stepped resolution. The fitting of boundaries is more accurate with curvilinear orthogonal structured grids. Most flexible are fully unstructured grids which were implemented in more recent models[2,6-8].

    This short outline of the state of art in the modeling of shallow flows indicates that a significant progress has been achieved in modeling complex environmental flows over the last decade. However, the applications of advanced non-hydrostatic models are still few and far between due to a huge amount of computational resources[7]. Quite often in solving practical problems engineers have to find a compromise between the accuracy and the costs of modeling. There is evidently a knowledge gap, when a more advanced but costly non-hydrostatic models have to be applied.

    The present study examines two typical shallow flows with both the hydrostatic and the non-hydrostatic models and compares the results in order to clarify the essential features in or not in favor of the costly non-hydrostatic methods. For this purpose, a previously coded in-house numerical model[9]is expanded to a fully hydrodynamic model with an unstructured horizontal grid and a vertical sigma-level grid. This expansion of the model and the application of the same basic codes suit best the aims of comparison between the hydrostatic and non-hydrostatic approaches. Both models have been used for examining the two flow cases: the non-linear wave propagation over a bar and a flow over an asymmetrical dune.

    1. Numerical model

    1.1 Governing equationsIn the above equations,g is the gravity acceleration, f=2ωsinφis the Coriolis term,φis the latitude, ωis the Earth’s angular velocity, andζis the free surface elevation. When the non-hydrostatic pressure pnis ignored, the vertical momentum equation should also be neglected, and the system (1)-(4) then degenerates to the conventional shallow water equations with two horizontal momentum equations and the continuity equation.

    1.2 Turbulence model

    To close the system the eddy viscosity concept is employed in the model and the vertical eddy viscosity coefficient νtVis determined by solving the one-equation Spalart-Allmaras (SA) model[11]. The transport equation forν~is

    and dis the distance to the solid wall. The model constants include

    The horizontal eddy viscosity coefficient is determined by a Smagorinsky-type formulation

    where chis an arbitrary Smagorinsky constant, varying in the range of 0.01-0.5[12].

    1.3 Numerical scheme

    1.3.1 Outline of the numerical scheme

    In the numerical method, a semi-implicit scheme is used, with a parameterθ. The importance of the value of θwas shown in previous papers[5,13]. The value of θis taken as 0.5 in the following computations. The computational domain is meshed by the unstructured grids and the flow variables are taken at the cell centers thus giving the method a name of the CC scheme. For the advection terms, the TVD (Total Variation Diminishing) scheme is used to calculate the cell face flux. An arbitrary variable ?fat the cell face is calculated with a second order TVD scheme

    where f denotes the cell face,?Dand ?Care, respectively, the cell-centered variables in the downwind and upwind nodes around the facef. Using a flux limiter functionψ(rf), which is simply a linear function ofrf, one can obtain a higher order TVD scheme. The ratiorfis calculated by the method extended by Darwish[14].

    On the cell faces a non-orthogonal horizontal local coordinate(ξ,η)is used to replace the Cartisan coordinate(x,y )for the derivative calculations. From the chain rule of differentiations, one obtains

    where J=xξyη-xηyξ, andξis directed from a control cell center to a neighbor cell center across the common face, andηis directed from one vertex to another on the same face anticlockwisely around the control cell center (Fig.1).

    1.3.2 Predictor step with hydrostatic pressure

    Firstly, the continuity equation is discretized as

    and the discretized momentum equations are written as

    whereF is an operator that includes the explicit discretization of the convective terms, the horizontal viscosity terms and the Coriolis term.

    Setting q?,q?,q?,q?,η?as the temporary

    xyzσ flow variables controlled by the hydrostatic pressure ph, the discretized continuity and momentum equations are written as:

    Furthermore, discretizing the above equations, one obtains

    Hence, the governing equations are summarized in matrix notation as:

    The details of the matrixes are

    Aiis a series of tri-diagonal matrixes.

    For the discretizated Eqs.(23) and (24), the intermediate variablesare introduced, so

    Rewriting the governing Eq.(22)

    Integrating (31) in the horizontal control volume based on Gauss theorem

    where the symbolf represents the cell face,Δsiis the horizontal area ofithcell,Δlis the length of is the sthface (NS is the total number of faces), and (cosαis,sinαis)is the x -and y-projections of the face normal unit. The derivative calculation on the cell face in the Cartisan coordinate(x,y)is transformed to the local coordinate (ξ,η). The final discretized equation of (32) is

    Equation (33) is simplified in a compact form as

    The matrix system (34) is solved using the Bi-CGSTAB method, and,can be calculated by

    solving the tri-diagonal matrix systems (23) and (24). If the non-hydrostatic pressure is neglected, the new variables are justly the final flow variables at time step n+1. Before the further step for the nonhydrostatic flow, the tri-diagonal system (25) is firstly solved to obtain the variable.

    1.3.3 Corrector step with non-hydrostatic pressure

    The fully discretized equations at time stepn+1 following the resolved hydrostatic fluid flow can be written as:

    By subtracting Eqs.(16), (17) and (18) from (35), (36) and (37), one obtains the following discretized equations in the corrector step for the flow induced by the non-hydrostatic pressure pn

    Although the predicted flow variables satisfy the depth-averaged continuity equation, it does not necessarily satisfy the local continuity condition. Therefore, the non-hydrostatic pressure enforces the corrected flow to satisfy the continuity condition. In theσtransformed frame, the continuity Eq.(1) contains no vertical velocity qz, though another form of this equation containing qzcan be deduced as

    A system of Poisson-type equations for the nonhydrostatic pressure pnn+1is derived by substituting Eqs.(38), (39) and (40) into (41),

    where the cross-derivative terms of pnn+1are ignored. The final discretized matrix system for Eq.(42) is summarized as

    At the solid wall and the bottom, a zero normal gradient is imposed while at the free surface a zero value of the non-hydrostatic pressure is specified. When the Poisson-type equation is solved, the updated flow velocities are calculated.

    Finally the updated water surface is calculated at the corrector step. Casulli[2]presented a method of water surface updating after the second corrector procedure, and Zhang[9]implemented a third computational step similarly to the first for a more accurate update of the water surface and the velocities.

    2. Case study and analysis

    Two test cases are considered in this computational study with the focus on: (1) calibration of the numerical models, (2) validation of the pressure terms, (3) comparison between results of hydrostatic and non-hydrostatic modelings, and (4) analysis of the necessity of the non-hydrostatic modeling. The test cases include a nonlinear wave propagation over a bar, and a flow over an asymmetric dune.

    2.1 Nonlinear wave propagation over a bar

    In the numerical experiments the wave is generated by adding source terms in the governing equation. To absorb the incident waves in the simulations a dampening layer is set on the beach side of the computational domain. The quadrilateral horizontal mesh resolution is 0.025 m, and the vertical first grid pointnearest to the bottom is adjusted to be about 1.5(=yu/ν), which is required by the non-slip wall condition. Then the vertical grid is stretched with a ratio 1.15 upward until about 0.025 m equal to the horizontal mesh size. The integration time step is 0.0001s, and the total simulation takes about30T (wave peroid).

    Measured and computed time series of the water surface elevation are compared for seven characteristic locations, as shown in Fig.3. Both models simulate the approaching waves quite accurately (Location 1) even when the waves become slightly asymmetrical due to the interaction with the bar (Location 2). As the shape of the waves becomes more sharp-crested (Locations 3-7), the computations of the hydrostatic model near the crests start to develop spurious oscillations while the non-hydrostatic model is still capable of the accurate simulation of the wave’s pattern.

    2.2 Flow over dune

    Subaqueous dunes are the micro-scale features of the natural environments which are common on marine beaches, estuarine bars, and on the riverbeds. Dunes are asymmetric morphological structures with steep lee sides. They affect the flow similarly to steps and the flow structure downstream their crests often exhibits a separation of the flow, a recirculation zone, and a reattachment of the flow on the stoss side. Therefore, our second case study concerns the modeling of the flow structure over a dune in the experiments of Balachandar et al.[17]In these experiments a train of dunes identical in geometry are physically modeled in a laboratory flume and measurements are performed over the 17th dune in the sequence. These experiments become popular for modeling and were already examined in several modeling studies[18-20].

    In this study the computational domain is restricted to a single dune because of the periodicity of the flow structure in a train. The geometry of the dune is shown in Fig.4. The coordinate system withx in the main stream direction,y in the spanwise direction, andz in the upward direct4ion is adopted here. The Reynolds number is 5.7×10 calculated based on the water depth and the free-surface velocity at the inlet of the domain. The Froude number is 0.44 based on the same flow parameters. The three-dimensional domain covers the dune within an area of 0.4 m long and 0.2 m wide. The horizontal grid is uniform with a scale of 0.0025 m while the vertical grid is stretched from the bottom with a ratio 1.15. The point nearest to the bottom is set within the viscosity boundary layer of about 1.6z+. At the inlet, the discharge and the eddy viscosity are provided by another simulation in a long channel with a flat bottom to get a fully developed turbulent flow. A zero water level boundary condition is set at the outlet. Simulations are carried out with both hydrostatic and non-hydrostatic models. The results of modeling are compared for six characteristic locations in vertical profiles of the stream velocities, as shown in Fig.4.

    The comparison between simulations and measurements shows that the performance of the hydrostatic modeling is especially poor in the area of flow separation and recirculation<12,-0.2<z/L<0.1, as shown in Fig.5. On the other hand, the results of the non-hydrostatic modeling see a good agreement with the measurements everywhere in the computational domain. It is worth noticing that the non-hydrostatic modeling is capable of accurately resolving the separation flow with the recirculation. The patterns of streamlines simulated with hydrostatic and non-hydrostatic models are compared in Fig.5. The streamlines of the flow in the hydrostatic modeling remain parallel to the riverbed and indicate neither the flow separation nor recirculation. The pattern of recirculation is well captured by the non-hydrostatic model and the free surface sees an increase in pressure, which is commonly reported for flows over dunes. It may be concluded that the accuracy of the model with the nonhydrostatic pressure is superior in comparison with the hydrostatic modeling. However, in the downstream part on the stoss side of the wave (>12)the results of modeling with both approaches agree well with the measurements, as shown in Fig.6.

    Results of this case study suggest that a switch from the hydrostatic modeling to the non-hydrostatic one is necessary for micro-scale bedforms with steep angles of lee sides. The precondition for the non-hydrostatic modeling is the necessity to resolve the lower part of the water column with complex patterns of flow separation and recirculation. The knowledge of these complex features in the flow structure is vital for the modeling of morphological processes.

    3. Conclusions

    A three-dimensional numerical model based on the hydrostatic assumption is extended to a fully hydrodynamic model with additional non-hydrostatic pressure terms. Two cases are investigated in order to validate both hydrostatic and non-hydrostatic models with the focus on the impact of the non-hydrostatic pressure for the numerical simulation of shallow flows.

    The results of the study show that for waves propagating along the bar a criterion of shallowness alone, the ratio between the depth and the wave length, is insufficient to warrant the performance of the shallow flow equations with a hydrostatic approach and the dispersion in the wave dynamics can be better accounted with the non-hydrostatic modeling approach.

    Beyond the laboratory scale, the hydrostatic model is widely used in the simulation of natural flows in oceans, estuaries and rivers because of the lower computation cost and the higher efficiency. However, the additional calculation of the Poisson equation for the non-hydrostatic pressure costs much more CPU time, especially, for natural flows in a large domain (commonly on the kilometer scale). A further development should probably focus on the development of a hybrid hydrostatic and non-hydrostatic model based on a series of practical and credible switch conditions.

    Acknowledgement

    This work was supported by the Deutsche Forschungsgemeinschaft (Grant No. DFG SU 405/3, SU 405/4).

    [1] CASULLI V. A semi-implicit finite fifference method for non-hydrostatic, free-surface flows[J]. International Journal for Numerical Methods in Fluids, 1999, 30(4): 425-440.

    [2] CASULLI V., ZANOLLI P. Semi-implicit numerical modeling of nonhydrostatic free-surface flows for environmental problems[J]. Mathematical and computer modeling, 2002; 36(10): 1131-1149.

    [3] JANKOWSKI J. A. A non-hydrostatic model for free surface flows[D]. Doctoral Thesis, Hannover, Germany: University of Hannover, 1999.

    [4] LI B., FLEMING C. A. Three-dimensional model of Navier-Stokes equations for water waves[J]. Journal of Waterway, Port, Coastal and Ocean Engineering, 2001, 127(1): 16-25.

    [5] KOCYIGIT M. B., FALCONER R. A. and LIN B. Three-dimensional numerical modeling of free surface flows with non-hydrostatic pressure[J]. International Journal for Numerical Methods in Fluids, 2002, 40(9): 1145-1162.

    [6] CHEN X. J. A fully hydrodynamic model for three-dimensional, free-surface flows[J]. International Journal for Numerical Methods in Fluids, 2003, 42(9): 929-952.

    [7] FRINGER O. B., GERRITSEN M. and STREET R. L. An unstructured-grid, finite-volume, nonhydrostatic, parallel coastal ocean simulator[J]. Ocean modeling, 2006, 14(3): 139-173.

    [8] CASULLI V., ZANOLLI P. High resolution methods for multidimensional advection-diffusion problems infree-surface hydrodynamics[J]. Ocean modeling, 2005, 10(2): 137-151.

    [9] ZHANG Jing-xin, LIU Hua and XUE Lei-ping. A vertical 2-D mathematical model for hydrodynamic flows with free surface in σcoordinatet[J]. Journal of Hy- drodynamics Ser. B, 2006, 18(1): 82-90.

    [10] PHILLIPS N. A. A coordinate system having some special advantages for numerical forecasting[J]. Journal of Meteorology, 1957, 14: 184-185.

    [11] SPALART P. R. Strategies for turbulence modelling and simulations[J]. International Journal of Heat and Fluid Flow, 2000, 21(3): 252-263.

    [12] ZHANG Q. Y., CHAN E. S. Sensitivity studies with the three-dimensional multi-level model for tidal motion[J]. Ocean Engineering, 2003, 30(12): 1489-1505.

    [13] CHEN C., LIU H. and BEARDSLEY R. C. An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: Application to coastal ocean and estuaries[J]. Journal of Atmospheric and Oceanic Technology, 2003, 20(1): 159-186.

    [14] DARWISH M. S., MOUKALLED F. TVD schemes for unstructured grids[J]. International Journal of heat and Mass Transfer, 2003, 46(4): 599-611.

    [15] BEJI S., BATTJES J. A. Experimental investigation of wave propagation over a bar[J]. Coastal Engineering, 1993, 19(2): 151-162.

    [16] OHYAMA T., BEJI S. and BATTJES J. A. Experimental verification of numerical model for nonlinear wave evolutions[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 1994, 20(6): 637-644.

    [17] BALACHANDAR R., POLATEL C. and HYUN B.-S. et al. LDV, PIV, and LES investigation of flow over a fixed dune[C]. Sedientation and Sediment Transport: Proceedings of the Symposium Held in Monte Verta. Monte Verita, Switzerland, 2002, 171-178.

    [18] YUE W., LIN C. L. and PATEL V. C. Large eddy simulation of turbulent open-channel flow with free surface simulated by level set method[J]. Physics of fluids, 2005, 17(2): 1-12.

    [19] YUE W., LIN C. L. and PATEL V. C. Large-eddy simulation of turbulent flow over a fixed two-dimensional dune[J]. Journal of Hydraulic Engineering, ASCE, 2006, 132(7): 643-651.

    [20] BALEN W. V., UIJTTEWAAL W. S. J. and BLANCKAERT K. Large-eddy simulation of a curved openchannel flow over topography[J]. Physics of Fluids, 2010, 22(7): 1-17.

    10.1016/S1001-6058(14)60058-5

    * Project supported by the National Natural Science Foundation of China (Grant No.10702042), the Non-profit Industry Financial Program of MWR (Grant No. 201401027) and the National Key Basic Research Development Program of China (973 Program, Grant No. 2014CB046200).

    Biography: ZHANG Jing-xin (1975-), Male, Ph. D.,

    Associate Professor

    亚洲人成网站在线播| 精品一区在线观看国产| 亚洲怡红院男人天堂| 噜噜噜噜噜久久久久久91| 欧美日韩国产mv在线观看视频| 国产精品99久久99久久久不卡 | 99久久精品一区二区三区| 插逼视频在线观看| 国产精品无大码| 精品久久国产蜜桃| 婷婷色综合www| 亚洲美女搞黄在线观看| 女人久久www免费人成看片| 亚洲精品亚洲一区二区| 国产男人的电影天堂91| 大香蕉97超碰在线| 少妇精品久久久久久久| 国产精品一区二区在线观看99| 亚洲天堂av无毛| 在线观看国产h片| 我要看黄色一级片免费的| 国产精品一二三区在线看| 欧美 亚洲 国产 日韩一| 99热国产这里只有精品6| av免费观看日本| 日韩精品有码人妻一区| 欧美日韩在线观看h| 亚洲熟女精品中文字幕| 久久久久久伊人网av| 日韩av免费高清视频| 午夜免费鲁丝| 国产成人a∨麻豆精品| 人妻少妇偷人精品九色| 亚洲精品456在线播放app| 乱码一卡2卡4卡精品| 大又大粗又爽又黄少妇毛片口| 午夜免费男女啪啪视频观看| 国产成人一区二区在线| 国产欧美亚洲国产| 亚洲三级黄色毛片| 久热久热在线精品观看| 免费观看的影片在线观看| 中国国产av一级| 日本vs欧美在线观看视频 | 91aial.com中文字幕在线观看| 夫妻性生交免费视频一级片| 蜜桃在线观看..| 日韩成人伦理影院| 黄色日韩在线| 成人毛片a级毛片在线播放| 在线观看av片永久免费下载| 精华霜和精华液先用哪个| 日韩不卡一区二区三区视频在线| 日日撸夜夜添| 久久人人爽av亚洲精品天堂| 毛片一级片免费看久久久久| 嘟嘟电影网在线观看| 伊人久久精品亚洲午夜| 草草在线视频免费看| 美女福利国产在线| 欧美成人午夜免费资源| av福利片在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 日韩人妻高清精品专区| 黑人猛操日本美女一级片| 亚洲人与动物交配视频| 国产伦在线观看视频一区| 亚洲精品,欧美精品| 美女xxoo啪啪120秒动态图| 建设人人有责人人尽责人人享有的| 欧美高清成人免费视频www| 亚洲一区二区三区欧美精品| 日韩成人av中文字幕在线观看| 成人二区视频| 成年人免费黄色播放视频 | 久久久久国产精品人妻一区二区| 中国美白少妇内射xxxbb| 国产精品福利在线免费观看| 久久久久久久精品精品| 亚洲不卡免费看| 国产男女超爽视频在线观看| 日韩中文字幕视频在线看片| 51国产日韩欧美| 熟女av电影| 久久99蜜桃精品久久| 天堂8中文在线网| 免费看日本二区| 亚洲欧美日韩东京热| 国产精品久久久久成人av| 亚洲不卡免费看| 国产av精品麻豆| 18禁裸乳无遮挡动漫免费视频| 春色校园在线视频观看| 国产伦精品一区二区三区四那| 在线观看av片永久免费下载| 一级毛片久久久久久久久女| 国产爽快片一区二区三区| 成人亚洲精品一区在线观看| 精品一区二区免费观看| 欧美 亚洲 国产 日韩一| 日韩视频在线欧美| 日产精品乱码卡一卡2卡三| 伦理电影免费视频| 91精品国产九色| 国产精品一区二区三区四区免费观看| 我的女老师完整版在线观看| 熟女人妻精品中文字幕| 国产精品人妻久久久久久| 蜜臀久久99精品久久宅男| 国产精品女同一区二区软件| 99热这里只有精品一区| 国产免费福利视频在线观看| 99九九线精品视频在线观看视频| 国产深夜福利视频在线观看| 男女免费视频国产| 亚洲国产精品一区三区| 亚洲国产欧美日韩在线播放 | 国内揄拍国产精品人妻在线| 三级经典国产精品| 在线观看免费日韩欧美大片 | 一级毛片 在线播放| 日韩av免费高清视频| 免费观看的影片在线观看| 亚洲精品乱码久久久v下载方式| 高清视频免费观看一区二区| 午夜日本视频在线| 国产男人的电影天堂91| 免费观看无遮挡的男女| 久久99热6这里只有精品| 99热这里只有是精品50| 成人亚洲精品一区在线观看| 亚洲美女黄色视频免费看| 国产国拍精品亚洲av在线观看| 精品少妇内射三级| 99热这里只有是精品在线观看| 成人综合一区亚洲| 波野结衣二区三区在线| 黄片无遮挡物在线观看| 国产国拍精品亚洲av在线观看| 最近手机中文字幕大全| 熟妇人妻不卡中文字幕| 熟女av电影| 久久久久久久久久久久大奶| 国产精品秋霞免费鲁丝片| 91在线精品国自产拍蜜月| 亚洲精品成人av观看孕妇| 丁香六月天网| 少妇被粗大的猛进出69影院 | 又爽又黄a免费视频| 下体分泌物呈黄色| 晚上一个人看的免费电影| 国产探花极品一区二区| 大话2 男鬼变身卡| 日韩三级伦理在线观看| 男男h啪啪无遮挡| 久久久久久人妻| 亚洲无线观看免费| 久久久亚洲精品成人影院| 午夜激情久久久久久久| 欧美精品亚洲一区二区| 国产色婷婷99| 高清午夜精品一区二区三区| 亚洲av.av天堂| 欧美日韩视频高清一区二区三区二| 久久久久国产精品人妻一区二区| 欧美变态另类bdsm刘玥| 国产精品国产三级专区第一集| 免费久久久久久久精品成人欧美视频 | 桃花免费在线播放| 99久久综合免费| 纯流量卡能插随身wifi吗| 久久久精品免费免费高清| 国产熟女欧美一区二区| 一区二区av电影网| 天美传媒精品一区二区| 韩国av在线不卡| 久热这里只有精品99| 欧美日韩综合久久久久久| 观看av在线不卡| 免费大片18禁| 欧美丝袜亚洲另类| 中国美白少妇内射xxxbb| 最新的欧美精品一区二区| 一级a做视频免费观看| 中文乱码字字幕精品一区二区三区| 午夜影院在线不卡| 人人妻人人澡人人爽人人夜夜| 日本黄色日本黄色录像| 国产在线一区二区三区精| 欧美3d第一页| 国产精品99久久99久久久不卡 | 国产亚洲最大av| 国产精品一区www在线观看| 美女中出高潮动态图| 男女免费视频国产| 欧美精品国产亚洲| 久久久久国产精品人妻一区二区| 亚洲丝袜综合中文字幕| 成人毛片60女人毛片免费| 少妇的逼好多水| 人妻少妇偷人精品九色| 秋霞伦理黄片| 欧美精品人与动牲交sv欧美| 国产国拍精品亚洲av在线观看| 成人国产麻豆网| 亚洲欧美日韩卡通动漫| 国产91av在线免费观看| 黄色一级大片看看| 国产真实伦视频高清在线观看| 久久人人爽av亚洲精品天堂| 日本欧美视频一区| 欧美日韩在线观看h| 亚洲四区av| 亚洲av成人精品一区久久| 国产欧美亚洲国产| 国产伦精品一区二区三区视频9| 国模一区二区三区四区视频| 国产伦在线观看视频一区| 97超视频在线观看视频| 狠狠精品人妻久久久久久综合| 两个人的视频大全免费| 精品久久久精品久久久| 看免费成人av毛片| 青春草亚洲视频在线观看| av在线app专区| 只有这里有精品99| 曰老女人黄片| 插逼视频在线观看| 亚洲国产欧美在线一区| 久久青草综合色| 精品久久久久久久久av| 午夜福利影视在线免费观看| 国产免费又黄又爽又色| 亚洲精品aⅴ在线观看| a级毛片免费高清观看在线播放| 国产乱来视频区| 十八禁网站网址无遮挡 | 9色porny在线观看| 亚洲欧美一区二区三区国产| 国产色婷婷99| av网站免费在线观看视频| 欧美少妇被猛烈插入视频| 青春草国产在线视频| 大又大粗又爽又黄少妇毛片口| 寂寞人妻少妇视频99o| 97超视频在线观看视频| 久久国内精品自在自线图片| 大又大粗又爽又黄少妇毛片口| 中文天堂在线官网| 男女国产视频网站| 韩国高清视频一区二区三区| 亚洲性久久影院| av播播在线观看一区| 亚洲色图综合在线观看| 亚洲av在线观看美女高潮| 国产av精品麻豆| 国产亚洲欧美精品永久| 99热全是精品| 日日摸夜夜添夜夜添av毛片| 亚洲美女黄色视频免费看| 一二三四中文在线观看免费高清| 丝瓜视频免费看黄片| 日本黄大片高清| 9色porny在线观看| 十八禁高潮呻吟视频 | 一本一本综合久久| 国产伦精品一区二区三区四那| 日本与韩国留学比较| 日韩成人av中文字幕在线观看| 亚洲欧美一区二区三区国产| av一本久久久久| 校园人妻丝袜中文字幕| 日本黄色片子视频| 黄色配什么色好看| 亚洲怡红院男人天堂| 日韩制服骚丝袜av| 男女国产视频网站| 性色av一级| 亚洲第一区二区三区不卡| 国产精品三级大全| 一级av片app| 夜夜看夜夜爽夜夜摸| 免费久久久久久久精品成人欧美视频 | 欧美精品亚洲一区二区| 亚洲国产精品999| 美女国产视频在线观看| 亚洲精品日本国产第一区| 国产又色又爽无遮挡免| 亚洲国产av新网站| 国产精品偷伦视频观看了| 夫妻午夜视频| 久久久久国产精品人妻一区二区| 国产成人精品福利久久| 日韩大片免费观看网站| 18禁在线无遮挡免费观看视频| 最近2019中文字幕mv第一页| 人人妻人人看人人澡| 最黄视频免费看| 丰满少妇做爰视频| 一级av片app| 国产在线免费精品| 黄片无遮挡物在线观看| 一级毛片电影观看| 欧美 日韩 精品 国产| 熟女电影av网| 亚洲欧洲精品一区二区精品久久久 | 91精品一卡2卡3卡4卡| 精品国产乱码久久久久久小说| 99久国产av精品国产电影| 国产成人午夜福利电影在线观看| av福利片在线| 大香蕉97超碰在线| 人妻一区二区av| 人人妻人人澡人人看| 熟女人妻精品中文字幕| 成人免费观看视频高清| 国产精品三级大全| 丝瓜视频免费看黄片| 亚洲av欧美aⅴ国产| 免费观看无遮挡的男女| 国产精品麻豆人妻色哟哟久久| 亚洲av国产av综合av卡| 六月丁香七月| 久久亚洲国产成人精品v| 日韩大片免费观看网站| 亚洲成人一二三区av| 天堂中文最新版在线下载| 天堂8中文在线网| 国产日韩欧美在线精品| av免费观看日本| 国产亚洲精品久久久com| 亚洲,欧美,日韩| 亚州av有码| 晚上一个人看的免费电影| 男女免费视频国产| 久久精品久久精品一区二区三区| 老女人水多毛片| 婷婷色麻豆天堂久久| 一区二区av电影网| 简卡轻食公司| h日本视频在线播放| 亚洲精品国产成人久久av| 熟妇人妻不卡中文字幕| 精品人妻偷拍中文字幕| 一区二区三区免费毛片| 国产伦精品一区二区三区四那| 99久久精品热视频| 国产视频内射| 男女免费视频国产| 国产成人免费无遮挡视频| 少妇被粗大的猛进出69影院 | a级毛色黄片| 全区人妻精品视频| 久久综合国产亚洲精品| 乱人伦中国视频| 午夜日本视频在线| 美女内射精品一级片tv| 尾随美女入室| 久久久久久久久大av| 久久人人爽人人片av| 久久久久久久久久久免费av| 一级片'在线观看视频| 欧美日韩亚洲高清精品| 大话2 男鬼变身卡| 91在线精品国自产拍蜜月| 日韩电影二区| 菩萨蛮人人尽说江南好唐韦庄| 色视频www国产| 天堂中文最新版在线下载| 嫩草影院新地址| 国产淫语在线视频| 成人国产麻豆网| 少妇熟女欧美另类| 国产免费福利视频在线观看| 91在线精品国自产拍蜜月| 99久久精品一区二区三区| 国产一区二区在线观看av| 色视频www国产| 国产免费一级a男人的天堂| 少妇猛男粗大的猛烈进出视频| 成人午夜精彩视频在线观看| 99热国产这里只有精品6| 国产乱来视频区| 亚洲欧美精品自产自拍| 亚洲婷婷狠狠爱综合网| 午夜福利,免费看| 七月丁香在线播放| 在线观看www视频免费| 亚洲欧美精品自产自拍| 一二三四中文在线观看免费高清| 日日摸夜夜添夜夜添av毛片| 18禁裸乳无遮挡动漫免费视频| 性色av一级| a级片在线免费高清观看视频| 麻豆成人午夜福利视频| 建设人人有责人人尽责人人享有的| 伊人亚洲综合成人网| 国产免费一区二区三区四区乱码| a级一级毛片免费在线观看| 日日撸夜夜添| 亚洲精品国产av蜜桃| 亚洲av中文av极速乱| 老司机亚洲免费影院| 免费av不卡在线播放| 精品少妇内射三级| 欧美激情极品国产一区二区三区 | 91精品国产九色| 亚洲一区二区三区欧美精品| a 毛片基地| 久久99一区二区三区| 精品久久久精品久久久| 久久女婷五月综合色啪小说| 美女福利国产在线| 亚洲中文av在线| 亚洲av电影在线观看一区二区三区| 国产成人精品一,二区| 精品久久久久久久久亚洲| 韩国高清视频一区二区三区| 日韩一本色道免费dvd| 欧美日韩av久久| 国产女主播在线喷水免费视频网站| 夜夜骑夜夜射夜夜干| 精品人妻熟女毛片av久久网站| 久久久久人妻精品一区果冻| 欧美一级a爱片免费观看看| 少妇人妻 视频| 亚洲精品456在线播放app| 在线观看av片永久免费下载| 大片免费播放器 马上看| 色5月婷婷丁香| 亚洲欧洲日产国产| 丝袜喷水一区| 一区二区av电影网| 久久久久久久大尺度免费视频| 亚洲一区二区三区欧美精品| 男人和女人高潮做爰伦理| 性高湖久久久久久久久免费观看| 99九九线精品视频在线观看视频| 人妻制服诱惑在线中文字幕| 欧美另类一区| 亚洲第一av免费看| 少妇人妻 视频| 超碰97精品在线观看| 交换朋友夫妻互换小说| 美女cb高潮喷水在线观看| 人人妻人人澡人人爽人人夜夜| 免费大片18禁| 国产毛片在线视频| 黑人猛操日本美女一级片| 成人综合一区亚洲| 国产成人精品婷婷| 午夜激情福利司机影院| 秋霞伦理黄片| 国产欧美亚洲国产| 美女内射精品一级片tv| 精品酒店卫生间| 少妇裸体淫交视频免费看高清| av视频免费观看在线观看| 九色成人免费人妻av| 亚洲av成人精品一区久久| 亚洲av.av天堂| 丝袜喷水一区| 日韩三级伦理在线观看| 观看免费一级毛片| 爱豆传媒免费全集在线观看| 一级爰片在线观看| 观看免费一级毛片| 国产亚洲欧美精品永久| 啦啦啦啦在线视频资源| a级毛片在线看网站| 久久精品久久精品一区二区三区| 大片免费播放器 马上看| 中文资源天堂在线| 一级a做视频免费观看| 国产免费又黄又爽又色| 97超视频在线观看视频| 精品人妻一区二区三区麻豆| 视频区图区小说| 久久久久久人妻| 99热国产这里只有精品6| 久久久久久人妻| 久久精品国产自在天天线| 91精品国产九色| 午夜av观看不卡| 少妇熟女欧美另类| freevideosex欧美| 在线免费观看不下载黄p国产| 国产免费一级a男人的天堂| 欧美 亚洲 国产 日韩一| 日本免费在线观看一区| 国模一区二区三区四区视频| 久久久国产精品麻豆| 久久国产亚洲av麻豆专区| 亚洲欧美日韩东京热| 亚洲精品久久午夜乱码| 99国产精品免费福利视频| 欧美性感艳星| 亚洲中文av在线| 老司机亚洲免费影院| 亚洲欧美精品专区久久| 免费黄频网站在线观看国产| 一级二级三级毛片免费看| 国产精品一区二区在线观看99| 国产精品久久久久久精品电影小说| 亚洲美女黄色视频免费看| 91成人精品电影| 成人特级av手机在线观看| 大香蕉久久网| 国产片特级美女逼逼视频| 亚洲天堂av无毛| 国产日韩欧美在线精品| 久久久久久久精品精品| 日本黄大片高清| 成人二区视频| 国产精品人妻久久久影院| 伦精品一区二区三区| 亚洲欧美清纯卡通| 街头女战士在线观看网站| 乱码一卡2卡4卡精品| 国产精品一区二区在线不卡| 久久久久久久久久人人人人人人| 亚洲欧美中文字幕日韩二区| 国产一区二区在线观看日韩| 日韩精品免费视频一区二区三区 | 久久鲁丝午夜福利片| 热99国产精品久久久久久7| 欧美日韩在线观看h| 又爽又黄a免费视频| 日韩强制内射视频| 欧美区成人在线视频| 麻豆精品久久久久久蜜桃| 99热网站在线观看| 中文资源天堂在线| 高清欧美精品videossex| 国产黄频视频在线观看| 丝袜喷水一区| 久久久久久久精品精品| 成人毛片60女人毛片免费| 亚洲av不卡在线观看| 国产精品免费大片| 伦理电影大哥的女人| 黄色视频在线播放观看不卡| 视频区图区小说| 国产av一区二区精品久久| 久久韩国三级中文字幕| 91午夜精品亚洲一区二区三区| 久久精品国产亚洲av天美| 久久久精品94久久精品| 欧美日韩综合久久久久久| 韩国高清视频一区二区三区| 黑人高潮一二区| 久久鲁丝午夜福利片| a 毛片基地| 亚洲怡红院男人天堂| 日韩在线高清观看一区二区三区| 日韩免费高清中文字幕av| 国产精品成人在线| 少妇精品久久久久久久| 天堂8中文在线网| 三级国产精品欧美在线观看| 精品99又大又爽又粗少妇毛片| 97在线视频观看| av天堂中文字幕网| 亚洲精品日本国产第一区| 亚洲精品久久久久久婷婷小说| 久久精品久久久久久久性| 中文欧美无线码| 男人狂女人下面高潮的视频| 哪个播放器可以免费观看大片| 丝瓜视频免费看黄片| 日韩三级伦理在线观看| 九色成人免费人妻av| 新久久久久国产一级毛片| 五月玫瑰六月丁香| 尾随美女入室| 久久午夜福利片| 在线观看av片永久免费下载| 性色av一级| 日韩制服骚丝袜av| 国产日韩欧美在线精品| 亚洲av日韩在线播放| 国产亚洲午夜精品一区二区久久| 青春草视频在线免费观看| 日本黄大片高清| 亚洲综合精品二区| 日本黄大片高清| 一级黄片播放器| 又大又黄又爽视频免费| 丝瓜视频免费看黄片| 啦啦啦在线观看免费高清www| 赤兔流量卡办理| 成人影院久久| 不卡视频在线观看欧美| 亚洲高清免费不卡视频| 亚洲av成人精品一区久久| 人人妻人人爽人人添夜夜欢视频 | 黑人猛操日本美女一级片| 蜜桃在线观看..| 免费大片18禁| av福利片在线观看| 在现免费观看毛片| 伊人亚洲综合成人网| 色视频www国产| 精品国产一区二区久久| 国产一区有黄有色的免费视频| 欧美国产精品一级二级三级 | 国产精品女同一区二区软件| 国产精品.久久久| 老司机影院成人| 国产一区二区三区av在线| 十八禁高潮呻吟视频 | 少妇被粗大的猛进出69影院 | 欧美老熟妇乱子伦牲交| 啦啦啦视频在线资源免费观看| 欧美三级亚洲精品|