李 婕, 楊學(xué)云, 孫本華, 張樹蘭
(西北農(nóng)林科技大學(xué),農(nóng)業(yè)部西北植物營養(yǎng)與農(nóng)業(yè)環(huán)境重點實驗室, 陜西楊凌 712100)
2011年冬小麥收獲后,將各小區(qū)劃分為3部分,每個處理采集3個重復(fù)。采取0—10,10—20,20—30 cm土層的原狀土。將采集的原狀土樣在室內(nèi)沿自然結(jié)構(gòu)輕輕掰成小土塊,過10 mm篩,自然風(fēng)干,備用。
各大小機械穩(wěn)定性或水穩(wěn)性團聚體的含量(%)=各大小機械穩(wěn)定或水穩(wěn)性團聚體質(zhì)量(g)/土壤樣品總質(zhì)量(g)×100,土壤團聚體穩(wěn)定性以團聚體破壞率(PAD)衡量,參照陳山[16]的方法計算,公式如下:
PAD(%) =(Wd-Ww)/Wd×100
式中:Wd為機械穩(wěn)定團聚體中>0.25 mm團聚體所占的比例;Ww為水穩(wěn)性團聚體中>0.25 mm團聚體所占的比例。
不同土壤管理措施對團聚體的影響采用單變量方差分析,當(dāng)方差分析結(jié)果顯著時,采用LSD法進行處理間平均值的多重比較,所有數(shù)據(jù)采用SPSS 16.0進行分析。
表1 不同土壤管理措施下機械穩(wěn)定團聚體的組成(%)Table 1 The composition of dry aggregates under different soil management practices
注(Note): 同列數(shù)據(jù)后不同字母表示同一層土壤不同管理模式間差異達5%顯著水平 Values followed by different letters in a column are significant among management practices in the same soil layer at the 5% level.
表2 不同土壤管理措施下水穩(wěn)性團聚體的組成(%)Table 2 The composition of water stable aggregates under different soil management practices
注(Note): 同列數(shù)據(jù)后不同字母表示同一層土壤不同管理模式間差異達5%顯著水平 Values followed by different letters in a column are significant among management practices in the same soil layer at the 5% level.
表3 長期不同施肥下不同土層土壤機械穩(wěn)定團聚體的組成(%)Table 3 The composition of dry aggregates of different soil layer under different fertilizations
注(Note): 同列數(shù)據(jù)后不同字母表示同一層土壤不同處理間差異達5%顯著水平 Values followed by different letters in a column are significant among treatments in the same soil layer at the 5% level.
表5顯示,長期不同土壤管理措施對團聚體破壞率有很大的影響。在0—10 cm土層,與作物體系相比,休閑和撂荒顯著降低了團聚體破壞率,并且休閑和撂荒之間沒有顯著差異。10—20 cm土層,撂荒措施的團聚體破壞率顯著低于作物體系和休閑, 休閑與作物體系相似。20—30 cm土層,休閑、 撂荒與作物體系相比,團聚體破壞率均沒有顯著差異。
從表6可以看出,長期不同施肥對土壤團聚體破壞率有一定影響。0—10 cm土層,與CK處理相比,M1NPK顯著降低了團聚體破壞率,而其它處理團聚體破壞率沒有明顯變化。10—20 cm土層,除NPK處理較CK的團聚體破壞率顯著提高外,其它處理的團聚體破壞率也沒有顯著變化。20—30 cm土層,除NK、 NP較CK處理顯著增加團聚體破壞率外,其它處理的團聚體破壞率也沒有明顯的變化。
不同土壤管理措施對土壤機械穩(wěn)定性或水穩(wěn)性團聚體分布的影響主要限于表層和亞表層(0—10,10—20 cm)(表1,表2),這可能主要與耕作擾動以及植物根系主要集中在該區(qū)域有關(guān)。
表4 長期不同施肥下不同土層土壤水穩(wěn)性團聚體的組成(%)Table 4 The composition of water stable aggregates of different soil layer under different fertilizations
注(Note): 同列數(shù)據(jù)后不同字母表示同一層土壤不同處理間差異達5%顯著水平 Values followed by different letters in a column are significant among treatments in the same soil layer at the 5% level.
表5 不同土壤管理措施下土壤團聚體破壞率(%)Table 5 The values of PAD under different soil management practices
注(Note): PAD—Percentage of soil aggregate disruption. 同列數(shù)據(jù)后不同字母表示同一層土壤不同管理模式間差異達5%顯著水平 Values followed by different letters in a column are significant among management practices in the same soil layer at the 5% level.
表6 長期不同施肥處理下土壤團聚體破壞率(%)Table 6 The values of PAD under different fertilizations
注(Note): PAD—Percentage of soil aggregate disruption. 同列數(shù)據(jù)后不同字母表示同一層土壤不同處理間差異達5%顯著水平 Values followed by different letters in a column are significant among treatments in the same soil layer at the 5% level.
參考文獻:
[1] Pirmoradian N, Sepaskhah A R, Hajabbasi M A. Application of fractal theory to quantify soil aggregate stability as influenced by tillage treatments[J]. Biosyst. Eng., 2005, 90 (2): 227-234.
[2] Six J, Bossuyt H, Degryze S, Denef K. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics[J]. Soil Till. Res., 2004, 79: 7-31.
[3] 高飛, 賈志寬, 韓清芳, 等. 有機肥不同施用量對寧南土壤團聚體粒級分布和穩(wěn)定性的影響[J]. 干旱地區(qū)農(nóng)業(yè)研究, 2010, 28(3): 100-106.
Gao F, Jia Z K, Han Q Fetal. Effects of different fertilizer treatments on distribution and stability of soil aggregates in the semiarid area of south Ningxia[J]. Agric.Res. Arid Areas, 2010, 28(3): 100-106.
[4] 戴玨, 胡君利, 林先貴, 等. 免耕對潮土不同粒級團聚體有機碳含量及微生物碳代謝活性的影響[J]. 土壤學(xué)報, 2010, 47(5): 923-929.
Dai J, Hu J L, Lin X Getal. Effects of non-tillage on content of organic carbon and microbial carbolic metabolism of soil aggregates in a Fluvo-aquic soil[J]. Acta Pedol. Sin., 2010, 47(5): 923-929.
[5] 劉恩科, 趙秉強, 梅旭榮, 等. 不同施肥處理對土壤水穩(wěn)定性團聚體及有機碳分布的影響[J]. 生態(tài)學(xué)報, 2010, 30(4): 1035-1041.
Liu E K, Zhao B Q, Mei X Retal. Distribution of water-stable aggregates and organic carbon of arable soils affected by different fertilizer application[J]. Acta Ecol. Sin., 2010, 30(4): 1035-1041.
[6] 霍琳, 武天云, 藺海明, 等. 長期施肥對黃土高原旱地黑壚土水穩(wěn)性團聚體的影響[J]. 應(yīng)用生態(tài)學(xué)報, 2008, 19(3): 545-550.
Huo L, Wu T Y, Lin H Metal. Effects of long-term fertilization on water-stable aggregates in calcic kastanozem of Loess Plateau[J]. Chin. J. Appl. Ecol., 2008, 19 (3): 545- 550.
[7] 汪景寬, 冷延慧, 于樹, 等. 不同施肥處理下棕壤有機碳庫對團聚體穩(wěn)定性的影響[J]. 土壤通報, 2009, 40(1): 77-80.
Wang J K, Leng Y H, Yu Setal. Effect of SOC pool on aggregate stability in brown earth under different fertilizations[J]. Chin. J. Soil Sci., 2009, 40(1): 77-80.
[8] 苗淑杰, 周連仁, 喬云發(fā), 等. 長期施肥對黑土有機碳礦化和團聚體碳分布的影響[J]. 土壤學(xué)報, 2009, 46(6): 1068-1075.
Miao S J, Zhou L R, Qiao Y Fetal. Organic carbon mineralization and carbon distribution in aggregates as affected by long-term fertilization in black soil[J]. Acta Pedol. Sin., 2009, 46(6): 1068-1075.
[9] 周萍, 潘根興. 長期不同施肥對黃泥土水穩(wěn)性團聚體顆粒態(tài)有機碳的影響[J]. 土壤通報, 2007, 38(2): 256-261.
Zhou P, Pan G X. Effect of different long-term fertilization treatments on particulate organic carbon in water-stable aggregates of a paddy soil[J]. Chin. J. Soil Sci., 2007, 38(2): 256-261.
Liu J, Wang Y Q, Wang Yetal. Evolution of physical properties in Lou soil with long-term fertilization[J]. Chin. J. Soil Sci., 2004, 35(5): 542-545.
[11] 祁迎春, 王益權(quán), 劉軍. 關(guān)中地區(qū)土壤團聚體組成特征及穩(wěn)定性研究[J]. 陜西農(nóng)業(yè)科學(xué), 2011, (5): 66-69.
Qi Y C, Wang Y Q, Liu J. The study on the composition and stability of soil aggregates in Guanzhong area[J]. Shaanxi Agric. Sci., 2011, (5): 66-69.
[12] 王勇, 姬強, 劉帥, 等. 耕作措施對土壤水穩(wěn)性團聚體及有機碳分布的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報, 2012, 31(7): 1365-1373.
Wang Y, Ji Q, Liu Setal. Effects of tillage practices on water-stable aggregation and aggregate-associated organic C in soils[J]. J. Agro-Environ. Sci., 2012, 31(7): 1365-1373.
[13] 孫漢印, 姬強, 王勇, 等. 不同秸稈還田模式下水穩(wěn)性團聚體有機碳的分布及其氧化穩(wěn)定性研究[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報, 2012, 31(2): 369-376.
Sun H Y, Ji Q, Wang Yetal. The distribution of water-stable aggregate -associated organic carbon and its oxidation stability under different straw returning modes[J]. J. Agro-Environ. Sci., 2012, 31(2): 369-376.
[14] 中國科學(xué)院南京土壤研究所. 土壤理化分析[M].上海: 上海科學(xué)技術(shù)出版社, 1978.
Nanjing Soil Research Institute of Chinese Academy of Sciences. Physical and chemical analysis of soil[M]. Shanghai: Shanghai Science and Technology Press, 1978.
[15] Yoder R E. A direct method of aggregate analysis of soils and a study of the physical nature of erosion losses[J]. Agron. J., 1936, 28: 337-351.
[16] 陳山, 楊峰, 林杉, 等. 土地利用方式對紅壤團聚體穩(wěn)定性的影響[J]. 水土保持學(xué)報, 2012, 26(5): 211-216.
Chen S, Yang F, Lin Setal. Impact of land use patterns on stability of soil aggregates in red soil region of south China[J]. J. Soil Water Conserv., 2012, 26(5): 211-216.
[17] Bronick C J, Lal R. Soil structure and management: a review[J]. Geoderma, 2005, 124: 3-22.
[18] Boix-Fayos C, Calvo-Cases A, Imeson A C, Soriano-Soto M D. Influence of soil properties on the aggregation of some Mediterranean soils and the use of aggregate size and stability as land degradation indicators[J]. Catena, 2001, 44(1): 47-67.
[19] Bouajila A, Gallali T. Soil organic carbon fractions and aggregate stability in carbonated and no carbonated soils in Tunisia[J]. J. Agron., 2008, 7: 127-137.
[20] Virto I, Gartzia-Bengoetxea N. Fernandez-Ugalde O. Role of organic matter and carbonates in soil aggregation estimated using laser diffractometry[J]. Pedosphere, 2011, 21(5): 566-572.
Wang L L, Zhang S L, Yang X Y. Soil carbon storage affected by long-term land use and fertilization regimes in manural loess soil[J]. Plant Nutr. Fert. Sci., 2013, 19(2): 404-412.
[22] Yang X, Ren W, Sun B, Zhang S. Effects of contrasting soil management regimes on total and labile soil organic carbon fractions in a loess soil in China[J]. Geoderma, 2012, 177-178: 49-56.
[23] Jastrow J D, Miller R M, Lussenhop J. Contributions of interacting biological mechanisms to soil aggregate stabilization in restored prairie[J]. Soil Biol. Biochem. 1998, 30: 905- 916.
[24] 楊茹萍, 郭賢仕, 呂軍峰, 等. 不同耕作和種植模式對土壤團聚體分布及穩(wěn)定性的影響[J]. 水土保持學(xué)報, 2010, 24(1): 252-256.
Yang R P, Guo S X, Lü J Fetal. Distribution and stability of soil aggregate as affected by different patterns of tillage and cropping[J]. J. Soil Water Conserv., 2010, 24(1): 252-256.
[25] 冷延慧, 汪景寬, 李雙異. 長期施肥對黑土團聚體分布和碳儲量變化的影響[J]. 生態(tài)學(xué)雜志, 2008, 27(12): 2171-2177.
Leng Y H, Wang J K, Li S Y. Effects of long-term fertilization on aggregates size distribution and carbon stock in black soil[J]. Chin. J. Ecol., 2008, 27(12): 2171-2177.
Ge W J, Chang Y L, Liu J Metal. Potassium balance and pool as influenced by long-term fertilization under continuous winter wheat-summer maize cropping system in a manural loess soil[J]. Plant Nutr. Fert. Sci., 2012, 18(3): 629-636.
Li Z J, Li P R, Shi Y G, Zhang S L. Effects of long-term fertilization mangement regimes on availability of soil micronutrients element[J]. Plant Nutr. Fert. Sci., 2010, 16(6): 1456-1463.