• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A New Inorganic-organic Hybrid Based on Biisoquinoline and Hexachloridostannate: Structure, Photoluminescence,Electrochemical Behavior and Theoretical Study

    2014-03-25 02:35:22XIAOGuangCan
    結(jié)構(gòu)化學(xué) 2014年11期

    XIAO Guang-Can

    (Testing Center of Fuzhou University, Fuzhou 350002, China)

    1 INTRODUCTION

    Organic-inorganic hybrid compounds based on anionic main group halides and functional organic cations have attracted much attention due to not only their rich structural motifs but also their highly tunable functional properties, including opt-electronic properties, such as nonlinear optical behavior,thermochroism, semiconductivity and ferroelectricity[1-6]. Among the main group metals, as a heavy p-block metal in IVA group, tin halides such as SnXn(X = l, Br, and I) are very special for their flexible coordination environments, variable stereochemical activities and superior carrier mobility, upon which they demonstrate potential applications in display and storage technologies[7-10]. In the reported tin halide/organic hybrid system, most hybrid compounds contain only simple organic amines, in which the organic components only act as weakly interacting individual molecules, so the physical properties generally stem from the inorganic tin halides[11-16]. To our knowledge, the introduction of functional organic molecules into tin halides is still in infancy[16-19]. The incorporation of functional organic molecules into hybrids seems significant and can help to obtain multi-functional materials[20,21].Kept this in mind, we here attempt to synthesize novel hybrid tin halides with functional organic cations, which could not only modify the inorganic skeleton by weak interactions such as hydrogen bonds for dimension extending, but also improve its functions like the charge carrier mobility. Isoquino-line and its derivatives (1,ω-bis(isoquinoline)alkane dications) are good candidates for conjugated functional unit carriers or organic templates, which have received close attention because of their broad range of biological activities[22]. In this work, by introducing biisoquinoline dications into the tin halide, a new inorganic/organic hybrid (BIQBT)(SnCl6) 1 has been synthesized, and it exhibits strong fluorescence,which was further explained by theoretical calculation.

    2 EXPERIMENTAL

    2.1 Materials and methods

    BIQBT·2Br (1,4-bis(isoquinoline) butane bromide)was synthesized according to the literature method,using isoquinoline and 1,4-dibromobutane as starting materials. Other chemicals of regent grade quality were obtained from commercial sources and used without further purification. Elemental analyses for C, H and N were performed on a Vario MICRO elemental analyzer. IR spectra were recorded on a Perkin-Elmer Spectrum-2000 FTIR spectrophotometer (4000~400 cm-1). UV-Vis spectrum was measured on a Perkin-Elmer lambda 900 UV/Vis spectrophotometer equipped with an integrating sphere at 293 K, and BaSO4plates were used as reference. Fluorescence spectrum was carried out on a PW2424 spectrometer. Cyclic voltammetry was recorded on BAS100A electrochemical analysis instrument using Pt–C as the working electrode and Ag–AgCl as the reference electrode.

    2.2 Computational details

    In the energy calculations of E(organicmoiety,BIQBT2+),E(inorganic moiety, SnCl62-)and E(hybrid system) constructed from their cif files, only single-point calculations were conducted. But in the calculation of free BIQBT2+dications, full optimizations were carried out with standard 6-31g basis set. In these calculations, full electron 6-31g basis set was used for C, H, N and Cl atoms, which is high enough for light atoms. And pseudo-potential basis set cep-4g was applied in Sn atoms, which has been proved to be reliable in heavy atoms. All the calculations were performed using DFT/B3LYP method with the Gaussian03 program[23]. The band structure calculation was based on density functional theory(DFT)[24], in which wave functions were explained in a plane wave basis set and the spin polarized version of PW-91 GGA was employed for the exchangecorrelation functional in the CASTEP code[25]. The number of plane waves included in the basis was determined by a cutoff energy Ecof 550 eV (All the calculated input and output files can be found in the supplemental materials).

    2.3 Synthesis of BIQBT·2Br

    BIQBT·2Br (1,4-bis(isoquinoline) butane bromide)was prepared with isoquinoline and 1,4-dibromobutane as starting materials according to the reported method[26].

    2.4 Synthesis of (BIQBT)(SnCl6) (1)

    BIQBT·2Br (0.0711 g, 0.15 mmol) and SnI2(0.0372 g, 0.1 mmol) were dissolved in 10 mL methanol, and then 2 mL condensed HCl was added.The resultant solution was stirred for 2 h in air, then transferred and sealed in a 25 mL Teflon-lined reactor. The reactor was heated in an oven to 160 ℃for 4 days and cooled to room temperature at a rate of 2.2 ℃/h. Yellow block crystals in ca. 56.3%(0.0362 g based on Sn) were obtained and washed by methanol and ether. In this work, tin is +4 although the original material was SnI2, similar to the published results[27]. Here the Sn(II) may be oxidized by oxygen in the air. Anal. Calcd. for C22H22Cl6N2Sn (645.83): C, 40.91; H, 3.41; N,4.34%. Found: C, 41.26; H, 3.25; N, 4.42%. IR (KBr,cm-1): IR(KBr): 3170(s), 1699(s), 1591(s), 1531(m),1487(s), 1188(m), 792(s), 771(m).

    2.5 X-ray crystallography

    X-ray data on suitable single crystal of 1 with dimensions of 0.30mm × 0.25mm × 0.20mm were collected at 293(2) K with a Rigaku Weissenbery IP diffractometer using graphite-monochromated MoKα radiation (λ(MoKα) = 0.71073 ?) by using an ω-2θ scan mode. In the range of 3.35≤θ≤27.48°,out of the 12010 total reflections, 5018 were independent with Rint= 0.0190, of which 4614 were considered to be observed (I > 2σ(I)) and used in the succeeding refinement. The multi-scan absorption correction was applied. The structure was solved by direct methods with SHELXS-97 and refined by full-matrix least-squares techniques on F2using SHELXL-97 program[28]. Hydrogen atoms of C–H were generated geometrically. All non-hydrogen atoms were refined by full-matrix least-squares techniques for 4614 observed reflections with I >2σ(I) to the final R = 0.0197, wR = 0.0493 (w =1/[σ2(Fo2) + (0.0295P)2+ 0.6768P], where P = (Fo2+ 2Fc2)/3), S = 1.021, (Δ/σ)max= 0.001, (Δρ)min=–0.656 and (Δ/σ)max= 0.388 e/?3. Important bond lengths and bond angles are listed in Table 1. Hydrogen bond details are given in Table 2.

    Table 1. Selected Bond Lengths (?) and Bond Angles (°)

    Table 2. Hydrogen Bond Details in 1 (Length in ? and Angle in °)

    3 RESULTS AND DISCUSSION

    3.1 Structure description

    According to structural analysis, the asymmetric unit of 1 consists of (SnCl6)2-anion and (BIQBT)2+dication. C–H···Cl hydrogen bonds among them contribute to the formation of 1-D chain. Besides,π···π interactions and electrostatic interactions stabilize the structure. The structure of (SnCl6)2-anion and (BIQBT)2+dication are given in Fig. 1(a)and (b), respectively. The 1-D chain based on C–H···Cl hydrogen bonds can be seen in Fig. 2, and its packing diagram along the b axis showing relative positions of organic and inorganic moieties is revealed in Fig. 3. In (SnCl6)2-mononuclear anion,the tin(IV) center is surrounded by six Cl-donors to give an octahedral geometry (Fig. 1(a)). In this SnCl6octahedron, Cl(2), Cl(3), Cl(4) and Cl(6)locate at the equator plane, while Cl(1) and Cl(5)occupy the axial positions. This SnCl6octahedron is ideal with Sn–Cl ranging among 2.4267(18)~2.4507(18) ? (Table 1), and Cl–Sn–Cl bond angles are also normal (88.63(3)~90.78(7)°, 179.37(8)~179.60(9)°), which are very close to 90° and 180°for an ideal octahedron. These geometric parameters are similar to the previously published results[27,29].

    The C–C and C–N bonds of BIQBT2+dications are in normal ranges (Fig. 2(a)). And the bond angles on butuan spacer are 112.86(53) and 116.86(57)o,larger than that of 1,1?-(nutane-1,4-diyl)dipyridi-nium dibromide dihydrate (110.16o)[30], n-butuan(109.48o) and free BIQBT2+(111.0239o and 110.0820o, optimized result by DFT calculation,supplemental materials). So, a slightly unfolding of BIQBT2+dications has occurred. In the solid situation of 1, two quinoline rings are generally parallel(dihedral angle 2.58o). But in free BIQBT2+, two quinoline rings are perpendicular with dihedral angle of 96.68o. This structural inversion should be driven by the formation of hydrogen bonds between C–H···Cl hydrogen bonds and π···π interactions,which will be discussed in section 3.2.

    Fig. 1. Structure of (SnCl6)2- anion (a) and (BIQBT)2+ dication with atomic labeling scheme

    Fig. 2. 1-D chain arrangement of 1 based on C–H···Cl hydrogen bonds

    Fig. 3. Packing diagram of 1 along the c axis

    In the crystal, three kinds of weak interactions can be observed for the structural stabilization. The first is the C–H···Cl hydrogen bonds among neighboring BIQBT2+dications and (SnCl6)2-mononuclear anions (Table 2), upon which an infinite one-dimensional strand extending along the a axis is given(Fig. 2). Secondly, intermolecular strong π···π stacking interactions with centroid-centroid distances of 3.692(4) and 3.711(4) ? among quinoline conjugated rings (dihedral angles: 7.4(3) and 6.0(3)°,perpendicular distances: 3.455(3)/3.572(2) and 3.508(3)/3.375(3) ?, respectively) also help to stabilize the structure. Based on the hydrogen bonds and π···π stacking interactions, a 3-D framework is given (Fig. 3). Finally, the electrostatic interactions between cations and anions contribute to the structural stabilization. A particularly obvious feature of this hybrid structure is the (SnCl6)2-mononuclear anion trapped within the cavity of chargebalanced catioins BIQBT2+cavities (Fig. 3), and its formation may be achieved by the synergistic interaction between the (SnCl6)2-and BIQBT2+dications.

    3.2 Theoretical calculations

    In this section, we want to disclose the role of weak interactions in the formation of solid by using DFT calculations. We conduct single point calculations on compound 1, (SnCl6)2-anion and BIQBT2+cation. In order to compare the energy differences of each moiety, full optimizations on (SnCl6)2-anion and BIQBT2+cation are also carried out. Furthermore, to investigate the strength of hydrogen bonds,we elongate the C···Cl distance to 4.10 ? so as to eliminate the hydrogen bond. All the starting geometries are constructed according to crystallographic parameters and calculated with G03 program at the DFT/B3LYP/6-31g/cep-4g level. For the BIQBT2+cation, the input and output files can be found in the supplemental materials. The interaction energy (including hydrogen bond, π···π stacking interaction and electrostatic force) was defined as follows: Eb= E(organic moiety)+ E(inorganic moiety)- E(hybridsystem). As indicated by calculation results, the interaction energy of 1 is 221.6992 kcal/mol. When concerning about the conformation change of BIQBT2+from free configuration (optimized geometry) to its solid situation, a 299.5010 kcal/mol energy increase is needed. This conformation change aims to the formation of hydrogen bonds and π···π stacking interaction in the lattice. But for (SnCl6)2-anion, because its ideal geometry, only 9.41 kcal/mol energy arise is observed, which is also promoted by the formation of C–H···Cl hydrogen bonds. If setting the C···Cl distance as 4.10 ? to eliminate the hydrogen bond, it exhibits destabilization with an energy arise of 14.8092 kcal/mol.And if we set the configuration of BIQBT2+in 1 as its free configuration (the dihedral angle between two quinoline rings: 96.68o) to turn off the π···π stacking interaction, the interaction energy decreases to 173.0223 kcal/mol. Therefore, their difference of 48.6758 kcal/mol is the contribution of π···π stacking interaction. Thus in all, in the hydrothermal reaction,the formation of (BIQBT)(SnCl6) hybrid using BIQBT2+and (SnCl6)2-building units must overcome an energy barrier of 308.911 kcal/mol. And among the interaction energy of 221.6992 kcal/mol in 1, hydrogen bonds give a contribution of 14.8092 kcal/mol, the contribution from π···π stacking interactions is 48.6758 kcal/mol, and the electrostatic force is the most important with amount of 158.2141 kcal/mol. Thereby, in this hybrid system with charge transfer character, if the electrostatic force is not taken into account, the π···π stacking interaction is dominant for their structural stabilization.

    3.3 UV-Vis and fluorescence spectrum

    The room-temperature UV-Vis absorption spectrum of 1 in DMF solution with concentration of 10-5mol/L is given in Fig. 4a, in which excitonic absorption at 273 and 335 nm can be observed. The UV-Vis spectra show typical absorption spectra for quinoline-based complexes[31]. The bands at 234 and 335 nm are assigned as ligand-centered (LC)transitions (π-π* transfer).

    Fig. 4. (a) UV-Vis spectrum and (b) Room temperature solid-state luminescence spectrum of 1 (λex = 340 nm)

    The fluorescence spectrum of 1 was measured in the solid state at room temperature. 1 exhibits strong emission band at 382 nm upon irradiation at 340 nm(Fig. 4b). The emission bands relative to quinoline derivates have been found at about 370 nm[32],suggesting that the emission at 382 nm can be assigned to the contribution of BIQBT2+cations. In order to understand the nature of their photoluminescent emissions, the density of states (DOS) of 1 was calculated using the CASTEP program[24,25].The calculated DOS (Fig. 5) of 1 shows that the top of the valence band derives from the cooperative contribution of Cl-3p orbitals and p-π orbitals of BIQBT2+dication, while the bottom of the conduction band is almost the contribution from p-π*anti-bonding orbitals of the BIQBT2+dication (Fig. 6).Therefore, the origin of low wavelength emission at 382 nm may be assigned to the LLCT (ligand-toligand charge transfer) stemming from BIQBT2+.

    3.4 Electrochemical properties

    The electrochemical property of 1 was gauged by voltammetric techniques in CH2Cl2solvent with concentration of 10-3mol/L. The scanning rate is set as 0.1 V/s and the scanning range is –2.0~2.0 V.The result is depicted in Fig. 6. The cyclic voltammogram (CV) of 1 shows three couples of oxidation reduction peaks at 1.106/–1.023 V,0.692/–0.758 V and 0.392/–0.435 V, which can be attributed to the electron transfers among Sn(IV)/Sn(II)/Sn(0). The ipa/ipc≈ 1, indicating that the reactions are reversible[33].

    Fig. 5. Total and partial DOS of 1. Its position of the Fermi level is set at 0 eV

    Fig. 6. Cyclic voltammogram of 1

    4 CONCLUSION

    In conclusion, a new inorganic-organic hybrid[(BIQBT)(SnCl6)]n(1, BIQBT = 1,4-bis(isoquinoline) butane) has been synthesized and structurally described. 1 consists of 1,4-bis(isoquinoline)butane dications and mononuclear hexachloridostannate SnCl62-anion, and hydrogen bonds among them contribute to the formation of a 1-D chain.Theoretical calculations indicate that the π···π stacking interaction is dominated for their structural stabilization. Its electrochemical behavior and photoluminescence were also discussed.

    (1) Goforth, A. M.; Tershansy, M. A.; Smith, M. D.; Peterson, L. R.; Kelley, J. G.; DeBenedetti, W. J. I.; zur Loye, H. C. Structural diversity and thermochromic properties of iodobismuthate materials containing d-metal coordination cations: observation of a high symmetry [Bi3I11]2-anion and of isolated I-anions. J. Am. Chem. Soc. 2011, 133, 603–612.

    (2) Bi, W.; Louvain, N.; Mercier, N.; Luc, J.; Rau, H.; Kajzar, F.; Sahraoui, B. A switchable NLO organic-inorganic compound based on conformationally chiral disulfide molecules and Bi(III)I5iodobismuthate networks. Adv. Mater. 2008, 20, 1013–1017.

    (3) Louvain, N.; Mercier, N.; Boucher, F. α to β-(dmes)BiI5(dmes = dimethyl(2-ethylammonium)sulfonium dication): umbrella reversal of sulfonium in the solid state and short I···I interchain contacts-crystal structures, optical properties, and theoretical investigations of 1D iodobismuthates. Inorg.Chem. 2009, 48, 879–888.

    (4) Lin, R. G.; Xu, G.; Wang, M. S.; Lu, G.; Li, P. X.; Guo, G. C. Improved photochromic properties on viologen-based inorganic-organic hybrids by using π-conjugated substituents as electron donors and stabilizers. Inorg. Chem. 2013, 52, 1199–1205.

    (5) Chen, Y.; Yang, Z.; Wu, X. Y.; Ni, C. Y.; Ren, Z. G.; Wang, H. F.; Lang, J. P. Iodobismuthates with N-alkyl- or N,N?-dialkyl-4,4?-bipyridinium:syntheses, structures and dielectric properties. Phys. Chem. Chem. Phys. 2011, 13, 5659–5667.

    (6) Chen, Y.; Yang, Z.; Guo, C. X.; Ni, C. Y.; Li, H. X.; Ren, Z. G.; Lang, J. P. Using alcohols as alkylation reagents for 4-cyanopyridinium and N,N?-dialkyl-4,4?-bipyridinium and their one-dimensional iodoplumbates. Cryst. Eng. Comm. 2011, 13, 243–250.

    (7) Knutson, J. L.; Martin, J. D. Tuning the band gap in hybrid tin iodide perovskite semiconductors using structural templating. Inorg. Chem. 2005, 44,4699–4705.

    (8) Vaidhyanathan, R.; Natarajan, S.; Rao, C. N. R. Hybrid inorganic-organic host-guest compounds: open-framework cadmium oxalates incorporating novel extended structures of alkali halides. Chem. Mater. 2001, 13, 3524–3533.

    (9) Xu, Z. T.; Mitzi, D. B. SnI42--based hybrid perovskites templated by multiple organic cations: combining organic functionalities through noncovalent interactions. Chem. Mater. 2003, 15, 3632–3637.

    (10) Daszkiewicz, M.; Marchewka, M. K. Crystal structure, vibrational and theoretical studies of bis(4-amino-1,2,4-triazolium) hexachloridostannate (IV).J. Molec. Struct. 2012, 1017, 90–97.

    (11) Mitzi, D. B.; Wang, S.; Field, C. A.; Chess, C. A.; Guloy, A. M. Conducting layered organic-inorganic halides containing <110>-oriented perovskite sheets. Science 1995, 267, 1473–1476.

    (12) Guan, J.; Tang, Z. J.; Guloy, A. M. α-[NH3(CH2)5NH3]SnI4: a new layered perovskite structure. Chem.Commun. 1999, 1833–1834.

    (13) Mitzi, D. B. Organic-inorganic perovskites containing trivalent metal halide layers: the templating influence of the organic cation layer. Inorg. Chem.2000, 39, 6107–6113.

    (14) Takahashi, Y.; Obara, R.; Nakagawa, K.; Nakano, M.; Tokita, J.; Inabe, T. Tunable charge transport in soluble organic-inorganic hybrid semiconductors. Chem. Mater. 2007, 19, 6312–6316.

    (15) Xu, Z. T.; Mitzi, D. B. [CH3(CH2)11NH3]SnI3:a hybrid semiconductor with MoO3-type tin(II) iodide layers. Inorg. Chem. 2003, 42, 6589–6591.

    (16) Xu, Z. T.; Mitzi, D. B.; Medeiros, D. R. [(CH3)3NCH2CH2NH3]SnI4:a layered perovskite with quaternary/primary ammonium dications and short interlayer iodine-iodine contacts. Inorg. Chem. 2003, 42, 1400–1402.

    (17) Li, Y. Y.; Zheng, G. L.; Lin, C. K.; Lin, J. New organic-inorganic perovskite materials with different optical properties modulated by different inorganic sheets. Cryst. Growth Design 2008, 8, 1990–1996.

    (18) Mitzi, D. B.; Dimitrakopoulos, C. D.; Kosbar, L. L. Structurally tailored organic-inorganic perovskites: optical properties and solution-processed channel materials for thin-film transistors. Chem. Mater. 2001, 13, 3728–3740.

    (19) Xu, Z. T.; Mitzi, D. B.; Dimitrakopoulos, C. D.; Maxcy, K. R. Semiconducting perovskites (2-XC6H4C2H4NH3)2SnI4(X = F, Cl, Br):steric interaction between the organic and inorganic layers. Inorg. Chem. 2003, 42, 2031–2039.

    (20) Li, J. P.; Li, L. H.; Wu, L. M.; Chen, L. Synthesis, properties, and theoretical studies of new stepwise layered iodoplumbate:[Ni(opd)2(acn)2]n[Pb4I10]n. Inorg. Chem. 2009, 48, 1260–1262.

    (21) Guo, H. X.; Zhang, Y.; Li, X. Z.; Weng, W. Hydrothermal synthesis, crystal structure and optical properties of a 2-D heterometallic iodoplumbate.Inorg. Chem. Comm. 2010, 13, 425–428.

    (22) Ding, H. X.; Lu, W.; Li, H. B.; Yang, L. X.; Zhang, Q. J.; Zhou, C. X.; Wu, X. M.; Baudoin, O.; Cai, J. C.; Gueritte, F.; Zhao, Y. Synthesis and biological evaluation of novel compounds related to 1-arylnaphthalene lignans and isoquinolines. Chem. Biodiversity 2005, 2, 1217–1231.

    (23) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, Jr. T.; Kudin, K. N.; Burant,J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada,M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.;Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski,J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas,O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.;Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe,M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Gaussian Inc., Pittsburgh, PA 2003.

    (24) Perew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phy. Rev. Lett. 1996, 77, 3865–3868.

    (25) Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. J.; Refson, K.; Payne, M. C. First Principles Methods Using CASTEP, Zeitschrift fuer Krystallographie, 2005, 220(5-6), 567–570.

    (26) Wang, S. S.; Liu, W.; Wan, Q. X.; Liu, Y. Homogeneous epoxidation of lipophilic alkenes by aqueous hydrogen peroxide: catalysis of a Keggin-type phosphotungstate-functionalized ionic liquid in amphipathic ionic liquid solution. Green Chem. 2009, 11, 1589–1594.

    (27) Jin, S. W.; Chen, W. Z.; Qiu, H. Y. Syntheses and structural characterization of inorganic-organic hybrid solids of diimidazolium hexachlorostannate complexes. J. Coord. Chem. 2008, 61, 1253–1264.

    (28) Sheldrick, G. M. SHELXS97 and SHELXL97. University of G?ttingen, Germany 1997.

    (29) Jin, S. W.; Wang, D. Q. Syntheses and structure characterization of fourinorganic-organic hybrid solids based on N-containing aromatic Bronsted bases and chlorometallates. J. Coord. Chem. 2012, 65, 1937–1952.

    (30) Wu, M. Q.; Xiao, X.; Zhang, Y. Q.; Xue, S. F.; Zhu, Q. J. 1,1?-(Butane-1,4-diyl)dipyridinium dibromide dehydrate. Acta Crystallogr. E 2008, 64, o467.

    (31) Li, H. H.; Chen, Z. R.; Cheng, L. C.; Feng, M.; Zheng, H. D.; Li, J. Q. Three silver iodides with zero and one-dimensional hybrid structures directed by conjugated organic templates: synthesis and theoretical study. Dalton Trans. 2009, 25, 4888–4895.

    (32) Helal, A.; Lee, S. H.; Ren, W. X.; Cho, C. S.; Kim, H. S. Fluorescence sensing properties of 2-(2?-hydroxyphenyl)quinoline and derivatives. Bull.Korean Chem. Soc. 2011, 32, 1559–1603.

    (33) Kuang, D. Z.; Yu, J. X.; Yin, D. L.; Feng, Y. L.; Zhang, F. X.; Wang, J. Q.; Liu, M. Q. Synthesis, crystal structure and electrochemical properties of tri(n-butyl)tin 3-amino-2-pyrazine formic ester polymer. Chin. J. Inorg. Chem. 2010, 26, 2303–2306.

    avwww免费| 午夜精品久久久久久毛片777| 欧美成人一区二区免费高清观看 | 身体一侧抽搐| 丝袜美腿诱惑在线| 欧美日韩瑟瑟在线播放| 欧美久久黑人一区二区| 国产精品美女特级片免费视频播放器 | 国产视频内射| 久99久视频精品免费| 精品免费久久久久久久清纯| 亚洲男人天堂网一区| 午夜福利欧美成人| 日韩成人在线观看一区二区三区| 日本黄色视频三级网站网址| 99国产精品99久久久久| 精品久久蜜臀av无| 久久久久久久精品吃奶| 国内揄拍国产精品人妻在线| 97人妻精品一区二区三区麻豆| 老熟妇仑乱视频hdxx| 99国产精品一区二区三区| 淫妇啪啪啪对白视频| 一卡2卡三卡四卡精品乱码亚洲| 操出白浆在线播放| 欧美日韩一级在线毛片| 91麻豆精品激情在线观看国产| 天天躁狠狠躁夜夜躁狠狠躁| 老司机靠b影院| 婷婷精品国产亚洲av在线| 成人av一区二区三区在线看| 此物有八面人人有两片| avwww免费| 五月玫瑰六月丁香| 丰满的人妻完整版| 亚洲九九香蕉| 99久久无色码亚洲精品果冻| 亚洲欧美一区二区三区黑人| 中亚洲国语对白在线视频| 国产成人影院久久av| 在线观看午夜福利视频| 久久亚洲真实| 午夜精品久久久久久毛片777| 桃红色精品国产亚洲av| 麻豆国产av国片精品| 日本一区二区免费在线视频| 18禁黄网站禁片午夜丰满| 国内精品久久久久久久电影| 国产97色在线日韩免费| 婷婷丁香在线五月| 首页视频小说图片口味搜索| 色av中文字幕| 最新美女视频免费是黄的| 色综合婷婷激情| 久久精品人妻少妇| videosex国产| 老司机午夜福利在线观看视频| 亚洲国产日韩欧美精品在线观看 | 狂野欧美激情性xxxx| 久久精品国产综合久久久| 久久欧美精品欧美久久欧美| 国产黄色小视频在线观看| 国产单亲对白刺激| 国产精品免费视频内射| 中文字幕人妻丝袜一区二区| 别揉我奶头~嗯~啊~动态视频| 免费观看精品视频网站| 欧美又色又爽又黄视频| 成人午夜高清在线视频| 伦理电影免费视频| 欧美成人午夜精品| 久久香蕉国产精品| 欧美黄色淫秽网站| 久热爱精品视频在线9| 两个人免费观看高清视频| 亚洲精品国产精品久久久不卡| 变态另类丝袜制服| 一区二区三区激情视频| 欧美一区二区精品小视频在线| 国产蜜桃级精品一区二区三区| 久久中文字幕人妻熟女| 午夜福利视频1000在线观看| 在线观看免费午夜福利视频| 中文字幕精品亚洲无线码一区| 国产单亲对白刺激| 欧美另类亚洲清纯唯美| 久久久久精品国产欧美久久久| 成人精品一区二区免费| 欧美 亚洲 国产 日韩一| 成年版毛片免费区| 亚洲精品中文字幕在线视频| 午夜福利高清视频| 亚洲美女黄片视频| 1024香蕉在线观看| av有码第一页| 男人的好看免费观看在线视频 | 婷婷亚洲欧美| e午夜精品久久久久久久| 精品日产1卡2卡| 国产亚洲精品一区二区www| 欧美+亚洲+日韩+国产| 18禁国产床啪视频网站| 精品久久久久久久末码| 日本三级黄在线观看| 老司机深夜福利视频在线观看| 亚洲全国av大片| 1024香蕉在线观看| 这个男人来自地球电影免费观看| 级片在线观看| 在线观看66精品国产| 99re在线观看精品视频| 亚洲av第一区精品v没综合| 精品欧美一区二区三区在线| 日韩欧美在线乱码| 人妻夜夜爽99麻豆av| 欧美午夜高清在线| 岛国在线免费视频观看| 亚洲五月婷婷丁香| 午夜精品在线福利| 成年女人毛片免费观看观看9| 99热这里只有精品一区 | 十八禁人妻一区二区| 精品一区二区三区四区五区乱码| 成人亚洲精品av一区二区| 夜夜躁狠狠躁天天躁| 91九色精品人成在线观看| 身体一侧抽搐| 五月伊人婷婷丁香| 精品久久久久久久毛片微露脸| 可以免费在线观看a视频的电影网站| 激情在线观看视频在线高清| 18禁国产床啪视频网站| 国产区一区二久久| 夜夜看夜夜爽夜夜摸| 国产av不卡久久| 精品无人区乱码1区二区| 久久中文字幕一级| 亚洲国产中文字幕在线视频| 悠悠久久av| 久久久久久久午夜电影| 午夜成年电影在线免费观看| 两个人的视频大全免费| 亚洲欧美一区二区三区黑人| 淫妇啪啪啪对白视频| 国产三级中文精品| 人成视频在线观看免费观看| 50天的宝宝边吃奶边哭怎么回事| 18禁观看日本| 国产黄a三级三级三级人| 国产69精品久久久久777片 | 18禁国产床啪视频网站| 国产69精品久久久久777片 | 国产黄a三级三级三级人| 国产97色在线日韩免费| 国产午夜福利久久久久久| 九九热线精品视视频播放| 成年女人毛片免费观看观看9| 在线观看66精品国产| 国产黄a三级三级三级人| 成人国语在线视频| 变态另类成人亚洲欧美熟女| 亚洲av电影在线进入| 国产v大片淫在线免费观看| 久久国产精品影院| 国内毛片毛片毛片毛片毛片| 精品久久久久久久久久免费视频| 97人妻精品一区二区三区麻豆| a在线观看视频网站| 99国产精品99久久久久| 草草在线视频免费看| 国产av又大| 亚洲成av人片在线播放无| 一a级毛片在线观看| 给我免费播放毛片高清在线观看| 搞女人的毛片| 国产欧美日韩精品亚洲av| 国产69精品久久久久777片 | 琪琪午夜伦伦电影理论片6080| 在线观看日韩欧美| 老熟妇乱子伦视频在线观看| 九九热线精品视视频播放| 国产激情久久老熟女| 我的老师免费观看完整版| 叶爱在线成人免费视频播放| 啦啦啦观看免费观看视频高清| 亚洲自拍偷在线| 丝袜人妻中文字幕| 搞女人的毛片| 国产精品日韩av在线免费观看| 欧美一级毛片孕妇| 亚洲专区中文字幕在线| 久久久久国内视频| 欧美精品啪啪一区二区三区| 国产三级黄色录像| 国产av一区在线观看免费| 亚洲全国av大片| 男女之事视频高清在线观看| 久久久国产成人精品二区| 这个男人来自地球电影免费观看| 日韩 欧美 亚洲 中文字幕| 欧美日韩亚洲综合一区二区三区_| 可以在线观看的亚洲视频| 高潮久久久久久久久久久不卡| 国产视频一区二区在线看| 中文字幕人成人乱码亚洲影| 女生性感内裤真人,穿戴方法视频| 国产av又大| 色av中文字幕| 一级毛片高清免费大全| 欧美精品亚洲一区二区| 男女下面进入的视频免费午夜| 国产精品av久久久久免费| 99久久国产精品久久久| 91老司机精品| 老汉色∧v一级毛片| 久久久久久久午夜电影| 久久这里只有精品19| 国产激情偷乱视频一区二区| 国产视频一区二区在线看| 国产一区二区在线观看日韩 | 一个人免费在线观看电影 | 一进一出抽搐动态| 黄色a级毛片大全视频| 国产精品亚洲一级av第二区| 国产野战对白在线观看| 免费在线观看完整版高清| 嫁个100分男人电影在线观看| 欧美成人免费av一区二区三区| 丁香六月欧美| 久久精品人妻少妇| 日韩三级视频一区二区三区| 国产欧美日韩一区二区精品| 久久热在线av| 三级国产精品欧美在线观看 | АⅤ资源中文在线天堂| 在线观看免费午夜福利视频| 香蕉久久夜色| 日韩精品免费视频一区二区三区| 亚洲av第一区精品v没综合| aaaaa片日本免费| 国产激情欧美一区二区| 亚洲国产高清在线一区二区三| 国产精品久久久久久精品电影| 亚洲五月婷婷丁香| 国产99久久九九免费精品| 动漫黄色视频在线观看| 黄色视频不卡| 两人在一起打扑克的视频| 两性午夜刺激爽爽歪歪视频在线观看 | 此物有八面人人有两片| 欧美一区二区国产精品久久精品 | 亚洲 欧美一区二区三区| 欧美一区二区精品小视频在线| 日韩三级视频一区二区三区| 美女 人体艺术 gogo| 国产精品亚洲美女久久久| 亚洲真实伦在线观看| 国产成人精品无人区| 国产aⅴ精品一区二区三区波| 精品国产亚洲在线| 日本精品一区二区三区蜜桃| 三级毛片av免费| 亚洲一区二区三区不卡视频| 天天躁狠狠躁夜夜躁狠狠躁| 国产高清有码在线观看视频 | 手机成人av网站| 欧美黑人精品巨大| 亚洲av第一区精品v没综合| 成年女人毛片免费观看观看9| 亚洲国产日韩欧美精品在线观看 | 又爽又黄无遮挡网站| 亚洲欧美精品综合一区二区三区| 精品乱码久久久久久99久播| 国产真实乱freesex| 中文字幕久久专区| 两个人的视频大全免费| 免费看美女性在线毛片视频| 国产成人啪精品午夜网站| 久久久久久人人人人人| 叶爱在线成人免费视频播放| 色综合欧美亚洲国产小说| 国产精品1区2区在线观看.| 久久天堂一区二区三区四区| 日日干狠狠操夜夜爽| 中文字幕最新亚洲高清| 久久欧美精品欧美久久欧美| 久久中文字幕人妻熟女| 久久久久精品国产欧美久久久| 妹子高潮喷水视频| 国产精品自产拍在线观看55亚洲| www.精华液| 不卡一级毛片| 九九热线精品视视频播放| 亚洲人成伊人成综合网2020| 香蕉久久夜色| 久久精品夜夜夜夜夜久久蜜豆 | 夜夜夜夜夜久久久久| 好看av亚洲va欧美ⅴa在| 午夜福利欧美成人| 久久精品成人免费网站| 欧美国产日韩亚洲一区| 夜夜看夜夜爽夜夜摸| a级毛片a级免费在线| 亚洲欧美日韩高清专用| 久久热在线av| 日韩免费av在线播放| 岛国在线免费视频观看| 一本精品99久久精品77| 国产亚洲精品久久久久久毛片| 波多野结衣高清作品| 国产av又大| 国产熟女xx| 精华霜和精华液先用哪个| 禁无遮挡网站| 国产亚洲精品av在线| 91麻豆精品激情在线观看国产| 午夜激情福利司机影院| 亚洲一区中文字幕在线| 国产主播在线观看一区二区| 久久性视频一级片| 91在线观看av| www日本黄色视频网| 免费搜索国产男女视频| 成人18禁高潮啪啪吃奶动态图| 国产高清视频在线播放一区| 亚洲无线在线观看| 两人在一起打扑克的视频| 91在线观看av| 男女床上黄色一级片免费看| 欧美3d第一页| 中文亚洲av片在线观看爽| 亚洲av日韩精品久久久久久密| bbb黄色大片| 亚洲最大成人中文| 亚洲,欧美精品.| 在线看三级毛片| 亚洲中文字幕日韩| av在线天堂中文字幕| www.熟女人妻精品国产| 亚洲全国av大片| 欧美黑人巨大hd| 怎么达到女性高潮| 久久人人精品亚洲av| 最近最新中文字幕大全免费视频| 国产精品 欧美亚洲| 日韩欧美 国产精品| 性色av乱码一区二区三区2| 亚洲国产精品久久男人天堂| 18禁观看日本| av在线天堂中文字幕| 黄色丝袜av网址大全| 久热爱精品视频在线9| 久久精品综合一区二区三区| 99久久精品国产亚洲精品| 国产精品99久久99久久久不卡| www.999成人在线观看| xxxwww97欧美| 精品久久久久久久人妻蜜臀av| 国产av在哪里看| cao死你这个sao货| 91麻豆av在线| 亚洲va日本ⅴa欧美va伊人久久| 丰满的人妻完整版| 黄色片一级片一级黄色片| www日本在线高清视频| 久久99热这里只有精品18| 成人av在线播放网站| 日韩精品中文字幕看吧| 欧美黑人欧美精品刺激| 欧美黄色淫秽网站| 精品国产超薄肉色丝袜足j| 国产黄色小视频在线观看| 高潮久久久久久久久久久不卡| 国产在线观看jvid| 麻豆成人午夜福利视频| 岛国在线观看网站| 国产精品九九99| 国产激情久久老熟女| 国产三级中文精品| 99riav亚洲国产免费| 熟妇人妻久久中文字幕3abv| 欧美黄色片欧美黄色片| 制服人妻中文乱码| 久久精品影院6| 一级毛片精品| 亚洲av电影在线进入| 99久久99久久久精品蜜桃| 嫩草影院精品99| 欧美高清成人免费视频www| 天天添夜夜摸| 757午夜福利合集在线观看| 欧美在线一区亚洲| 国产精品98久久久久久宅男小说| 日本一二三区视频观看| 日韩欧美 国产精品| 一进一出抽搐动态| 每晚都被弄得嗷嗷叫到高潮| 啪啪无遮挡十八禁网站| 青草久久国产| 精品一区二区三区四区五区乱码| 精品少妇一区二区三区视频日本电影| 午夜免费观看网址| 麻豆成人午夜福利视频| 好看av亚洲va欧美ⅴa在| 亚洲国产看品久久| 夜夜夜夜夜久久久久| 久久欧美精品欧美久久欧美| 亚洲成人久久爱视频| 一进一出抽搐gif免费好疼| 亚洲成av人片免费观看| 一边摸一边做爽爽视频免费| 亚洲五月天丁香| 欧美精品亚洲一区二区| 久久中文字幕一级| 欧美高清成人免费视频www| 亚洲精品美女久久久久99蜜臀| 又爽又黄无遮挡网站| 久久婷婷成人综合色麻豆| 亚洲黑人精品在线| 国产精品野战在线观看| 淫秽高清视频在线观看| 欧美绝顶高潮抽搐喷水| 久久天躁狠狠躁夜夜2o2o| 一区二区三区激情视频| 18禁黄网站禁片午夜丰满| 女人高潮潮喷娇喘18禁视频| 中出人妻视频一区二区| 久久天堂一区二区三区四区| 国产99久久九九免费精品| a级毛片a级免费在线| 亚洲自偷自拍图片 自拍| 日韩av在线大香蕉| 一级黄色大片毛片| 在线观看日韩欧美| 日韩欧美精品v在线| 亚洲男人的天堂狠狠| 免费电影在线观看免费观看| 国产激情偷乱视频一区二区| 一夜夜www| 国产精品1区2区在线观看.| 禁无遮挡网站| 国产精品影院久久| 亚洲avbb在线观看| 五月玫瑰六月丁香| 中文字幕高清在线视频| 一夜夜www| 一二三四在线观看免费中文在| 两性夫妻黄色片| 午夜视频精品福利| 精品国产亚洲在线| 久9热在线精品视频| 久久精品人妻少妇| 91麻豆av在线| 在线免费观看的www视频| 亚洲 欧美一区二区三区| 听说在线观看完整版免费高清| 天天一区二区日本电影三级| 欧美绝顶高潮抽搐喷水| 色播亚洲综合网| 日本黄色视频三级网站网址| 在线观看免费午夜福利视频| 美女大奶头视频| 在线播放国产精品三级| 日韩三级视频一区二区三区| 国产免费男女视频| 1024视频免费在线观看| 午夜视频精品福利| 久久久久国产一级毛片高清牌| 久久精品aⅴ一区二区三区四区| 久久人妻av系列| 女生性感内裤真人,穿戴方法视频| 搡老熟女国产l中国老女人| 大型av网站在线播放| 日韩中文字幕欧美一区二区| av福利片在线| www日本黄色视频网| 最近最新中文字幕大全电影3| 变态另类丝袜制服| 欧美性长视频在线观看| 日本一二三区视频观看| 女人高潮潮喷娇喘18禁视频| 国内久久婷婷六月综合欲色啪| 天堂动漫精品| 一本大道久久a久久精品| 久久久久国内视频| 亚洲成人久久性| 最新在线观看一区二区三区| 免费av毛片视频| 久久 成人 亚洲| 欧美日韩乱码在线| 日本黄色视频三级网站网址| 国产亚洲欧美98| 日韩欧美一区二区三区在线观看| 国产精品电影一区二区三区| 欧美成人性av电影在线观看| 亚洲一区二区三区色噜噜| 99久久精品国产亚洲精品| 亚洲美女视频黄频| 国产精品野战在线观看| 日韩av在线大香蕉| 少妇粗大呻吟视频| 精品日产1卡2卡| 国产精品一区二区三区四区久久| 欧美乱色亚洲激情| 男人的好看免费观看在线视频 | 麻豆成人午夜福利视频| 日韩成人在线观看一区二区三区| 中文字幕最新亚洲高清| 中文字幕熟女人妻在线| 欧美精品亚洲一区二区| 18禁黄网站禁片午夜丰满| 日韩 欧美 亚洲 中文字幕| 精品久久久久久久久久免费视频| 日韩欧美免费精品| 亚洲精品在线美女| 国产成人欧美在线观看| 亚洲18禁久久av| 无限看片的www在线观看| 黄片大片在线免费观看| 午夜福利在线在线| 在线播放国产精品三级| 亚洲狠狠婷婷综合久久图片| 日本成人三级电影网站| 午夜老司机福利片| 久久精品aⅴ一区二区三区四区| 国产av麻豆久久久久久久| 51午夜福利影视在线观看| 夜夜看夜夜爽夜夜摸| 久久久久久亚洲精品国产蜜桃av| 日韩欧美三级三区| 亚洲自偷自拍图片 自拍| 久久性视频一级片| 少妇人妻一区二区三区视频| 男女那种视频在线观看| 国产伦人伦偷精品视频| 国产99白浆流出| 免费看日本二区| 国产高清视频在线观看网站| 亚洲欧美日韩东京热| 两性夫妻黄色片| 国产精品久久久av美女十八| 50天的宝宝边吃奶边哭怎么回事| 久久精品国产亚洲av高清一级| 我的老师免费观看完整版| 色av中文字幕| 国产一区二区激情短视频| 老熟妇乱子伦视频在线观看| bbb黄色大片| 久久精品国产亚洲av香蕉五月| 久久久久久久久中文| 久久精品成人免费网站| 午夜影院日韩av| 欧美久久黑人一区二区| 精品免费久久久久久久清纯| 每晚都被弄得嗷嗷叫到高潮| 99热这里只有精品一区 | 亚洲aⅴ乱码一区二区在线播放 | 久久精品国产99精品国产亚洲性色| 亚洲精品色激情综合| 日本熟妇午夜| 国产成人aa在线观看| 在线永久观看黄色视频| 国产亚洲精品综合一区在线观看 | 日本免费一区二区三区高清不卡| svipshipincom国产片| a级毛片a级免费在线| 一边摸一边做爽爽视频免费| 国产精品亚洲av一区麻豆| 一二三四社区在线视频社区8| 亚洲欧美日韩东京热| 亚洲人成电影免费在线| 国产免费av片在线观看野外av| 国产亚洲精品av在线| 青草久久国产| 中文字幕人成人乱码亚洲影| 一级毛片高清免费大全| 18禁裸乳无遮挡免费网站照片| 无遮挡黄片免费观看| 亚洲 欧美一区二区三区| 一级片免费观看大全| 此物有八面人人有两片| 九色国产91popny在线| 狠狠狠狠99中文字幕| 18禁观看日本| 天堂影院成人在线观看| 久久中文字幕一级| 悠悠久久av| 国内久久婷婷六月综合欲色啪| 久久中文字幕人妻熟女| 不卡一级毛片| 法律面前人人平等表现在哪些方面| 国产一区二区三区在线臀色熟女| 在线a可以看的网站| 桃色一区二区三区在线观看| 十八禁网站免费在线| 国产精品99久久99久久久不卡| 99久久精品国产亚洲精品| 国产精品一区二区三区四区久久| 亚洲色图av天堂| aaaaa片日本免费| 亚洲熟妇中文字幕五十中出| 国产精品99久久99久久久不卡| 夜夜夜夜夜久久久久| АⅤ资源中文在线天堂| 久热爱精品视频在线9| 又爽又黄无遮挡网站| 国产亚洲欧美在线一区二区| 亚洲中文字幕日韩| 欧美另类亚洲清纯唯美| 淫秽高清视频在线观看| 999久久久精品免费观看国产| 国产精品久久电影中文字幕| 国产精品自产拍在线观看55亚洲| 我的老师免费观看完整版| 高清在线国产一区|