• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis, X-ray Crystallographic Analysis and Bioactivities of α-Aminophosphonates Featuring Pyrazole and Fluorine Moieties①

    2014-03-25 02:35:20HONGYnPingSHANGGUANXinChenIQBAIZfrYINXioLi
    結(jié)構(gòu)化學(xué) 2014年11期

    HONG Yn-Ping SHANGGUAN Xin-Chen IQBAI Zfr YIN Xio-Li

    a (Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China)

    b (PCSIR Laboratories Complex, Feroze Pur Road Lahore 54000, Pakistan)

    c (Library of Jiangxi Agricultural University, Nanchang 330045, China)

    1 INTRODUCTION

    As the phosphorus structural analogues of natural amino acids, α-aminophosphonic acids and their ester derivatives have attracted tremendous research interest ranging from chemistry, medicinal and agricultural sciences by virtue of their broad spectrum of biological and pharmacological activities. In the last two decades, a large number of literatures have shown that many α-aminophosphonates can serve not only as fungicide[1], herbicide[2,3]and plant virucide[4], but also as antitumor agents[5], antibacterial agents[6], HIV inhibitors[7]and so on. It is well known that the pyrazole ring is an important heterocycle which has been utilized as a synthon widely in agrochemicals and pharmaceuticals[8]. The introduc-tion of pyrazole into the parent compounds may remarkably improve the biological properties of the compounds. Some pyrazole-containing pesticides and medicines have already been commercialized.For example, pyraclostrobin[9], pyrazosulfuronethyl[10]and fipronil[11]were developed as fungicide,herbicide and insecticide, respectively, whereas zaleplon[12]has been used as a hypnotic drug. In addition, fluorine compounds have been widely applied to synthesize new agrochemicals[13-15].Keeping in view the above facts, an attempt has been made to design and synthesize novel α-aminophosphonate derivatives with high bioactivity and low toxicity. Pyrazole and fluorine moieties were incorporated in α-aminophosphonate 4 (Scheme 1).

    Scheme 1. General procedure of preparing compound 4

    2 EXPERIMENTAL

    2.1 Reagents, instruments and activity bioassay

    All chemicals and reagents were commercially available and used without further purification. The melting point was determined with Tektronix X4 microscopic melting point apparatus and uncorrected.Infrared spectra were obtained on a Nicolet FTIR-5700 instrument with the compound in a KBr disc matrix. The1H NMR and13C NMR spectra were carried out with a Bruker DRX-400 (400 MHz)spectrometer, using TMS as internal standard. The elemental analysis was performed by Elemento EL-III. Column chromatography was performed on silica gel (200~300 mesh). Sonication was performed on a KQ3200DB ultrasonic cleaner (with frequencies of 40 KHz and a nominal power of 150 W). X-ray diffraction analysis was carried out with a Rigaku Saturn 724 CCD X-ray diffraction instrument.

    The antifungal activities against two pathogenic fungi, namely Fusarium graminearum Schw. and Sclerotium rolfsii Sacc., were carried out by the plate growth rate method. Compounds 4a~4h were dissolved in acetone before mixing with Potato Dextrose Agar (PDA: 20% potato extract, 2%dextrose, 2% agar). The final concentration of compounds 4a~4h in the medium was fixed at 50 and 200 μg/mL, respectively. Two kinds of fungi were incubated in PDA at 25±1 ℃ for 3 days to get new mycelium for antifungal assay, then a mycelia disk of approximately 5 mm diameter cut from the culture medium was picked up with a sterilized inoculation needle and inoculated in the center of PDA plate. The inoculated plates were incubated at 25±1 ℃ for 74 h. Acetone in aseptic water served as control, and three replicates were carried out. The in vitro inhibition rates of the compound were then calculated according to the following formula (A and B represent the diameters of fungi growth on PDA treated with control and the compound,respectively).

    The assay against cancer cell proliferation was evaluated by MTT method. All compounds tested were dissolved in DMSO (1~100 μM solution) and subsequently diluted in the culture medium before treatment of the cultured cells. Tested cells were plated in 96-well plates at a density of 2 × 103cells/well/100 μL of the proper culture medium and treated with the compounds at concentration of 1 and 10 μM for 72 h. In parallel, the cells were treated with 0.1% of DMSO as control. An MTT[3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolim bromide] assay (Roche Molecular Biochemicals)was performed according to the instructions provided by Roche. This assay is based on the cellular cleavage of the tetrazolium salt, MTT, into a formazan that is soluble in cell culture medium and measured at 550 nm directly in 96-well assay plates.Absorbance is directly proportional to the number of living cells in culture. In this study, PC3 (prostate cancer) cell (provided by Cell Bank of Committee on Type Culture Collection of Chinese Academy of Science) was cultivated in RPMI 1640 and supplemented with 10% fetal bovine serum. Tissue culture reagents were obtained from Gibco Co.Inhibition rates of the compound were calculated according to the following formula (A1and A2mean the optical densities of untreated cells and drug treated cells, respectively).

    The antiviral activity against tobacco mosaic virus(TMV) was carried out by the conventional half-leaf method (Ningnanmycin was used as the reference antiviral agent). TMV (concentration of 6.0 × 10-3mg/mL) was dipped and inoculated on the whole leaves of the same ages of tobacco; the leaves were washed with water and dried. The compound solution was smeared on the left side, and the solvent was smeared on the right side for control. The local lesion numbers were then counted and recorded 3~4 days after inoculation. There are three replicates for the title compound and Ningnanmycin. The in vivo inhibition rates of the compound were then calculated according to the following formula (“av”means average, and controls were not treated with compound).

    2.2 Syntheses

    3,5-Difluorobenzaldehyde or 4-trifluoromethylbenzaldehyde 1 (5 mmol), 3-amino-4-cyanopyrazole 2 (5 mmol), para-toluenesulfonic acid (0.10 mmol)and anhydrous ethanol (30 mL) were taken in an oven-dried round-bottomed flask. The mixture was heated to 80 ℃ in the ultrasonic cleaning bath and irradiated for 40~50 minutes. The reaction progress was monitored by TLC (V(acetone)∶V(petroleum)= 2∶3)analysis. After completion of the reaction, the ethanol was removed in vacuum. Then dialkylphosphite (15 mmol) was added into the resulted imine intermediate 3 and refluxed under free-solvent condition for 3~4 h until the reaction was completed (monitored by TLC). The residue was purified by silica gel column chromatography eluting with petroleum ether/acetone to afford 4 as pure products.

    Diethyl[(4-cyano-1H-pyrazol-3-ylamino)(3,5-difluorophenyl)methyl]phosphonate (4a) Colorless block solid; yield: 79.7%; m.p.: 206~207 ℃.1H NMR (CD3COCD3, 400Hz, ppm) δ: 1.13~1.27 (m,6H, 2OCCH3), 3.92~3.96 (m, 1H, POCH), 4.01~4.07 (m, 1H, POCH), 4.10~4.16 (m, 2H, POCH2),5.26 (d, J3P-H= 23.2, 1H, PCHN), 6.93~6.97 (m,1H, Ar-H), 7.29~7.34 (m, 2H, Ar-H), 8.07 (s, 1H,C=CHpyrazole).13C NMR (DMSO-d6, 100Hz, ppm) δ:16.0, 16.2, 55.1, 62.5, 62.9, 102.9, 111.4, 111.7,114.8, 141.8, 155.2, 160.7, 163.2. IR (KBr,vmax/cm-1): 3337(w), 3194(w), 2983(m), 2227(s),1624(m), 1601(m), 1550(s), 1463(w), 1313(w),1222(s), 1034(s), 987(s), 795(w). Anal. Calcd. (%)for C15H17F2N4O3P: C, 48.51; H, 4.65; N, 15.16.Found (%): C, 48.65; H, 4.63; N, 15.13.

    Di-n-propyl[(4-cyano-1H-pyrazol-3-ylamino)(3,5-difluorophenyl)methyl]phosphonate (4b)Colorless block solid; yield: 81.2%; m.p.: 177~178 ℃.1H NMR (CD3COCD3, 400Hz, ppm) δ:0.82~0.86 (t, 3H, CCH3), 0.88~0.92 (t, 3H, CCH3),1.53~1.58 (m, 2H, OCCH2), 1.62~1.67 (m, 2H,OCCH2), 3.84~3.85 (m, 1H, POCH2), 3.94~3.96(m, H, POCH2), 4.04~4.08 (m, 2H, POCH2), 5.29(d, J3P-H= 23.6, 1H, PCHN), 6.92~6.98 (m, 1H,Ar-H), 7.30~7.32 (m, 2H, Ar-H), 8.10 (s, 1H,C=CHpyrazole).13C NMR (DMSO-d6, 100Hz, ppm) δ:9.7, 9.8, 23.2, 23.4, 55.1, 67.7, 68.3, 102.8, 111.5,111.8, 114.8, 141.7, 155.2, 160.7, 163.3. IR (KBr,vmax/cm-1): 3350(w), 3188(w), 2974(m), 2223(s),1623(m), 1601(m), 1550(s), 1466(w), 1310(m),1222(s), 1013(s), 992(s), 751(w). Anal. Calcd. (%)for C17H21F2N4O3P: C, 51.21; H, 5.36; N, 14.09.Found (%): C, 51.26; H, 5.31; N, 14.06.

    Diisopropyl[(4-cyano-1H-pyrazol-3-ylamino)(3,5-difluorophenyl)methyl]phosphonate (4c)[18]Colorless block solid; yield: 84.3%; m.p.: 191~192 ℃.1H NMR (CD3COCD3, 400Hz, ppm) δ:1.01~1.05 (m, 3H, OCCH3), 1.20~1.22 (m, 3H,OCCH3), 1.26~1.32 (m, 6H, 2OCCH3), 4.56~4.57(m, 1H, POCH), 4.72~4.75 (m, 1H, POCH), 5.16(d, J3P-H= 23.6, 1H, PCHN), 6.91~6.95 (m, 1H,Ar-H), 7.28~7.30 (m, 2H, Ar-H), 8.08 (s, 1H,C=CHpyrazole).13C NMR (DMSO-d6, 100Hz, ppm) δ:23.1, 23.3, 23.7, 23.9, 55.7, 71.1, 71.5, 102.8, 111.6,111.9, 114.8, 141.8, 155.2, 160.8, 163.2. IR (KBr,vmax/cm-1): 3363(w), 3194(w), 2988(m), 2224(s),1621(m), 1599(m), 1552(s), 1465(w), 1307(m),1220(s), 1012(s), 993(s), 779(w). Anal. Calcd. (%)for C17H21F2N4O3P: C, 51.19; H, 5.29; N, 14.13.Found (%): C, 51.26; H, 5.31; N, 14.06.

    Di-n-butyl[(4-cyano-1H-pyrazol-3-ylamino)(3,5-difluorophenyl)methyl]phosphonate (4d)Colorless needle solid; yield: 85.1%; m.p.: 102~103 ℃.1H NMR (CD3COCD3, 400Hz, ppm) δ:0.82~0.89 (m, 6H, 2CCH3), 1.25~1.36 (m, 4H,2CCH2), 1.48~1.62 (m, 4H, 2OCCH2), 3.86~4.01(m, 2H, POCH2), 4.07~4.12 (m, 2H, POCH2), 5.28(d, J3P-H= 23.2, 1H, PCHN), 6.93~6.98 (m, 1H,Ar-H), 7.29~7.31 (m, 2H, Ar-H), 8.09 (s, 1H,C=CHpyrazole).13C NMR (DMSO-d6, 100Hz, ppm) δ:13.3, 13.3, 18.0, 18.1, 31.8, 31.9, 55.1, 65.7, 66.4,102.8, 111.5, 111.7, 114.7, 142.4, 155.1, 160.8,163.3. IR (KBr, vmax/cm-1): 3426(w), 3215(m),2963(s), 2222(s), 1603(s), 1559(w), 1513(w),1462(m), 1315(m), 1219(s), 1028(s), 992(s), 765(w).Anal. Calcd. (%) for C19H25F2N4O3P: C, 51.66; H,5.93; N, 13.17. Found (%): C, 53.52; H, 5.91; N,13.14.

    Diethyl[(4-cyano-1H-pyrazol-3-ylamino)(4-trifluoromethylphenyl)methyl]phosphonate(4e) Colorless needle solid; yield: 78.9%; m.p.:140~141 ℃.1H NMR (CD3COCD3, 400Hz, ppm)δ: 1.11~1.15 (t, 3H, OCCH3), 1.12~1.27 (t, 3H,OCCH3), 3.88~3.90 (m, 1H, POCH), 3.99~4.02(m, H, POCH), 4.08~4.17 (m, 2H, POCH2), 5.35 (d,J3P-H= 23.2, 1H, PCHN), 7.69~7.84 (m, 4H, Ar-H),8.06 (s, 1H, C=CHpyrazole).13C NMR (CDCl3, 100Hz,ppm) δ: 16.0, 16.4, 55.0, 63.6, 64.3, 99.9, 114.5,122.5, 125.4, 125.7, 128.7, 130.2, 130.5, 134.2,136.3, 140.1. IR (KBr, vmax/cm-1): 3426(w), 3214(w),2963(m), 2223(s), 1609(s), 1562(w), 1461(w),1329(s), 1217(s), 1029(s), 938(w), 737(w). Anal.Calcd. (%) for C16H18F3N4O3P: C, 47.83; H, 4.53; N,13.97. Found (%): C, 47.77; H, 4.51; N, 13.93.

    Di-n-propyl[(4-cyano-1H-pyrazol-3-ylamino)(4-trifluoromethylphenyl)methyl]phosphonate (4f)Colorless needle solid; yield: 82.7%; m.p.: 155~156 ℃.1H NMR (CD3COCD3, 400Hz, ppm) δ:0.78~0.81 (t, 3H, CCH3), 0.87~0.91 (t, 3H, CCH3),1.49~1.66 (m, 4H, 2OCCH2), 1.49~1.54 (m, 2H,OCCH2), 1.61~1.66 (m, 2H, OCCH2), 3.76~3.80(m, 1H, POCH), 3.90~3.94 (m, 1H, POCH),4.01~4.05 (m, 2H, POCH2), 5.35 (d, J3P-H= 23.2,1H, PCHN), 7.69~7.85 (m, 4H, Ar-H), 8.07 (d, 1H,C=CHpyrazole).13C NMR (DMSO-d6, 100Hz, ppm) δ:9.7, 9.8, 23.2, 23.4, 55.4, 67.7, 68.2, 99.9, 114.8,118.5, 122.9, 124.7, 124.8, 125.6, 127.9, 128.2,129.1, 141.7. IR (KBr, vmax/cm-1): 3427(w), 3212(w),2972(m), 2224(s), 1610(s), 1563(w), 1458(w),1328(s), 1217(s), 1016(s), 937(m), 741(w). Anal.Calcd. (%) for C18H22F3N4O3P: C, 51.32; H, 5.13; N,13.07. Found (%): C, 50.24; H, 5.15; N, 13.02.

    Diisopropyl[(4-cyano-1H-pyrazol-3-ylamino)(4-trifluoromethylphenyl)methyl]phosphonate (4g)Colorless needle solid; yield: 84.4%; m.p.: 214~215 ℃.1H NMR (CD3COCD3, 400Hz, ppm) δ:0.95~0.99 (m, 3H, OCCH3), 1.20~1.21 (m, 3H,OCCH3), 1.24~1.31 (m, 6H, 2OCCH3), 4.51~4.56(m, 1H, POCH), 4.70~4.75 (m, 1H, POCH), 5.24(d, J3P-H= 23.6, 1H, PCHN), 7.69~7.83 (m, 4H,Ar-H), 8.06 (s, 1H, C=CHpyrazole).13C NMR(DMSO-d6, 100Hz, ppm) δ: 23.0, 23.3, 23.8, 23.9,55.9, 71.0, 71.4, 114.8, 122.9, 124.7, 125.6, 127.9,128.2, 128.3, 129.3, 130.7, 141.8. IR (KBr,vmax/cm-1): 3429(w), 3209(w), 2987(m), 2225(s),1606(s), 1561(w), 1455(w), 1328(s), 1216(s),1011(s), 937(m), 769(w). Anal. Calcd. (%) for C18H22F3N4O3P: C, 51.27; H, 5.16; N, 12.99. Found(%): C, 50.24; H, 5.15; N, 13.02.

    Di-n-butyl[(4-cyano-1H-pyrazol-3-ylamino)(4-trifluoromethylphenyl)methyl]phosphonate (4h)Colorless needle solid; yield: 83.9%; m.p.: 162~163 ℃.1H NMR (CD3COCD3, 400Hz, ppm) δ:0.79~0.83 (t, 3H, CCH3), 0.85~0.89 (t, 3H, CCH3),1.21~1.35 (m, 4H, 2CCH2), 1.44~1.61 (m, 4H,2OCCH2), 3.82~3.86 (m, 1H, POCH), 3.94~3.96(m, 1H, POCH), 4.08~4.11 (m, 2H, POCH2), 5.35(d, J3P-H= 23.6, 1H, PCHN), 7.69~7.85 (m, 4H,Ar-H), 8.07 (s, 1H, C=CHpyrazole).13C NMR(DMSO-d6, 100Hz, ppm) δ: 12.1, 12.2, 26.4, 26.4,44.1, 50.3, 71.1, 80.7, 99.5, 114.9, 122.9, 125.3,125.4, 125.6, 127.6, 127.9, 128.2, 128.3, 128.6,140.3. IR (KBr, vmax/cm-1): 3427(w), 3216(w),2991(w), 2224(s), 1613(s), 1562(w), 1419(w),1329(s), 1217(s), 1029(s), 977(w), 752(w). Anal.Calcd. (%) for C20H26F3N4O3P: C, 51.55; H, 5.74; N,12.17. Found (%): C, 52.40; H, 5.72; N, 12.22.

    2.3 Crystal structure determination

    A colorless prism of compound 4a (0.20mm ×0.18mm × 0.12mm) was used for data collection with a Rigaku Saturn 724 CCD diffractometer equipped with a multilayer-monochromatic MoKα radiation (λ = 0.71073 ?) using a φ-ω scan mode in the ranges of 1.87°≤θ ≤25.01°, –9≤h≤7,–12≤k≤12, and –13≤l≤13 at 113(2) K. A total of 7401 reflections including 3046 unique ones with Rint= 0.0678 were collected, of which 1582 observed reflections with I > 2σ(I) were employed in the structure determination and refinements. The structure was solved by direct methods and refined by full-matrix least-squares on F2using SHELXS-97 and SHELXL-97 software packages[16,17]. All non-hydrogen atoms were refined anisotropically,and all hydrogen atoms were located on difference Fourier maps and treated as riding atoms with C-H distances of 0.95~1.00 ? for aryl, methyl, methine and tertiary alkyl, respectively. The final refinement converged at R = 0.0487 and wR = 0.0823 (w =1/[σ2(Fo2) + (0.0000P)2+ 0.0000P], where P = (Fo2+2Fc2)/3), S = 1.064 and (Δ/σ) = 0.000. The max and min difference peaks and holes on the final difference Fourier map are 0.303 and -0.396 e·?-3,respectively.

    3 RESULTS AND DISCUSSION

    The dialkylphosphite was prepared according to the literature[19]. Ultrasonic irradiation has been successfully employed in performing the synthetic reactions due to its chemical effects caused by the cavitations. The cavitations induce very high local temperature and pressure inside the bubbles(cavities), which would lead to a turbulent flow in the liquid and enhance the mass transfer quickly[20].Up to now, many organic reactions have been reported in higher yields, shorter reaction time and milder conditions under the ultrasonic irradiation[21,22].In this paper, the target compounds were synthesized via a two-step method. The imine intermediate 3 was conveniently prepared under ultrasonic irradiation in ethanol solution without separation process. As to the addition reaction, we used three times amount of dialkylphosphite as compared to the starting materials and heated in solvent-free conditions. The advantages of the procedure lie in the shorter reaction period and high yield towards the target compounds.

    The structures of the target compounds 4 were characterized by1H NMR,13C NMR, IR and elemental analysis. All spectra and analytical data were consistent with the assigned structures. In the IR spectrum, the absorption band at 3400~3300 cm-1corresponds to the stretching vibrations of N-H,while the absorption near 3200 cm-1was ascribed to the O-H of strong intermolecular hydrogen bonding[23]in the title compounds, which can be confirmed by the hydrogen-bond information of 4a(Table 3). The C=C and C=N of the aromatic ring were characterized by absorption in the range of 1601~1419 cm-1, while the absorption at 1222~1216 cm-1was assigned to the P=O stretching absorption bands and the absorption 1034~1011 cm-1to the C-O stretching absorption bands in the P-O-C group. The characteristic absorption band for P-C and CN was at 737~795 and 2222~2227 cm-1, respectively. In the1H NMR spectrum, all of the title compounds exhibited a double at 5.16~5.35 ppm indicative of the H atom at the α-C coupling with the adjacent phosphorus (3JP-H= 23.2~23.6 Hz). The pyrazole ring exists in atom N(1) which is linked to the α-C to hinder the free rotation of P(1)-C(7) bond, which causes the chemical shift of H atom affiliated to the CH or CH2or CH3in the two alkyl groups to appear at different shifts respectively due to their magnetically nonequivalent surroundings.

    The molecular structure and crystal packing diagram of 4a are shown in Figs. 1 and 2, respectively. The bond lengths and bond angles (Table 1)reveal that the P atom adopts a distorted tetrahedral configuration[24,25], which can be deduced from the fact that the O(1)-P(1)-O(2) (115.99(19) ?) and O(1)-P(1)-C(7) (110.45(13) ?) bond angles are significantly larger than O(2)-P(1)-O(3) (103.12(12)?), and also from the fact that the P(1)-O(1) bond(1.4700(19) ?) is considerably shorter than P(1)-O(2) (1.566(2) ?) and P(1)-O(3) (1.568(2) ?).The interatomic distances of N(1)-C(8) (1.388(3) ?)and N(3)-C(11) (1.314(3) ?) are remarkably shorter than the length of normal C-N (1.47 ?), but very close to the typical C=N (1.34 ?)[26,27], which suggests that the electron is delocalized in N(1) and the pyrazole ring. The single bond lengths of C(8)-C(9) (1.419(4) ?), C(9)-C(10) (1.415(4) ?)and C(9)-C(11) (1.395(4) ?) are shorter than that of the typical C-C bond (1.54 ?), but exhibit obvious C=C bond characteristic (1.35 ?), indicating the electron densities of the pyrazole ring and CN group are considerably delocalized. Meanwhile, the sum of C(11)-N(3)-N(2), C(11)- N(3)-H(3) and N(2)-N(3)-H(3) bond angles is 359.6o, so the atom N(3) is of sp2hybridization.

    Fig. 1. Crystal structure of 4a with atomic labeling scheme at 50% probability displacement ellipsoids. One disordered component is shown

    Fig. 2. Packing diagram of 4a showing the hydrogen bonding interactions and π-π interaction

    Table 1. Selected Bond Lengths (?) and Bond Angles (o) for Compound 4a

    It can be seen that there are two planes in the molecule of compound 4a (Fig. 1). The benzene ring system with its conjunction atoms C(7), F(1) and F(2)is essentially planar with a maximum deviation of-0.0221 ? for atom C(3), and the pyrazole ring with the connected nitrogen atom N(1) and C(11), N(4) of CN group are nearly coplanar, with the largest deviation from the least-squares plane to be 0.0346 ? for atom N(2) which is slightly twisted from the plane with the N(3)-N(2)-C(8)-N(1) and N(2)-C(8)-C(9)-C(11) torsion angles of -177.0(3)° and 0.6(3)° (Table 2), respectively (plane equation is-0.9026x + 0.2469y - 0.3526z = -10.1699). The dihedral angle between the two planes is 71.51°. As shown in Fig. 2, two strong intermolecular hydrogen bonds O(1)-H(1)···N(4) and N(3)-H(3)···O(1), and a face-to-face π···π stacking interaction among 3,5-difluorophenyl are found in compound 4a (Tables 3~4). In the solid state, the hydrogen bonding interactions play an important role in constructing the one-dimensional chains, and such chains further form a two-dimensional grid via π···π interaction and intermolecular hydrogen bonds. The above interactions are effective in stabilizing the crystal structure.

    Table 2. Selected Torsional Angles (°) for Compound 4a

    Table 3. Intermolecular Hydrogen Bonds of Compound 4a

    Table 4. π···π Interaction of Compound 4a

    The results of bioassay in vitro against two fungi,Tobacco Mosaic Virus (TMV) and PC3 cell, are given in Table 5. From Table 5 it may be observed that the title compounds 4a~4h possess weak bioactivities towards the two fungi at 50 μg/mL. At 200 μg/mL, however, compounds 4b, 4c, 4g and 4h exhibited good activities on Sclerotium rolfsii Sacc at 54.42%, 61.82%, 65.95% and 53.35%, respectively. The results against TMV indicated that the antiviral activity depended on the substituents present. At 500 μg/mL, in the case of R1is the same alkyl group. When R is a 4-trifluoromethyl group,the compound showed better curative effect against TMV relatively, slightly higher than that of the compound in which R is 3,5-difluoro group; when R1is propyl or isopropyl group, compounds 4b, 4c,4f and 4g exhibited good anti-TMV activities at 33.13%, 43.35%, 41.68% and 50.02% respectively,slightly lower than that of Ningnamycin (58.69%).The antitumor activities in vitro for title compounds 4a~4h were evaluated against PC3 cells by the MTT method. It can be seen that all of the compounds exhibited weak antitutor activities at 1 and 10 μmol/L, respectively.

    Table 5. Antifungical, Antiviral and Antitumor Activities of Compounds 4a~4h

    4 CONCLUSION

    In summary, a series of α-aminophosphonates 4 containing pyrazole ring and fluorine moieties was synthesized through condensation and addition reactions. The structures of them were verified by spectroscopic method. Their bioactivities against two fungi, TMV and PC3 cells, were evaluated. It was found that compounds 4b, 4c and 4g possessed good curative effect against TMV and good antifungal activity towards Sclerotium rolfsii Sacc.The bioassay results indicated that all of the compounds exhibited a weak antitumor activity.

    ACKNOWLEDGEMENT

    We are grateful to the group of Professor Song Baoan (Key Laboratory of Green Pesticide and Agricultural Bioengineering, Guizhou University) for their assistance in antiviral, antifungal and antitumor activities bioassay.

    (1) Abdel-Megeed, M. F.; Badr, B. E.; Azaam, M. M.; El-Hiti, G. A. Synthesis and antimicrobial activities of diphenyl(arylamino)(1-phenyl-3-(pyridin-2-yl)-1H-pyrazol-4-yl) methylphosphonates. Phosphorus Sulfur Silicon Relat. Elem. 2012, 187, 1462–1468.

    (2) Yu, Z. H.; Shi, D. Q. Synthesis and herbicidal activity of alpha-amino phosphonate derivatives containing thiazole and pyrazole moieties.Phosphorus Sulfur Silicon Relat. Elem. 2010, 185, 1746–1752.

    (3) Mumford, P. M.; Tarver, G. J.; Shipman, M. Four-component reaction for the preparation of α-amino phosphonates from methyleneaziridines. J.Org. Chem. 2009, 74, 3573–3575.

    (4) Yang, J. Q.; Song, B. A.; Bhadury, P. S.; Chen, Z.; Yang, S.; Cai, X. J.; Hu, D. Y.; Xue, W. Synthesis and antiviral bioactivities of 2-cyano-3-substituted-amino(phenyl) methylphosphonylacrylates (acrylamides) containing alkoxyethyl moieties. J. Agric. Food Chem. 2010, 58,2730–2735.

    (5) Abdel-Megeed, M. F.; Badr, B. E.; Azaam, M. M.; El-Hiti, G. A. Synthesis, antimicrobial and anticancer activities of a novel series of diphenyl 1-(pyridin-3-yl)ethylphosphonates. Biorg. Med. Chem. 2012, 20, 2252–2258.

    (6) Kumar, B. S.; Reddy, Y. H.; Rani, C. R.; Reddy, G. C. S. One-pot synthesis and antimicrobial activity of novel alpha-aminophosphonates using TMG. E-J. Chem. 2011, 8, S137–S142.

    (7) Bhattacharya, A. K.; Rana, K. C.; Pannecouque, C.; De Clercq, E. An efficient synthesis of a hydroxyethylamine (HEA) isostere and its alpha-aminophosphonate and phosphoramidate derivatives as potential anti-HIV agents. ChemMedChem. 2012, 7, 1601–1611.

    (8) Farag, A. M.; Mayhoub, A. S.; Barakat, S. E.; Bayomi, A. H. Regioselective synthesis and antitumor screening of some novel N-phenylpyrazole derivatives. Biorg. Med. Chem. 2008, 16, 881–889.

    (9) Bernd, M.; Hartmann, K.; Reinhard, K.; Franz, R.; Norbert, G.; Hubert, S.; Gisela, L.; Eberhard, A. 2-[(Dihydro)pyrazolyl-3'-oxymethylen]-anilide.Verfahren zu ihrer Herstelung und ihre Verwendung. DE 4423612 1996 (Chem. Abstr. 1996, 1124, P261025).

    (10) Fumio, S.; Yoshihiro, I.; Toshiaki, S.; Takashi, I.; Toshihiko, O. Pyrazolesulfonyl urea derivative, its preparation and herbicide containing the same.JP 59122488 1984 (Chem. Abstr. 1985, 1102, P6478).

    (11) Hatton, L. R.; Buntain, I. G.; Hawkins, D. W.; Parnell, E. W.; Pearson, C. J.; Roberts, D. A. Derivatives of N-phenylpyrazoles. US 5232940 1993(Chem. Abstr. 1994, 1120, P298625).

    (12) Mealy, N.; Castaner, J. Enantioseparation and plant virucidal bioactivity of new quinazoline derivatives with alpha-aminophosphonate moiety.Drugs. Future 1996, 21, 37–39.

    (13) Smart, B. E. Fluorine substituent effects (on bioactivity). J. Fluor. Chem. 2001, 109, 3–11.

    (14) Fang, Z. K.; Xue, S. J.; Chen, L.; Xu, Y.; Yin, A. Q. Synthesis, crystal structure and herbicidal activity of N-(4-methylbenzyl)-4-(3-fluorophenyl)-4-piperidinol hydrochloride. Chin. J. Struct. Chem. 2009, 28, 841–846.

    (15) Mo, W. Y.; He, H. W. Synthesis, crystal structure and biological activities of 3-[2-(4-fluoro-phenyl)-ethyl]-5-methyl-4-hydroxyl-4-methyl-7-methylsulfanyl-3,4-dihydro-pyrido[4,3-d]pyrimidine-8-carbonitrile. Chin. J. Struct. Chem. 2007, 26, 172–176.

    (16) Sheldrick, G. M. SHELXL97, Program for the Refinement of Crystal Structure. University of G?ttingen, Germany 1997.

    (17) Sheldrick, G. M. SHELXS97, Program for the Solution of Crystal Structure. University of G?ttingen, Germany 1997.

    (18) Hong, Y. P.; Shangguan, X. C.; Xu, M. S. Synthesis, crystal structure and biological activities of N-(4-cyanopyrazole-3-yl)-alpha-(3,5-difluorophenyl)-O,O-diisopropyl-alph a-aminophosphonate. Chin. J. Struct. Chem. 2009, 28, 730–734.

    (19) McCombie, H.; Saunders, B. C.; Stacey, G. J. Esters containing phosphorus. Part I. J. Chem. Soc. 1945, 380–382.

    (20) Stefani, H. A.; Cella, R.; D?rr, F. A.; de Pereira, C. M. P.; Gomes, F. P.; Zeni, G. Ultrasound-assisted synthesis of functionalized arylacetylenes.Tetra. Lett. 2005, 46, 2001–2003.

    (21) Nabid, M. R.; Rezaei, S. J. T.; Ghahremanzadeh, R.; Bazgir, A. Ultrasound-assisted one-pot, three-component synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-diones. Ultrason. Sonochem. 2010, 17, 159–161.

    (22) Wang, L. X.; Jiang, W.; Lin, C. P.; Zhong, Q. X.; Pang, J. Studies on the hydrogen bonding network structures of amino-konjacglucomannan-zinc chelate. Chin. J. Struct. Chem. 2014, 33, 171–178.

    (23) Silverstein, R. M.; Webster, F. X.; Kiemle, D. J. Spectrometric Identification of Organic Compounds. East China University of Science and Technology Press, Shanghai 2007, p 86.

    (24) Wang, B.; Chen, R. Y.; Huang, Y.; Miao, Z. W. Synthesis and crystal structure of 2-ethoxy-spiro[2H-1,4,2-benzoxazaphosphorine-3(4H),1'-cycloheptane]2-oxide. Chin. J. Struct. Chem. 2006, 25, 523–526.

    (25) Tang, W.; Shi, D. Q. Synthesis, crystal structure and herbicidal activity of O,O'-diethyl-N-[2-(5,7-dimethyl-[1,2,4]triazolo[1,5-a]pyrimidin-2-yloxy)-benzoxyl]-1-amino-benzyl phosphonate. Chin. J. Struct. Chem. 2010, 29, 769–773.

    (26) Ding, L.; Jin, Q.; Huang, W.; Tang, F.; Wei, P. Synthesis and crystal structure of (Z)-5-fluoro-3-(phenyl((5-(pyridin-3-ylmethyl)thiophen-2-yl)amino)methylene)indolin-2-one. Chin. J. Struct. Chem. 2013, 32, 1586–1590.

    (27) Deng, X. Y.; Peng, H.; He, H. W. Synthesis, characterization and X-ray crystal structure of 4-fluoro-N-(2-methyl-5-((2-(p-tolyloxy)acetamido)-methyl)pyrimidin-4-yl)benzamide. Chin. J. Struct. Chem. 2014, 33, 223–227.

    18禁观看日本| 一区二区日韩欧美中文字幕| 亚洲精品国产av成人精品| 日本午夜av视频| 你懂的网址亚洲精品在线观看| 欧美av亚洲av综合av国产av | av视频免费观看在线观看| 久久精品亚洲熟妇少妇任你| 久久久久久久精品精品| 操美女的视频在线观看| 国产极品粉嫩免费观看在线| 亚洲av日韩精品久久久久久密 | 国产在线一区二区三区精| 国产精品久久久久成人av| 亚洲国产精品一区三区| 亚洲欧洲国产日韩| 欧美精品一区二区大全| 少妇精品久久久久久久| 王馨瑶露胸无遮挡在线观看| 久久97久久精品| xxxhd国产人妻xxx| 久久影院123| 成人影院久久| 国产成人欧美在线观看 | 国产亚洲av片在线观看秒播厂| 晚上一个人看的免费电影| 亚洲欧美日韩另类电影网站| 色婷婷久久久亚洲欧美| 国产成人a∨麻豆精品| 亚洲综合色网址| 亚洲一级一片aⅴ在线观看| 久久性视频一级片| 丝袜人妻中文字幕| 天天操日日干夜夜撸| 肉色欧美久久久久久久蜜桃| 在线天堂最新版资源| 中文字幕另类日韩欧美亚洲嫩草| 夫妻性生交免费视频一级片| 19禁男女啪啪无遮挡网站| 免费看不卡的av| 亚洲成人国产一区在线观看 | 三上悠亚av全集在线观看| 超碰成人久久| 久久国产亚洲av麻豆专区| av在线播放精品| 搡老乐熟女国产| av天堂久久9| 免费av中文字幕在线| 啦啦啦在线观看免费高清www| e午夜精品久久久久久久| 国产精品成人在线| 亚洲av欧美aⅴ国产| 亚洲精品aⅴ在线观看| 午夜av观看不卡| 久久久精品国产亚洲av高清涩受| 国产黄色免费在线视频| 男女边摸边吃奶| 麻豆av在线久日| 中文天堂在线官网| 欧美精品一区二区大全| 在线观看免费日韩欧美大片| 欧美精品一区二区免费开放| 如日韩欧美国产精品一区二区三区| 99香蕉大伊视频| 又大又爽又粗| 99香蕉大伊视频| 99久久精品国产亚洲精品| 国产精品免费大片| 美女扒开内裤让男人捅视频| 亚洲国产av影院在线观看| 制服丝袜香蕉在线| 中文天堂在线官网| 亚洲精品自拍成人| 汤姆久久久久久久影院中文字幕| 午夜日本视频在线| 亚洲国产欧美一区二区综合| 精品国产乱码久久久久久男人| 国产成人精品无人区| 捣出白浆h1v1| 久久久久久久久久久免费av| 香蕉丝袜av| 纵有疾风起免费观看全集完整版| 波多野结衣一区麻豆| 成人国语在线视频| 日本vs欧美在线观看视频| 国产女主播在线喷水免费视频网站| 国产精品av久久久久免费| 日韩熟女老妇一区二区性免费视频| 国产成人精品在线电影| 亚洲av日韩精品久久久久久密 | 999精品在线视频| 999久久久国产精品视频| 亚洲国产看品久久| 欧美老熟妇乱子伦牲交| 久久久久久久久久久免费av| 久久久久久久久久久免费av| 亚洲成色77777| 国产免费福利视频在线观看| 18在线观看网站| 免费久久久久久久精品成人欧美视频| 亚洲成人手机| 黄色怎么调成土黄色| 亚洲精品av麻豆狂野| 王馨瑶露胸无遮挡在线观看| 2021少妇久久久久久久久久久| 久久久久精品性色| 97精品久久久久久久久久精品| 另类精品久久| 18禁观看日本| 女人高潮潮喷娇喘18禁视频| 欧美精品高潮呻吟av久久| 久久天堂一区二区三区四区| 国产又色又爽无遮挡免| 欧美黑人欧美精品刺激| 99国产精品免费福利视频| 色94色欧美一区二区| 日韩av在线免费看完整版不卡| 日本av免费视频播放| 狂野欧美激情性xxxx| 亚洲欧洲日产国产| 天美传媒精品一区二区| 一本大道久久a久久精品| 精品少妇一区二区三区视频日本电影 | 久久精品国产亚洲av涩爱| 国产伦人伦偷精品视频| 最近最新中文字幕大全免费视频 | 亚洲第一区二区三区不卡| 亚洲国产欧美一区二区综合| 久久性视频一级片| 精品久久久久久电影网| 亚洲免费av在线视频| av一本久久久久| 在线观看免费高清a一片| 丝袜脚勾引网站| 热re99久久精品国产66热6| 国产在线一区二区三区精| 欧美变态另类bdsm刘玥| 亚洲久久久国产精品| 美女脱内裤让男人舔精品视频| 国产女主播在线喷水免费视频网站| 久久天躁狠狠躁夜夜2o2o | 如日韩欧美国产精品一区二区三区| 成人国产av品久久久| 午夜激情久久久久久久| 国产人伦9x9x在线观看| 大片免费播放器 马上看| 一边摸一边抽搐一进一出视频| 在线亚洲精品国产二区图片欧美| 国产亚洲av片在线观看秒播厂| 日韩一区二区视频免费看| 亚洲成色77777| 美女大奶头黄色视频| 99久久精品国产亚洲精品| 欧美精品av麻豆av| 少妇猛男粗大的猛烈进出视频| 欧美国产精品va在线观看不卡| 美女视频免费永久观看网站| 国产日韩欧美在线精品| 看免费成人av毛片| 亚洲精品视频女| 777米奇影视久久| 亚洲精品国产av成人精品| 中文字幕制服av| 新久久久久国产一级毛片| 久久天堂一区二区三区四区| 大陆偷拍与自拍| 最新的欧美精品一区二区| 视频区图区小说| 欧美日韩亚洲综合一区二区三区_| 国产成人一区二区在线| 国产精品.久久久| 亚洲av中文av极速乱| 成人国产av品久久久| 亚洲综合色网址| 国精品久久久久久国模美| 欧美日韩av久久| 欧美亚洲日本最大视频资源| 国产深夜福利视频在线观看| 人妻 亚洲 视频| 天堂中文最新版在线下载| 只有这里有精品99| 日本vs欧美在线观看视频| 精品一区在线观看国产| 久久韩国三级中文字幕| 水蜜桃什么品种好| 高清在线视频一区二区三区| avwww免费| 亚洲av电影在线进入| 精品福利永久在线观看| 亚洲天堂av无毛| 高清av免费在线| 在线观看免费高清a一片| 精品少妇一区二区三区视频日本电影 | 91精品伊人久久大香线蕉| 一边摸一边做爽爽视频免费| 亚洲美女搞黄在线观看| 人妻 亚洲 视频| 午夜福利免费观看在线| 欧美日韩成人在线一区二区| 国产男女内射视频| 精品卡一卡二卡四卡免费| 青春草国产在线视频| 久久狼人影院| 国产欧美亚洲国产| a级毛片在线看网站| 国产精品人妻久久久影院| 亚洲色图综合在线观看| 丝袜脚勾引网站| 极品少妇高潮喷水抽搐| 99国产精品免费福利视频| 色精品久久人妻99蜜桃| 在线观看三级黄色| 最近中文字幕高清免费大全6| 九色亚洲精品在线播放| 涩涩av久久男人的天堂| 大香蕉久久网| 久久性视频一级片| 丰满乱子伦码专区| 男人爽女人下面视频在线观看| 国产亚洲精品第一综合不卡| 老汉色av国产亚洲站长工具| 日韩av不卡免费在线播放| 少妇人妻久久综合中文| 国产视频首页在线观看| 一本久久精品| 悠悠久久av| 国产精品久久久人人做人人爽| 女人久久www免费人成看片| 亚洲色图 男人天堂 中文字幕| 中国三级夫妇交换| 亚洲情色 制服丝袜| av女优亚洲男人天堂| 少妇精品久久久久久久| 国产成人精品在线电影| 一区二区三区精品91| 亚洲成国产人片在线观看| 天堂8中文在线网| 成年人午夜在线观看视频| 三上悠亚av全集在线观看| 高清视频免费观看一区二区| 免费女性裸体啪啪无遮挡网站| 亚洲欧洲国产日韩| 久久综合国产亚洲精品| 国产 精品1| 男女午夜视频在线观看| 性高湖久久久久久久久免费观看| 国产精品成人在线| 欧美国产精品一级二级三级| 日韩免费高清中文字幕av| 伊人久久国产一区二区| 19禁男女啪啪无遮挡网站| 中文欧美无线码| 两个人看的免费小视频| 黄网站色视频无遮挡免费观看| 久久狼人影院| 精品福利永久在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 美国免费a级毛片| 久久久久久免费高清国产稀缺| 欧美黑人精品巨大| 国产av码专区亚洲av| 国产97色在线日韩免费| av国产精品久久久久影院| 国产日韩欧美视频二区| 久久狼人影院| 男女免费视频国产| 午夜老司机福利片| 男男h啪啪无遮挡| 久久国产精品男人的天堂亚洲| 欧美激情高清一区二区三区 | 免费黄色在线免费观看| 亚洲第一av免费看| 肉色欧美久久久久久久蜜桃| 亚洲国产av影院在线观看| 久久久久久久精品精品| 国产日韩欧美视频二区| 午夜影院在线不卡| 黄频高清免费视频| 日日撸夜夜添| 亚洲综合精品二区| 精品亚洲成a人片在线观看| 黄色视频不卡| 制服诱惑二区| 中文天堂在线官网| 欧美中文综合在线视频| 天天躁夜夜躁狠狠躁躁| 欧美人与善性xxx| 日韩av不卡免费在线播放| av网站在线播放免费| 成年人午夜在线观看视频| 国产一区有黄有色的免费视频| 亚洲欧美一区二区三区黑人| 中国三级夫妇交换| 亚洲欧美清纯卡通| www.自偷自拍.com| 人人妻人人澡人人爽人人夜夜| 别揉我奶头~嗯~啊~动态视频 | 丁香六月天网| 黄色一级大片看看| 欧美日韩一区二区视频在线观看视频在线| 一区二区av电影网| 一区二区三区四区激情视频| 伊人久久大香线蕉亚洲五| av有码第一页| 久久精品久久久久久噜噜老黄| 亚洲国产精品一区三区| 韩国av在线不卡| 黄片小视频在线播放| 如日韩欧美国产精品一区二区三区| 久久久久精品国产欧美久久久 | 免费女性裸体啪啪无遮挡网站| 国产激情久久老熟女| 99久国产av精品国产电影| 少妇被粗大的猛进出69影院| 视频在线观看一区二区三区| 搡老乐熟女国产| 亚洲av综合色区一区| 亚洲在久久综合| 少妇人妻 视频| 我要看黄色一级片免费的| 在线观看一区二区三区激情| 免费女性裸体啪啪无遮挡网站| 日本猛色少妇xxxxx猛交久久| 青春草国产在线视频| 看免费成人av毛片| 日韩制服骚丝袜av| 我要看黄色一级片免费的| 国产日韩欧美在线精品| 日韩av不卡免费在线播放| 久久热在线av| 成年av动漫网址| 国产成人精品久久久久久| www.熟女人妻精品国产| 最近的中文字幕免费完整| 亚洲精品美女久久久久99蜜臀 | 别揉我奶头~嗯~啊~动态视频 | 男女之事视频高清在线观看 | 亚洲av国产av综合av卡| 精品少妇久久久久久888优播| 免费黄频网站在线观看国产| 国产黄频视频在线观看| 欧美国产精品va在线观看不卡| 19禁男女啪啪无遮挡网站| 99精品久久久久人妻精品| 我要看黄色一级片免费的| 久久狼人影院| 国产精品 国内视频| 国产av国产精品国产| 一级黄片播放器| 自线自在国产av| 少妇精品久久久久久久| 精品国产一区二区三区久久久樱花| 日韩制服骚丝袜av| 亚洲欧美清纯卡通| 嫩草影视91久久| 国产亚洲一区二区精品| 欧美激情 高清一区二区三区| av免费观看日本| 欧美日韩国产mv在线观看视频| 日本91视频免费播放| 男女免费视频国产| 久久久久久久久免费视频了| 韩国高清视频一区二区三区| 国产伦理片在线播放av一区| 国产极品粉嫩免费观看在线| 国产av国产精品国产| 如何舔出高潮| 美女高潮到喷水免费观看| 色吧在线观看| 中文字幕精品免费在线观看视频| 久久久国产欧美日韩av| 波野结衣二区三区在线| 精品午夜福利在线看| 黄色视频在线播放观看不卡| 国产av一区二区精品久久| 麻豆av在线久日| 精品少妇久久久久久888优播| 亚洲精品国产区一区二| 1024香蕉在线观看| 日韩伦理黄色片| 亚洲色图综合在线观看| 国产亚洲av高清不卡| a级片在线免费高清观看视频| 街头女战士在线观看网站| 久久人人爽av亚洲精品天堂| 亚洲欧美精品综合一区二区三区| 亚洲少妇的诱惑av| 国产免费福利视频在线观看| 亚洲综合色网址| 18禁动态无遮挡网站| 夫妻性生交免费视频一级片| 桃花免费在线播放| 99热全是精品| 亚洲欧美成人精品一区二区| 人人妻人人澡人人看| 曰老女人黄片| 午夜福利一区二区在线看| 久久久亚洲精品成人影院| 亚洲美女黄色视频免费看| 老司机深夜福利视频在线观看 | 伊人亚洲综合成人网| 观看美女的网站| 在线观看www视频免费| 在线天堂最新版资源| 中国国产av一级| 亚洲欧美色中文字幕在线| 如日韩欧美国产精品一区二区三区| 中文字幕精品免费在线观看视频| 亚洲精华国产精华液的使用体验| 日本一区二区免费在线视频| 老司机在亚洲福利影院| 99国产精品免费福利视频| 亚洲综合色网址| 18禁动态无遮挡网站| 欧美精品人与动牲交sv欧美| 国产免费视频播放在线视频| 久久久欧美国产精品| 少妇被粗大猛烈的视频| 亚洲精品日本国产第一区| 伦理电影大哥的女人| 大码成人一级视频| 性色av一级| 国产在线免费精品| 国产97色在线日韩免费| 亚洲三区欧美一区| 岛国毛片在线播放| 777米奇影视久久| 国产精品久久久久久久久免| 亚洲成人国产一区在线观看 | 久久免费观看电影| 黑人欧美特级aaaaaa片| 国产成人系列免费观看| 午夜福利网站1000一区二区三区| 男女高潮啪啪啪动态图| 新久久久久国产一级毛片| 在线看a的网站| 午夜久久久在线观看| 精品亚洲成a人片在线观看| 男女边摸边吃奶| 欧美日韩视频高清一区二区三区二| 国产 精品1| av在线播放精品| 精品人妻一区二区三区麻豆| 男女下面插进去视频免费观看| 午夜免费鲁丝| 精品亚洲乱码少妇综合久久| 大话2 男鬼变身卡| 男男h啪啪无遮挡| 国产精品香港三级国产av潘金莲 | 亚洲第一区二区三区不卡| 看免费av毛片| 久久久国产欧美日韩av| 在线看a的网站| 国产成人a∨麻豆精品| 国产xxxxx性猛交| 亚洲精品视频女| av一本久久久久| 成年av动漫网址| 女性生殖器流出的白浆| 纵有疾风起免费观看全集完整版| 久久免费观看电影| 日本色播在线视频| 久久久久视频综合| 精品一区二区三区av网在线观看 | 亚洲精华国产精华液的使用体验| 日韩人妻精品一区2区三区| 色视频在线一区二区三区| 久久狼人影院| 波多野结衣一区麻豆| av不卡在线播放| 亚洲第一青青草原| 精品久久久久久电影网| 久久久久久免费高清国产稀缺| 免费观看人在逋| 亚洲情色 制服丝袜| 欧美av亚洲av综合av国产av | 一二三四中文在线观看免费高清| 日韩 欧美 亚洲 中文字幕| 香蕉国产在线看| 亚洲五月色婷婷综合| 国产精品一区二区在线观看99| 久久久久人妻精品一区果冻| 日韩欧美一区视频在线观看| 爱豆传媒免费全集在线观看| 人人妻,人人澡人人爽秒播 | 国产成人精品在线电影| 亚洲精品av麻豆狂野| 深夜精品福利| 美女扒开内裤让男人捅视频| 人人妻,人人澡人人爽秒播 | 亚洲国产毛片av蜜桃av| 男的添女的下面高潮视频| 人妻人人澡人人爽人人| 国产成人一区二区在线| 激情五月婷婷亚洲| 如何舔出高潮| 国产黄频视频在线观看| 一边摸一边做爽爽视频免费| 高清黄色对白视频在线免费看| 日韩免费高清中文字幕av| av有码第一页| 久久鲁丝午夜福利片| 男女国产视频网站| 巨乳人妻的诱惑在线观看| 免费不卡黄色视频| 另类精品久久| 免费观看av网站的网址| av国产久精品久网站免费入址| 国产精品.久久久| 国产免费视频播放在线视频| 一本一本久久a久久精品综合妖精| 国产激情久久老熟女| 亚洲国产看品久久| 色综合欧美亚洲国产小说| 少妇精品久久久久久久| 国产一区二区三区av在线| 热99国产精品久久久久久7| 99re6热这里在线精品视频| 日本色播在线视频| 亚洲欧美激情在线| 精品国产一区二区三区久久久樱花| 男男h啪啪无遮挡| 亚洲,欧美精品.| 亚洲国产中文字幕在线视频| 亚洲av成人不卡在线观看播放网 | 99久国产av精品国产电影| 久久久久精品人妻al黑| 天堂8中文在线网| 亚洲成人免费av在线播放| 成人黄色视频免费在线看| 亚洲熟女毛片儿| 国产有黄有色有爽视频| 中文字幕精品免费在线观看视频| 十八禁网站网址无遮挡| 久久久久视频综合| 纯流量卡能插随身wifi吗| 男人操女人黄网站| 成年人午夜在线观看视频| 午夜福利在线免费观看网站| 国产亚洲午夜精品一区二区久久| 亚洲专区中文字幕在线 | 亚洲四区av| 国产一区二区三区综合在线观看| 黑人猛操日本美女一级片| 国产无遮挡羞羞视频在线观看| 一边摸一边抽搐一进一出视频| 色94色欧美一区二区| 国产一区二区 视频在线| 18禁观看日本| 亚洲精品乱久久久久久| 亚洲精品在线美女| 精品福利永久在线观看| 美国免费a级毛片| 日韩,欧美,国产一区二区三区| 午夜老司机福利片| 九九爱精品视频在线观看| 亚洲精品久久久久久婷婷小说| 久久韩国三级中文字幕| 欧美黄色片欧美黄色片| 国产男人的电影天堂91| 美女午夜性视频免费| 久久久精品国产亚洲av高清涩受| 亚洲精品中文字幕在线视频| 午夜福利网站1000一区二区三区| 免费在线观看视频国产中文字幕亚洲 | 五月天丁香电影| 九草在线视频观看| 国产高清国产精品国产三级| 国产又爽黄色视频| 菩萨蛮人人尽说江南好唐韦庄| 国产精品免费视频内射| 亚洲成人av在线免费| 两个人看的免费小视频| 一个人免费看片子| 中文字幕色久视频| 丁香六月天网| 亚洲国产av新网站| 男女午夜视频在线观看| 亚洲色图 男人天堂 中文字幕| 免费黄色在线免费观看| 视频在线观看一区二区三区| 免费在线观看视频国产中文字幕亚洲 | 黄色一级大片看看| 一二三四中文在线观看免费高清| 人人妻人人爽人人添夜夜欢视频| 国产精品欧美亚洲77777| 午夜影院在线不卡| 国产精品免费大片| 国产一区有黄有色的免费视频| 国产成人免费观看mmmm| 欧美成人精品欧美一级黄| 最新的欧美精品一区二区| av女优亚洲男人天堂| 亚洲欧美精品自产自拍| 曰老女人黄片| 男女免费视频国产| 高清不卡的av网站| 亚洲人成77777在线视频| 久久99热这里只频精品6学生| 日本黄色日本黄色录像| 欧美久久黑人一区二区| 精品人妻在线不人妻| 两个人看的免费小视频| 欧美老熟妇乱子伦牲交| av国产精品久久久久影院| 国产精品二区激情视频| 色播在线永久视频| 男女下面插进去视频免费观看| 2021少妇久久久久久久久久久| 一级片免费观看大全| 免费在线观看视频国产中文字幕亚洲 | 天天躁日日躁夜夜躁夜夜| 成人亚洲精品一区在线观看| 女人爽到高潮嗷嗷叫在线视频| 大香蕉久久网|