• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study on Temperature Distribution of Specimens Tested on the Gleeble 3800 at Hot Forming Conditions

    2014-03-24 05:40:16TaoGaoLongMaandXiaoGuoPeng

    Tao Gao, Long Ma, and Xiao-Guo Peng

    Study on Temperature Distribution of Specimens Tested on the Gleeble 3800 at Hot Forming Conditions

    Tao Gao, Long Ma, and Xiao-Guo Peng

    ——Taking Ti-6Al-4V specimens into consideration, the coupled thermal-electrical finite element model has been developed in Abaqus/Explicit to simulate the heating process in Gleeble 3800 and to study the temperature history and distribution in the specimen. In order to verify the finite element (FE) results, thermal tests are carried out on Gleeble 3800 for a Ti-6Al-4V specimen with a slot to in the centre of the specimen. The effects of the specimen size, heating rate, and air convection on the temperature distribution over the specimen have been investigated. The conclusions can be drawn as: the temperature gradient of the specimen decreases as the specimen size, heating rate, and vacuuming decrease.

    Index Terms——Coupled thermal-electrical simulation, hot forming, thermo-mechanical testing, temperature distribution.

    1. Introduction

    Gleeble 3800 is a physical material simulation system, which is widely used to investigate viscoplastic deformation and microstructural evolution phenomena of materials in hot metal forming conditions[1]-[5]. Resistance heating is used in Gleeble to achieve rapid heating and cooling in specimens. However, during a hot compression test there exists a non-uniform temperature distribution in the specimen due to the difference of the electrical conductivities of the specimen and anvils, air convection and radiation of the specimen, and heat transfer between anvils and the specimen. The non-uniform temperature distribution in the specimen may directly affect the accuracy of test results. Therefore, it is necessary to studythe temperature distribution of specimens tested on the Gleeble thermo-mechanical simulator.

    Research on this above problem, however, was exceedingly limited. Brownet al.[6]investigated the thermal behavior of specimens in a Gleeble material simulator using a finite difference method. Numerical temperature predictions have been compared with experimental temperature measurements performed on 2024 aluminium alloy, 0.2% plain carbon steel, and 316 austenitic stainless steel specimens in the simulator. Norriset al.[7]developed a three-dimensional, explicit finite difference model to simulate the thermal behaviour of Gleeble thermomechanical simulator specimens.

    Finite element method (FEM) has become an alternative approach to accurately calculate the temperature history and distribution with complicated boundary conditions. In this paper, taking Ti-6Al-4V specimens into consideration, the coupled thermal-electrical finite element method has been developed in Abaqus/Explicit to simulate the heating process in Gleeble 3800 and to study the temperature history and distribution in the specimen. In order to verify the FE modeling results, thermal tests were carried out on Gleeble for a Ti-6Al-4V specimen with a slot to the centre of the specimen. The effects of specimen size, heating rate, and air convection on the temperature distribution over the specimen have been investigated numerically. The obtained results provide a significant basis for optimizing test programs, so that accurate testing results can be obtained from Gleeble.

    2. Methodology of Thermal Electrical FE Analysis

    Coupled thermal-electrical analyses are conducted by using a commercial finite element analysis software (Abaqus ver. 6.10-1). For the first step of the analysis, the electrical potential of a specimen exposed to a concentrated electrical current attributable to a lightning strike is calculated under a given electrical boundary condition. Successively, the transient heat transfer analysis is conducted by the application of Joule heat generation to each finite element under a given thermal boundary condition. The temperature dependency of electrical conductivity is adopted for the analysis as described later, therefore the electrical and thermal analyses are fully coupled. The theoretical background for the calculation isbriefly summarized as follows[8].

    The equation of conservation of charge is as shown

    wherevis any control volume of which surface isS,nis the outward normal toS,Jis the electrical current density (current per unit area), andrcis the internal volumetric current source per unit volume.

    Using this definition of the electrical field, Ohm’s law can be written as shown below

    whereφ,E, andσrespectively signify the electrical potential field, electrical potential, and electrical conductivity. The constitutive relation is linear; it assumes that the electrical conductivity is independent of the electrical field. A basic equation for electrical analysis is obtained by introducing Ohm’s law (2) to “weak form” of the conservation of charge equation

    whereis electrical current density towards a control volume. Joule’s law describes the rate of electrical energy,Pec, dissipated by current flowing through a conductor, as in the following equation:

    On the other hand, a basic equation for thermal conductive analysis is as follows:

    whereθ,k,ρ,Cv,q, andrrespectively signify the temperature, thermal conductivity, density, specific heat, heat flux density towards a control volumev, and the heat generation density.

    For the coupled thermal-electrical analysis, the steady-state electrical analysis and transient thermal analysis are sequentially conducted in each time increment. As a result, the electrical potential, electrical current, Joule heat generation, temperature of each element can be obtained. Temperature dependent material properties are updated after the calculation of each time increment.

    3. FE Modeling of Heating Process in Gleeble 3800

    3.1 FE Model

    In a Gleeble simulator, a cylinder of Ti-6Al-4V specimen with a height of 15 mm and a diameter of 10 mm is used. Four cylinders with a height of 6 mm and a diameter of 20 mm constitute the anvil. Graphite sheets are used for lubricating the specimen and the anvil, and the thickness of graphite sheets is 0.30 mm. Resistance heating is used in the Gleeble to achieve a rapid heating and cooling in specimens. The coupled thermal-electrical finite element method has been developed in Abaqus/Explicit to simulate the heating process in Gleeble 3800. Due to symmetry with respect to the midplane, only a quarter of the axisymmetric specimen was modeled using the 2D coupled thermal-electrical elements as shown in Fig. 1. Due to the water cooling, the temperature of the end of anvil 4 is assumed as 50°C.

    Fig. 1. 2D FEM model of the heating process in Gleeble 3800.

    The values of physical parameters of Ti-6Al-4V are obtained from [9]. The density, the specific heat, and the Joule heat fraction are 4440 kg/m3, 3830 J/(kg·°C), and 1, respectively. The temperature-dependent thermal conductivities are shown in Table 1. The temperaturedependent electrical conductivities are shown in Table 2.

    The material of the anvils is tungsten steel and the values of physical parameters are obtained from [9]. The density, specific heat, Joule heat fraction, thermal conductivity, and electrical conductivity are 1440 kg/m3, 813 J/(kg·°C), 1, 16 W/(m·°C), and 1380000 ?-1·m-1, respectively.

    Table 1: Temperature-dependent thermal conductivities of Ti-6Al-4V

    Table 2: Temperature-dependent electrical conductivities of Ti-6Al-4V

    The values of physical parameters of graphite are obtained from [9]. The density, specific heat, Joule heat fraction, thermal conductivity, and electrical conductivity are 2200 kg/m3, 710 J/(kg·°C) and 1, 1950 W/(m·°C), and 105 ?-1·m-1, respectively.

    3.2 Boundary Conditions and Loads

    All parts are assumed to contact firmly, so the clearance is selected as 0, and the gap electrical conductance is a very large value. The gap conductance is obtained from [10] as 104 W/(m2·°C).

    While there is air in the chamber of a Gleeble simulator, the air convection coefficient is 20 W/(m2·°C). The radiation emissivity is 0.5.

    A typical heating cycle is selected to simulate the heating process as shown in Fig. 2. It consists of three processes. The first process is the rapid heating process with the heating rate 20°C/s and the temperature of the specimen reaches 880 °C in 44 s. The following process is the slower heating process with the heating rate 2°C/s and the temperature of the specimen rises from 880 °C to 920°C in 20 s. The last process is the soaking process and the specimen is kept at 920°C. The electrical potential is applied in the coupled thermal-electrical analysis. The magnitude of the electrical potential can be controlled by the temperature of point A in Fig. 1.

    Fig. 2. Typical heat cycle in a Gleeble material simulator.

    3.3 Verification

    In order to verify the FE modeling results, thermal tests are carried out on Gleeble for a Ti-6Al-4V specimen with a slot to the centre of the specimen. The tested specimen is shown in Fig. 3.

    Fig. 3. Photographs of specimen: (a) a Ti-6Al-4V specimen with a slot to the central of the testpiece and (b) the specimen having thermal couples embedded.

    Fig. 4. Comparison of temperature of points (A, B and C) between simulation and experiments.

    The locations of measure points (A, B and C) used to study the temperature distribution are shown in Fig. 1. The comparisons of temperature distributions of measured points from FE simulation with those from experiments are shown in Fig. 4. It can be seen that the FE results are in good agreement with experimental ones. This shows that the model proposed in this paper is practicable and reliable, which provides an effective method to study the temperature history and distribution in the specimen and to investigate the effect of specimen size, heating rate, and air conditions on the temperature distribution over the specimen.

    4. Results and Discussion

    4.1 Study of the Temperature History and Distribution in the Specimen

    The heating processes are simulated and analyzed by using the coupled thermal-electrical finite element method. In order to effectively analyze the temperature distribution over the specimen, the middle time and the end time of each process are selected, i.e. 22 s, 44 s, 54 s, 64 s, 100 s, and 244 s. The temperature distributions of the specimen under the different time are shown in Fig. 5. It can be clearly seen that the temperature of the specimen end closed with graphite is the highest during the whole heating and soaking process. The reason is that both the thermal conductivity and the electrical conductivity of graphite are larger, and its temperature increases at a higher rate with regards to the same electrical current. From this figure we can also see that the gradient of temperature distribution of the specimen increases with the heating time during the rapid heating process, and then decreases gradually during the following two processes. The difference of the temperature over the specimen can reaches over 153°C at the end of the rapid process, 92°C at the end of the slower heating process, and 70°C at the end of soaking process, respectively. The peak temperature is 1027°C at the end of the rapid heating process, and then 1013°C at the end of the slower heating process. So the temperatures distributions at the end of both the rapid and the slower heating under different parameters are adopted at the following analyses.

    Fig. 5. Temperature distribution of the specimen at different times: (a) 22 s, (b) 44 s, (c) 54 s, (d) 64 s, (e) 100 s, and (f) 244 s.

    4.2 Effects of Specimen Size on Temperature Distribution

    The temperature distributions of this specimen at the end of both the rapid and slower heating processes are shown in Fig. 6 by changing the specimen size to a height of 12 mm and a diameter of 8 mm. Comparing Fig. 5 and Fig. 6, it can be seen that the gradient of temperature distribution of the specimen decreases with the decreasing of the specimen size. The max of the temperature of the specimen decreases from 1027°C to 991°C.

    Fig. 6. Temperature distribution of the specimen with as a height of 12 mm and a diameter of 8 mm at: (a) the end of the rapid heating process and (d) the end of the slower heating process.

    4.3 Effects of Heating Rate on Temperature Distribution

    Keeping the parameters at Section 4.2, both the rapid and slower heat rates are selected 10°C/s and 1°C/s, respectively. The temperature distributions under this heating rate are shown in Fig. 7. Comparing Fig. 6 and Fig. 7, it can be concluded that the gradient of temperature distribution of the specimen decreases with the decreasing of the heating rate. The max of the temperature of the specimen decreases from 991°C to 980°C.

    Fig. 7. Temperature distribution of the specimen at: (a) the end of the rapid heating process with the heat rates 10°C/s and (d) the end of the slower heating process with the heat rates 1°C/s .

    4.4 Effects of Air Condition on Temperature Distribution

    Based on the condition at Section 4.3, by vacuuming the chamber, the temperature distributions of the specimen are shown in Fig. 8. It is clear that the gradient of temperature distribution of the specimen decreases with vacuuming. The max of the temperature of the specimen decreases from 980°C to 964°C.

    Fig. 8. Temperature distribution of the specimen with vacuuming at: (a) the end of the rapid heating process and (d) the end of the slower heating process.

    5. Conclusions

    A coupled thermal-electrical FEM model corresponding to reality has been proposed for a heating process in Gleeble 3800. The temperature history and distribution has been studied, and the effects of specimen size, heating rate, and air conditions on the temperature distribution over the specimen have been investigated. The conclusions can be drawn that the gradient of temperature distribution decreases as the specimen size, the heating rate, and the vacuuming decrease.

    Acknowledgment

    The authors gratefully acknowledge the provision of computing and testing facilities and its support by Mechanics and Materials Division, Department of Mechanical Engineering, Imperial College London.

    [1] J. Lin and T. A. Dean, “Modeling of microstructure evolution in hot forming using unified constitutive equations,”Journal of Materials Processing Technology, vol. 167, pp. 354-362, Aug. 2005.

    [2] J. Luo, M. Li, X. Li, and Y. Shi, “Constitutive model for high temperature deformation of titanium alloy using internal state variable,”Mechanics of Materials, vol. 42, pp. 157-165, Feb. 2010.

    [3] X.-G. Fan and H. Yang, “Internal-state-variable based self-consistent constitutive modeling for hot working of two-phase titanium alloys coupling microstructure evolution,”Int. Journal of Plasticity, vol. 27, pp. 1833-1852, Nov. 2011.

    [4] M. A. J. Taleghani, E. M. R. Navas, M. Salehi, and J. M. Torralba, “Hot deformation behavior and flow stress prediction of 7075 aluminium alloy powder compacts during compression at elevated temperatures,”Materials Science and Engineering: A, vol. 534, pp. 624-631, Feb. 2012.

    [5] Q. Bai, J. Lin, T. A. Dean, D. S. Balint, T. Gao, and Z. Zhang,“Modeling of dominant softening mechanisms for Ti-6Al-4V in steady state hot forming conditions,”Materials Science and Engineering: A, vol. 559, pp. 352-358, Jan. 2013.

    [6] S. G. R. Brown, J. D. James, and J. A. Spittle, “A 3D numerical model of the temperature-time characteristics of specimens tested on the Gleeble thermomechanical simulator,”Modeling Silul. Mater. Sci. Eng., vol. 5, pp. 539-548, Jul. 1997.

    [7] S. D. Norris and I. Wilson, “Application of 3D numerical modeling for thermal profile optimization on the Gleeble thermomechanical simulator,”Modeling Silul. Mater. Sci. Eng., vol. 7, pp. 297-309, Feb. 1999.

    [8]Abaqus Analysis User’s Manual, 6.7.2, Coupled Thermal-Electrical Analysis, Dassault Systems Simulia, 2010.

    [9] X.-F. Lu,China Materials Engineering Canon, Beijing: Chemical Industry Press, 2006, pp. 585.

    [10] H.-T. Ding, N.-G. Shen, and Y.-C. Shi, “Thermal and mechanical modeling analysis of laser-assisted micro-milling of difficult-to-machine alloys,”Journal of Materials Processing Technology, vol. 212, pp. 601-613, Mar. 2012.

    Tao Gao was born in Hubei, China in 1979. He received the Ph.D. degree in material processing engineering from the Northwestern Polytechnical University, Xi’an in 2008. He is an associate professor with the School of Mechanical, Electronic and Industrial Engineering, University of Electronic Science and Technology of China (UESTC). His research interests include CAD modeling and FE analysis of metal forming process, and optimal design methods.

    Long Ma was born in Jilin, China in 1988. He received the B.S. degree in electrical engineering from UESTC, Chengdu in 2011. He is currently pursuing the M.S. degree with the School of Mechatronics Engineering, UESTC. His research interests include material modeling and mechanical structure design.

    Peng-Xiao Guo was born in Sichuan, China in 1989. He received the B.S. degree from Wuhan Institute of Technology, Wuhan in 2012. He is currently pursuing the M.S. degree with UESTC. His research interests include digital design and simulation and materials machining.

    Manuscript received October, 2013; revised February 17, 2014. This work was supported by the Fundamental Research Funds for the Central Universities of China under Grant No. A03007023801073.

    T. Gao is with the School of Mechanical, Electronic and Industrial Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China (Corresponding author e-mail: gaotao@uestc.edu.cn).

    L. Ma and X.-G. Peng are with the School of Mechanical, Electronic and Industrial Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China (e-mail: malonguestc@163.com; Peng35233hot@163.com).

    Color versions of one or more of the figures in this paper are available online at http://www.journal.uestc.edu.cn.

    Digital Object Identifier 10.3969/j.issn.1674-862X.2014.04.015

    22中文网久久字幕| 性色avwww在线观看| 欧美3d第一页| 久久亚洲国产成人精品v| 日本黄大片高清| 99久久中文字幕三级久久日本| 观看美女的网站| 日韩亚洲欧美综合| 极品少妇高潮喷水抽搐| 国产老妇女一区| 日本午夜av视频| 听说在线观看完整版免费高清| 亚洲av免费高清在线观看| 伊人久久国产一区二区| 看免费成人av毛片| 热99在线观看视频| 综合色丁香网| 极品教师在线视频| 色综合色国产| 亚洲伊人久久精品综合| 亚洲欧美清纯卡通| 青春草视频在线免费观看| 国产有黄有色有爽视频| 99久久中文字幕三级久久日本| 性插视频无遮挡在线免费观看| 欧美3d第一页| 白带黄色成豆腐渣| 欧美bdsm另类| 能在线免费看毛片的网站| 精品99又大又爽又粗少妇毛片| 日韩国内少妇激情av| 2021天堂中文幕一二区在线观| 精品久久国产蜜桃| 亚洲精品成人av观看孕妇| 国产欧美日韩精品一区二区| 汤姆久久久久久久影院中文字幕 | 国产大屁股一区二区在线视频| 成人亚洲精品一区在线观看 | 大香蕉久久网| 亚洲欧美成人综合另类久久久| 噜噜噜噜噜久久久久久91| 午夜福利视频精品| 亚洲欧美中文字幕日韩二区| 欧美日韩在线观看h| 亚洲色图av天堂| 精品少妇黑人巨大在线播放| 午夜福利网站1000一区二区三区| 亚洲av国产av综合av卡| 色综合亚洲欧美另类图片| 九色成人免费人妻av| 久久97久久精品| 国产成年人精品一区二区| 青春草亚洲视频在线观看| 黑人高潮一二区| 日本猛色少妇xxxxx猛交久久| 欧美精品国产亚洲| 淫秽高清视频在线观看| 亚洲精品久久午夜乱码| 亚洲国产最新在线播放| 久久精品夜色国产| 熟妇人妻不卡中文字幕| 免费人成在线观看视频色| 天堂av国产一区二区熟女人妻| 色综合色国产| 三级国产精品欧美在线观看| 人人妻人人澡欧美一区二区| 国内揄拍国产精品人妻在线| 日本猛色少妇xxxxx猛交久久| 国产成人a∨麻豆精品| 日韩 亚洲 欧美在线| 午夜福利成人在线免费观看| 亚洲av成人精品一区久久| 欧美日韩一区二区视频在线观看视频在线 | 国产日韩欧美在线精品| 精品人妻偷拍中文字幕| 日本免费a在线| 美女高潮的动态| 91狼人影院| av播播在线观看一区| 超碰av人人做人人爽久久| 女人被狂操c到高潮| 欧美日本视频| 欧美bdsm另类| 好男人在线观看高清免费视频| 联通29元200g的流量卡| 久久99精品国语久久久| 亚洲精品影视一区二区三区av| 伊人久久国产一区二区| 男女边摸边吃奶| 丰满乱子伦码专区| 欧美3d第一页| 国产精品久久久久久久电影| 日韩强制内射视频| 亚洲精品乱码久久久v下载方式| .国产精品久久| 我的女老师完整版在线观看| 乱系列少妇在线播放| 一夜夜www| 亚洲一区高清亚洲精品| 成人亚洲欧美一区二区av| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 麻豆乱淫一区二区| 亚洲,欧美,日韩| 婷婷色综合大香蕉| 六月丁香七月| 国产欧美日韩精品一区二区| 日本午夜av视频| 亚洲精品影视一区二区三区av| 国产综合懂色| 午夜福利高清视频| 久久综合国产亚洲精品| 乱码一卡2卡4卡精品| 欧美日韩一区二区视频在线观看视频在线 | 黄片wwwwww| av卡一久久| 久久精品国产亚洲av天美| 国产老妇女一区| 午夜激情久久久久久久| 建设人人有责人人尽责人人享有的 | 亚洲aⅴ乱码一区二区在线播放| 熟妇人妻不卡中文字幕| 国产乱人视频| 国产精品久久久久久av不卡| 午夜视频国产福利| 亚洲欧美成人综合另类久久久| 亚洲精品国产av成人精品| 黄色欧美视频在线观看| 亚洲精品久久久久久婷婷小说| 欧美日韩视频高清一区二区三区二| 精品久久久久久成人av| 免费观看av网站的网址| 久久综合国产亚洲精品| 国产成人a区在线观看| 亚洲精品自拍成人| 青青草视频在线视频观看| 久久久久久久国产电影| av网站免费在线观看视频 | 美女被艹到高潮喷水动态| 亚洲精品久久久久久婷婷小说| 久久6这里有精品| 午夜久久久久精精品| 精品一区二区三区人妻视频| 亚洲av一区综合| 欧美高清性xxxxhd video| 国产午夜福利久久久久久| 亚洲精品国产成人久久av| 亚洲成人一二三区av| 成人亚洲精品一区在线观看 | 男的添女的下面高潮视频| 成人漫画全彩无遮挡| 午夜福利成人在线免费观看| 国产成人精品久久久久久| 国产精品爽爽va在线观看网站| 极品教师在线视频| 国产精品久久久久久久电影| 日本av手机在线免费观看| 久久精品国产亚洲av天美| av在线蜜桃| 国产精品精品国产色婷婷| 亚洲精品国产av蜜桃| 亚洲电影在线观看av| 国产亚洲最大av| 晚上一个人看的免费电影| 精品国产一区二区三区久久久樱花 | kizo精华| 亚洲综合色惰| 国产精品一二三区在线看| 国产探花极品一区二区| 久久久国产一区二区| 麻豆av噜噜一区二区三区| 国产白丝娇喘喷水9色精品| 中文精品一卡2卡3卡4更新| 久久久久性生活片| 国产有黄有色有爽视频| 最近中文字幕高清免费大全6| 国产 一区 欧美 日韩| 亚洲精品视频女| 一区二区三区四区激情视频| 国产一区有黄有色的免费视频 | 男人和女人高潮做爰伦理| 狠狠精品人妻久久久久久综合| 人人妻人人澡人人爽人人夜夜 | 亚洲四区av| 波多野结衣巨乳人妻| 五月伊人婷婷丁香| 乱系列少妇在线播放| 免费大片黄手机在线观看| 日韩三级伦理在线观看| 欧美成人精品欧美一级黄| 人体艺术视频欧美日本| 久久综合国产亚洲精品| 亚洲丝袜综合中文字幕| 亚洲伊人久久精品综合| 免费看av在线观看网站| 中文天堂在线官网| 亚洲婷婷狠狠爱综合网| 国产又色又爽无遮挡免| 亚州av有码| 国产亚洲一区二区精品| 我的老师免费观看完整版| 少妇裸体淫交视频免费看高清| 又爽又黄a免费视频| 亚洲av中文av极速乱| 18禁在线无遮挡免费观看视频| 欧美潮喷喷水| 七月丁香在线播放| 麻豆av噜噜一区二区三区| 九九在线视频观看精品| 国产高清有码在线观看视频| 欧美高清成人免费视频www| 日韩不卡一区二区三区视频在线| 日韩一区二区三区影片| 国产精品久久久久久久电影| 久久韩国三级中文字幕| 久久久久久久久久成人| 国国产精品蜜臀av免费| 丝袜喷水一区| 精品国产三级普通话版| 亚洲精品成人av观看孕妇| 在线a可以看的网站| or卡值多少钱| 成人一区二区视频在线观看| 日韩伦理黄色片| 国产成人aa在线观看| 女人久久www免费人成看片| 色综合站精品国产| 国产精品麻豆人妻色哟哟久久 | 丝袜喷水一区| 草草在线视频免费看| 少妇人妻精品综合一区二区| 成年女人看的毛片在线观看| 精品久久久久久久末码| 久久久久国产网址| 99九九线精品视频在线观看视频| 国产伦精品一区二区三区四那| 亚洲伊人久久精品综合| 欧美极品一区二区三区四区| 亚洲自拍偷在线| 国产老妇伦熟女老妇高清| 99久久九九国产精品国产免费| 床上黄色一级片| 熟妇人妻久久中文字幕3abv| 国产成人免费观看mmmm| 国产69精品久久久久777片| 夜夜看夜夜爽夜夜摸| 69人妻影院| 久久久久久久亚洲中文字幕| 久久久久精品久久久久真实原创| 国产精品一二三区在线看| 日本-黄色视频高清免费观看| 日本免费a在线| 在线观看人妻少妇| 亚洲欧洲国产日韩| 久久草成人影院| ponron亚洲| videossex国产| 欧美+日韩+精品| 少妇的逼好多水| 亚洲av在线观看美女高潮| 国产精品国产三级专区第一集| 国语对白做爰xxxⅹ性视频网站| 亚洲在久久综合| 高清av免费在线| 日日啪夜夜爽| 久久精品久久久久久噜噜老黄| 99热全是精品| 中文字幕av成人在线电影| 久久久久九九精品影院| 国产白丝娇喘喷水9色精品| 舔av片在线| 免费观看精品视频网站| 亚洲精品乱久久久久久| 又爽又黄a免费视频| 国产 一区精品| 国产黄色视频一区二区在线观看| 国产精品一区二区性色av| 午夜福利在线观看吧| 国产伦在线观看视频一区| 日本猛色少妇xxxxx猛交久久| av黄色大香蕉| 亚洲欧洲国产日韩| 精品久久久久久成人av| 97人妻精品一区二区三区麻豆| 久99久视频精品免费| 精品国产一区二区三区久久久樱花 | 大陆偷拍与自拍| 啦啦啦中文免费视频观看日本| 国产激情偷乱视频一区二区| 又粗又硬又长又爽又黄的视频| 直男gayav资源| 亚洲成人精品中文字幕电影| 成年免费大片在线观看| 日本与韩国留学比较| av女优亚洲男人天堂| 在线a可以看的网站| 一区二区三区四区激情视频| 内射极品少妇av片p| 中文精品一卡2卡3卡4更新| 精品久久久久久久久久久久久| 欧美日韩在线观看h| 在线免费观看不下载黄p国产| av在线蜜桃| 亚洲精品国产av成人精品| 网址你懂的国产日韩在线| 国产黄色小视频在线观看| 午夜视频国产福利| 丰满乱子伦码专区| 午夜视频国产福利| 中文精品一卡2卡3卡4更新| 中文字幕人妻熟人妻熟丝袜美| 美女大奶头视频| 秋霞在线观看毛片| 永久免费av网站大全| 女人十人毛片免费观看3o分钟| 日韩成人伦理影院| 激情 狠狠 欧美| 日韩电影二区| 九色成人免费人妻av| 亚洲av成人精品一区久久| 久久久久久伊人网av| 亚洲不卡免费看| 精品人妻视频免费看| 99热全是精品| 日日啪夜夜撸| 人妻系列 视频| 91午夜精品亚洲一区二区三区| 99久国产av精品国产电影| 大陆偷拍与自拍| 大片免费播放器 马上看| 欧美激情久久久久久爽电影| 久久精品久久精品一区二区三区| 国产伦在线观看视频一区| 国产高清国产精品国产三级 | 亚洲在线观看片| 99热网站在线观看| 老师上课跳d突然被开到最大视频| 男女下面进入的视频免费午夜| 天堂俺去俺来也www色官网 | 亚洲av免费高清在线观看| 人体艺术视频欧美日本| 高清欧美精品videossex| 欧美日韩综合久久久久久| 男女视频在线观看网站免费| 国产精品一区二区在线观看99 | 国产伦一二天堂av在线观看| 免费大片18禁| 国产探花极品一区二区| 日日摸夜夜添夜夜爱| 日韩,欧美,国产一区二区三区| 一级毛片久久久久久久久女| 日本熟妇午夜| 91久久精品国产一区二区成人| 久久鲁丝午夜福利片| 久久99热这里只频精品6学生| 亚洲性久久影院| 舔av片在线| 欧美日本视频| 国产黄片视频在线免费观看| 国产毛片a区久久久久| 嫩草影院新地址| 亚洲,欧美,日韩| 一级毛片久久久久久久久女| 天天一区二区日本电影三级| 69av精品久久久久久| 一个人看视频在线观看www免费| 欧美日韩视频高清一区二区三区二| 国产成人一区二区在线| 一个人免费在线观看电影| 91狼人影院| 免费大片18禁| 国产精品一区二区三区四区免费观看| 91精品伊人久久大香线蕉| 成人亚洲精品一区在线观看 | 美女黄网站色视频| 欧美一级a爱片免费观看看| 亚洲av免费在线观看| 最近最新中文字幕大全电影3| 精品一区二区免费观看| 久久久a久久爽久久v久久| 久久久久久久久久黄片| 成人综合一区亚洲| 亚洲欧洲日产国产| 免费看不卡的av| 一级二级三级毛片免费看| 亚洲无线观看免费| 啦啦啦中文免费视频观看日本| 天天一区二区日本电影三级| 嫩草影院入口| 日本免费在线观看一区| 简卡轻食公司| 自拍偷自拍亚洲精品老妇| 99热这里只有是精品在线观看| 人人妻人人澡欧美一区二区| 如何舔出高潮| 久久久久久伊人网av| av在线老鸭窝| 日本猛色少妇xxxxx猛交久久| 欧美变态另类bdsm刘玥| 观看美女的网站| 亚洲在久久综合| 亚洲aⅴ乱码一区二区在线播放| 成人亚洲精品一区在线观看 | 日韩三级伦理在线观看| 国产激情偷乱视频一区二区| 亚洲最大成人av| 91狼人影院| 日日干狠狠操夜夜爽| 国产毛片a区久久久久| 大片免费播放器 马上看| 国产熟女欧美一区二区| 国产人妻一区二区三区在| 国产乱人视频| 国产精品精品国产色婷婷| 麻豆成人av视频| 久久97久久精品| 国产精品1区2区在线观看.| 18禁裸乳无遮挡免费网站照片| 欧美三级亚洲精品| 成人性生交大片免费视频hd| 2022亚洲国产成人精品| 亚洲av电影不卡..在线观看| 国产成人免费观看mmmm| 可以在线观看毛片的网站| 高清av免费在线| 18+在线观看网站| 一个人免费在线观看电影| 白带黄色成豆腐渣| 久久国内精品自在自线图片| 亚洲精品乱码久久久久久按摩| 麻豆乱淫一区二区| 欧美bdsm另类| 亚洲人成网站高清观看| av一本久久久久| 内射极品少妇av片p| 一个人免费在线观看电影| 国产精品.久久久| 插阴视频在线观看视频| 91久久精品电影网| 国产69精品久久久久777片| 国产不卡一卡二| videos熟女内射| 国产亚洲91精品色在线| 亚洲无线观看免费| 国产精品久久视频播放| 国产高潮美女av| 国产乱来视频区| 3wmmmm亚洲av在线观看| 十八禁国产超污无遮挡网站| 欧美另类一区| 免费看光身美女| videossex国产| 国产女主播在线喷水免费视频网站 | 免费观看在线日韩| 最近2019中文字幕mv第一页| 你懂的网址亚洲精品在线观看| 最近中文字幕高清免费大全6| .国产精品久久| 国产亚洲av嫩草精品影院| 国产永久视频网站| 如何舔出高潮| 亚洲精品色激情综合| 99久久精品一区二区三区| 国产精品精品国产色婷婷| 国产毛片a区久久久久| 日本一二三区视频观看| 亚洲精品视频女| 国产单亲对白刺激| 亚洲怡红院男人天堂| 中文字幕久久专区| 视频中文字幕在线观看| 在线a可以看的网站| 好男人在线观看高清免费视频| 蜜臀久久99精品久久宅男| 中文字幕免费在线视频6| 黑人高潮一二区| 国产在线男女| 日本免费a在线| 欧美区成人在线视频| 国产精品美女特级片免费视频播放器| 日韩欧美精品v在线| av线在线观看网站| 国产国拍精品亚洲av在线观看| 波多野结衣巨乳人妻| 国产高清有码在线观看视频| 永久网站在线| 99热6这里只有精品| 亚洲国产精品sss在线观看| 日本三级黄在线观看| 97超视频在线观看视频| 中文字幕av在线有码专区| 18禁在线播放成人免费| 亚洲成人av在线免费| 乱系列少妇在线播放| 五月伊人婷婷丁香| 国产色婷婷99| 综合色丁香网| 精品熟女少妇av免费看| 免费在线观看成人毛片| 婷婷六月久久综合丁香| 国产在线男女| 六月丁香七月| 亚洲精品亚洲一区二区| 国产91av在线免费观看| 高清av免费在线| 国产一区二区三区综合在线观看 | 卡戴珊不雅视频在线播放| 日本黄大片高清| 成人二区视频| 国产欧美另类精品又又久久亚洲欧美| 国产伦一二天堂av在线观看| 婷婷色综合www| 国产亚洲5aaaaa淫片| av黄色大香蕉| 青春草亚洲视频在线观看| 国产高清不卡午夜福利| 久久精品国产亚洲网站| 七月丁香在线播放| 亚洲国产日韩欧美精品在线观看| 美女内射精品一级片tv| 亚洲精品乱码久久久久久按摩| 欧美成人午夜免费资源| a级毛片免费高清观看在线播放| 免费无遮挡裸体视频| 久99久视频精品免费| 26uuu在线亚洲综合色| 亚洲三级黄色毛片| 久久6这里有精品| 纵有疾风起免费观看全集完整版 | 国产极品天堂在线| 久久精品国产亚洲av天美| 97在线视频观看| 人妻制服诱惑在线中文字幕| 性插视频无遮挡在线免费观看| 黄色配什么色好看| 卡戴珊不雅视频在线播放| 国产成人一区二区在线| 国产熟女欧美一区二区| 中文精品一卡2卡3卡4更新| 欧美高清成人免费视频www| 我的女老师完整版在线观看| 国产免费又黄又爽又色| 国产黄a三级三级三级人| 91狼人影院| 嫩草影院入口| 成年版毛片免费区| 六月丁香七月| 国产成人精品久久久久久| 亚洲国产色片| 亚洲精品日韩在线中文字幕| 午夜激情欧美在线| 自拍偷自拍亚洲精品老妇| 中文字幕亚洲精品专区| 久久精品国产自在天天线| 国产v大片淫在线免费观看| 少妇被粗大猛烈的视频| 女的被弄到高潮叫床怎么办| 26uuu在线亚洲综合色| 高清在线视频一区二区三区| 黑人高潮一二区| 青春草视频在线免费观看| 丰满乱子伦码专区| 亚洲无线观看免费| 亚洲欧美日韩卡通动漫| 免费av不卡在线播放| 国产在视频线精品| 91久久精品电影网| 人妻系列 视频| 日韩中字成人| 午夜久久久久精精品| 亚洲av成人av| 国产精品人妻久久久久久| 校园人妻丝袜中文字幕| 亚洲av二区三区四区| 日本欧美国产在线视频| 亚洲精品亚洲一区二区| 亚洲精品中文字幕在线视频 | 免费观看a级毛片全部| 免费观看精品视频网站| 嫩草影院入口| 日本与韩国留学比较| 欧美97在线视频| 女人十人毛片免费观看3o分钟| 亚洲精品乱码久久久久久按摩| 老师上课跳d突然被开到最大视频| 日本免费a在线| 久久久久久九九精品二区国产| 亚洲国产精品国产精品| 国产精品女同一区二区软件| 永久免费av网站大全| 精品亚洲乱码少妇综合久久| 少妇裸体淫交视频免费看高清| 三级国产精品欧美在线观看| 丝瓜视频免费看黄片| 激情 狠狠 欧美| 亚洲av日韩在线播放| 久久精品国产亚洲av天美| 久久综合国产亚洲精品| 中文天堂在线官网| 日韩欧美国产在线观看| 天美传媒精品一区二区| 久久热精品热| 国产色爽女视频免费观看| 欧美zozozo另类| 国产黄色免费在线视频| 精品久久久噜噜| 91精品伊人久久大香线蕉| 日本与韩国留学比较| 可以在线观看毛片的网站| 性色avwww在线观看| 美女主播在线视频| 免费av观看视频| 好男人在线观看高清免费视频| 九九久久精品国产亚洲av麻豆| 欧美人与善性xxx| 精品人妻熟女av久视频|