• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Family Competition Pheromone Genetic Algorithm for Comparative Genome Assembly

    2014-03-24 05:40:14ChienHaoSuChienShunChiouJungCheKuoPeiJenWangChengYanKaoandHsuehTingChu

    Chien-Hao Su, Chien-Shun Chiou, Jung-Che Kuo, Pei-Jen Wang Cheng-Yan Kao, and Hsueh-Ting Chu

    Family Competition Pheromone Genetic Algorithm for Comparative Genome Assembly

    Chien-Hao Su, Chien-Shun Chiou, Jung-Che Kuo, Pei-Jen Wang Cheng-Yan Kao, and Hsueh-Ting Chu

    ——Genome assembly is a prerequisite step for analyzing next generation sequencing data and also far from being solved. Many assembly tools have been proposed and used extensively. Majority of them aim to assemble sequencing reads into contigs; however, we focus on the assembly of contigs into scaffolds in this paper. This is called scaffolding, which estimates the relative order of the contigs as well as the size of the gaps between these contigs. Pheromone trail-based genetic algorithm (PGA) was previously proposed and had decent performance according to their paper. From our previous study, we found that family competition mechanism in genetic algorithm is able to further improve the results. Therefore, we propose family competition pheromone genetic algorithm (FCPGA) and demonstrate the improvement over PGA.

    Index Terms——Genetic algorithm, genome typing, next generation sequencing.

    1. Introduction

    The advent of next generation sequencing (NGS) technology has generated an enormous amount of data that give a large demand for the necessity of computer software to handle these data. This is because the next step usually overlaps and merges the deoxyribose nucleic acid (DNA) reads, small fragments of the genome, from NGS technology into a contiguous longer string, called contig. This step called assembly is far from being solved. Therefore, many assembly algorithms and software (including DNA and RNA (ribose nucleic acid) assembly)have been proposed and used extensively, such as Newbler[1], Celera Assembler[2], Velvet[3], ABySS[4], AllPaths[5],[6], SOAPdenovo[7], Oases[8], Trinity[9], and EBARDenovo[10], to name a few. For the comparison of most of the above tools and the introduction of assembly, please see reviews[11]-[14].

    Majority of the assembly tools aim to assemble reads into contigs; however, we focus on the assembly of contigs into scaffolds. This is called scaffolding, which estimates the relative order of the contigs as well as the size of the gaps between these contigs. The estimation is usually based on the availability of one or several closely related genome sequences that is assumed to have high degrees of synteny. A few tools have been developed to achieve a good estimation for the order of the contigs, for example, Projector2[15], OSLay[16], AMOScmp[17], treecat[18], and PGA[19]. Projector2 is a web service that maps contigs on a reference genome by using BLAST (basic local alignment search tool) or BLAT (blast-like alignment tool)[20]. Projector2 also has several features, including a repeat masking option for contigs, a visualization interface of the mapping results, and an automated primer design step for gap-closure purposes. OSLay aims at computing a layout of contigs based on their synteny information by using maximum weight matching and also provides an interactive visualization of the layout. AMOScmp aligns reads to the reference genome by applying a modi fi ed MUMmer[21]algorithm. However, these methods are limited to the assembly of contigs derived from closely related genomes, i.e., different strains of the same species. For distinct species, assembly accuracy typically decreases dramatically.

    To overcome this hurdle, Zhaoet al.proposed a pheromone trail-based genetic algorithm (PGA) to evaluate the distance between two contigs in the target genome and predict the most probable pairwise connections for all contigs using global search heuristics[19]. In addition, PGA accepts more than one genome as reference and can significantly improve the performance of contig assembly for more distantly related genomes. Zhaoet al.have demonstrated that PGA outperforms previous methods, such as Projector2, OSLay, and other BLAST end-based tools. Different from PGA, treecat uses sequence similarity as well as their phylogenetic information to estimate theadjacencies of contigs. In addition, instead of generating one optimal order of the contigs, treecat describes contig adjacencies by creating the contig layout graph. However, this would increase the false positive rate of the assembly results. It is still arguable that which format is more valuable, a single linear ordering to aid the closure of gaps or contig layout graph with more flexible at the expense of increasing the false positive rate.

    Yanget al.improved the function optimization results by integrating the family competition into the genetic algorithm[22]. The family competition strategy was first introduced in Yanget al.’s previous paper[23]and can be viewed as a local competition mechanism when generating offspring in the genetic algorithm. They have also demonstrated that the family competition is capable of obtaining better performance and saving the computation time. Inspired by their study, we propose a novel genetic algorithm by integrating the family competition into PGA, called FCPGA (family competition pheromone genetic algorithm). The results show that lower fitness, which means better assembly result, is obtained when using FCPGA. We also find that using multiple mutations could significantly improve the performance of genetic algorithm in our study. Finally, the run time of FCPGA is shorter than PGA. Therefore, we demonstrate the robustness and power of the family competition.

    2. Material and Method

    2.1 Collection of the Data

    Salmonella enterica serovar Typhi(S. typhi), a serotype ofSalmonella enterica, is a major cause ofSalmonella typhi(also called typhoid fever) and mainly exists in the food and drinking water polluted by the patients’ stool and urine. In this study, the DNA reads was extracted from the patients’ stool and sequenced by Ion Torrent. The sample name is BD1380. The DNA reads is then assembled by using the default parameter settings of GSde novoassembler (Newbler, Roche/454 Life Sciences). The statistics of the DNA reads and assembly results are shown in Table 1.

    Table 1: Statistics DNA reads and assembly results

    2.2 Reference Genome

    We experimentally verified that theSalmonellastrain of BD1380 should belong to a new strain which we called artificial CT18. Artificial CT18 was formed by another sequence called island5 (~20.5k bps) which was inserted in the position 1690319 of S. Typhi strain CT18 chromosome with repeat sequence “CAACATGTA” was at island5 both ends. Therefore, we manually created artificial CT18 and took as the reference genome.

    2.3 Pheromone Trail-Based Genetic Algorithm

    Zhaoet al.proposed a pheromone trail-based genetic algorithm (PGA) to search globally for the optimal placement for each contig[19]. They have demonstrated that PGA significantly outperforms previous methods, such as Projector2, OSLay, and other BLAST end-based tools. For more details of PGA, please refer to their paper[19].

    2.4 Family Competition Genetic Algorithm

    The family competition strategy which was first introduced in Yanget al.’s paper[23]in 1997 demonstrated the ability of improving the function optimization problems[22]. The major procedure of the family competition is generating more than one child in each generation. Next, the best one is selected from these offspring as the representative. For more detail, please refer to Yanget al.’s paper[22],[23]. In the family competition strategy, the family competition length (L) is an important parameter that determines the number of offspring generated. In this paper, the length is arbitrarily set to 3 for all test problems.

    2.5 Crossover and Mutation

    In this paper, we compare three crossovers and two mutations. Three crossovers are cross2[19], order crossover (OX)[24], and partially mapped crossover (PMX)[25]. The two mutations are mutation3 (including 3-exchange mutation and 2-opt[26]) and local search (including reciprocal exchange mutation and shift mutation). The 3-exchange mutation randomly selects two points in the chromosome (three sections are created), and then exchanges the places of these sections. Obviously, there are in total six possible combinations including the offspring itself, then, the best feasible one will be selected as the result of mutation. The reciprocal exchange mutation swaps two randomly chosen genes in the chromosome. The shift mutation inserts a randomly chosen gene into the right of another randomly chosen gene. The reciprocal exchange mutation and the shift mutation would be applied only if the generated offspring is better.

    2.6 Fitness Calculation

    We adopted the identical fitness calculation as Zhaoet al.’s paper[19], including all parameter settings and function formulas.

    3. Result and Discussion

    3.1 Results by Using mutation3 and Localsearch

    We compare three crossovers combined with three mutations (including using both mutations), so there are in total nine methods. For each method, two versions of the genetic algorithm are used, which are PGA and FCPGA.

    The results are shown in Table 2. The parameters are listed in the footnote of the table, including population size, crossover rate (pc), mutation rate (pm), and the number of generation. As shown in Table 2, we find that smaller fitness is obtained when using both mutation3 and localsearch. In this study, smaller fitness implies better performance. The conclusion that applying both mutation3 and localsearch produces better result is consistent throughout this study. In addition, while comparing the results of using PGA and FCPGA, we find that better results are obtained when using FCPGA. Table 3 shows similar results as Table 2; the only difference is the mutation rate changes from 0.001 to 0.01.

    Table 2: Comparisons of average and minimum fitness usingdifferent methods (mutation rate = 0.001)

    Table 3: Comparisons of average and minimum fitness usingdifferent methods (mutation rate = 0.01)

    3.2 Fitness Comparison between FCPGA and PGA

    To investigate the performance of PGA and FCPGA more deeply, we further evaluate their results by using different mutation and crossover rates. As shown in Table 4, there are in total six mutation rates used in this study. Almost all mutation rates demonstrate that FCPGA produces better results than PGA, except for mutation rates are 0.004 and 0.006. Closer inspection reveals that these two mutation rates produce extremely low fitness (797) by accident; therefore lower average fitness is obtained. The second low fitness for mutation rates 0.004 and 0.006 is 854 and 866, respectively; both of them are larger than the average (853.8 and 859.6). Among all mutation rates, our results show that using FCPGA withpm= 0.01 obtains the best result. We then fix the mutation rate (0.01) and evaluate the performance of different crossover rates. As shown in Table 5, there are also six crossover rates used in this study. Similar to the results in Table 4, almost all crossover rates show that FCPGA is better than PGA, except forpc= 0.5. Note that by usingpc= 0.8, FCPGA and PGA produce similar average fitness (861 and 860.8).

    Table 4: Average and minimum fitness of using different mutation rates

    Table 5: Average and minimum fitness of using different crossover rates

    The results demonstrate that our proposed method (FCPGA) produces smaller fitness than PGA, which means better assembly results. The results are consistent by using different combination of mutation and crossover rates. Next, we examine the run time of FCPGA compared to PGA.

    3.3 Run Time Comparison between FCPGA and PGA

    FCPGA and PGA were run by using one core of a server, equipped with two 2.33 GHz Intel Xeon Quad-Core 5345 Processors with 32 GB RAM. Different combinations of parameters are examined in this study. We calculate the run time of four major operators in genetic algorithm; they are selection, crossover, mutation, and evaluation. The total time is list in the final column of Table 6. As seen from the table, the evaluation takes the longest run time when using PGA; for FCPGA, the most time-consuming operator is crossover. It is strange that PGA with population size 1000 takes extremely long time in the evaluation operator (first two rows in Table 6). We conclude that FCPGA takes shorter run time than PGA under all parameter settings. Due to the number of contig is small, the compute loading of FCPGA is low. Note that we also find that FCPGA produces smaller fitness (better results) than PGA.

    Table 6: Run time of each genetic algorithm operator by using different parameter settings

    4. Conclusions

    Pheromone trail-based genetic algorithm (PGA) has been demonstrated the improvement in genome assembly over previous methods, such as Projector2, OSLay, and other BLAST end-based tools. In this paper, we have developed an extended version of PGA by integrating the family competition mechanism into PGA, called the family competition pheromone genetic algorithm (FCPGA). Our results show that FCPGA performs better than PGA in fitness calculation as well as run time estimation in the real dataset. The family competition length is set to 3 by empirical; however, we may produce better results by testing different lengths. Furthermore, there are still many parameters could be used in the family competition strategy for evaluating its performance, which are omitted in this paper. We firmly believe that better results could be obtained by exploring the family competition more extensively.

    Acknowledgment

    The authors are grateful to all the members of the Third Branch Office, Center for Disease Control, Taichung.

    [1] M. Margulies, M. Egholm, W. E. Altman,et al., “Genome sequencing in microfabricated high-density picolitre reactors,”Nature, vol. 437, pp. 376-380, Sep. 2005.

    [2] E. W. Myers, G. G. Sutton, A. L. Delcher,et al., “A whole-genome assembly of drosophila,”Science, vol. 287, pp. 2196-2204, Mar. 2000.

    [3] D. R. Zerbino and E. Birney, “Velvet: algorithms for de novo short read assembly using de Bruijn graphs,”Genome Res., vol. 18, pp. 821-829, May 2008.

    [4] J. T. Simpson, K. Wong, S. D. Jackman, J. E. Schein, S. J. Jones, and I. Birol, “ABySS: a parallel assembler for short read sequence data,”Genome Res., vol. 19, pp. 1117-1123, Jun. 2009.

    [5] J. Butler, I. MacCallum, M. Kleber,et al., “ALLPATHS: de novo assembly of whole-genome shotgun microreads,”Genome Res., vol. 18, pp. 810-820, May 2008.

    [6] I. Maccallum, D. Przybylski, S. Gnerre,et al., “ALLPATHS 2: Small genomes assembled accurately and with high continuity from short paired reads,”Genome Biol., vol. 10, pp. R103, Oct. 2009.

    [7] R. Li, H. Zhu, J. Ruan,et al., “De novo assembly of human genomes with massively parallel short read sequencing,”Genome Res., vol. 20, pp. 265-272, Feb. 2009.

    [8] M. H. Schulz, D. R. Zerbino, M. Vingron, and E. Birney,“Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels,”Bioinformatics, vol. 28, pp. 1086-1092, Apr. 2012.

    [9] M. G. Grabherr, B. J. Haas, M. Yassour,et al., “Full-length transcriptome assembly from RNA-Seq data without a reference genome,”Nat. Biotechnol, vol. 29, pp. 644-652, Jul. 2011.

    [10] H. T. Chu, W. W. Hsiao, J. C. Chen,et al., “EBARDenovo: highly accurate de novo assembly of RNA-Seq with efficient chimera-detection,”Bioinformatics, vol. 29, pp. 1004-1010, Apr. 2013.

    [11] J. R. Miller, S. Koren, and G. Sutton, “Assembly algorithms for next-generation sequencing data,”Genomics, vol. 95, pp. 315-27, Jun. 2010.

    [12] M. C. Schatz, A. L. Delcher, and S. L. Salzberg, “Assembly of large genomes using second-generation sequencing,”Genome Res., vol. 20, pp. 1165-1173, Sep. 2010.

    [13] M. Baker, “De novo genome assembly: what every biologist should know,”Nature Methods, vol. 9, no. 4, pp. 333-337, 2012.

    [14] J. A. Martin and Z. Wang, “Next-generation transcriptome assembly,”Nat. Rev. Genet., vol. 12, pp. 671-682, Oct. 2011.

    [15] S. A. van Hijum, A. L. Zomer, O. P. Kuipers, and J. Kok,“Projector 2: Contig mapping for efficient gap-closure of prokaryotic genome sequence assemblies,”Nucleic Acids Res., vol. 33, pp. W560-566, Jul. 2005.

    [16] D. C. Richter, S. C. Schuster, and D. H. Huson, “OSLay: optimal syntenic layout of unfinished assemblies,”Bioinformatics, vol. 23, pp. 1573-1579, Jul. 2007.

    [17] M. Pop, A. Phillippy, A. L. Delcher, and S. L. Salzberg,“Comparative genome assembly,”Briefings in Bioinformatics, vol. 5, pp. 237-248, Sep. 2004.

    [18] P. Husemann and J. Stoye, “Phylogenetic comparative assembly,”Algorithms Mol. Biol., vol. 5, pp. 3, Jan. 2010.

    [19] F. Zhao, T. Li, and D. A. Bryant, “A new pheromone trail-based genetic algorithm for comparative genome assembly,”Nucleic Acids Res., vol. 36, pp. 3455-3462, Jun. 2008.

    [20] W. J. Kent, “BLAT--the BLAST-like alignment tool,”Genome Res., vol. 12, pp. 656-664, Apr. 2002.

    [21] S. Kurtz, A. Phillippy, A. L. Delcher,et al., “Versatile and open software for comparing large genomes,”Genome Biol., vol. 5, no. 2, pp. R12, 2004.

    [22] J.-M. Yang and C.-Y. Kao, “Integrating adaptive mutations and family competition into genetic algorithms as function optimizer,”Soft Computing, vol. 4, no. 1, pp. 89-102, 2000.

    [23] J.-M. Yang, Y.-P. Chen, J.-T. Horng, and C.-Y. Kao,“Applying family competition to evolution strategies for constrained optimization,”Lecture Notes in Computer Science, vol. 1213, pp. 201-211, Jun. 1997.

    [24] I. Oliver, D. Smith, and J. R. Holland, “A study of permutation crossover operators on the traveling salesman problem,” inProc. of the Second Int. Conf. on Genetic Algorithms on Genetic Algorithms and Their Application, 1987, pp. 224-230.

    [25] D. Goldberg and R. Lingle, “Alleles, loci and the traveling salesman problem,” inProc. of the First Int. Conf. on Genetic Algorithms and Their Applications, 1985, pp. 154-159.

    [26] G. A. Croes, “A method for solving traveling-salesman problems,”O(jiān)perations Research, vol. 6, no. 6, pp. 791-812, 1958.

    Chien-Hao Su received the Ph.D. degree in 2013 from the Department of Computer Science and Information Engineering, National Taiwan University, Taipei. He is now a postdoctoral fellow at the Biodiversity Research Center, Academia Sinica. Currently, he is working on developing a novel method for genome assembly. His research interests include bioinformatics, evolutionary algorithm, metagenomics, and genome assembly.

    Chien-Shun Chiou received the Ph.D. degree in 1994 from the Department of Botany and Plant Pathology, Michigan State University, USA. He is a principal investigator at the Center for Research, Diagnostics and Vaccine Development, Centers for Disease Control, Taichung.

    Jung-Che Kuo received the M.S. degree in 2012 from the Institute of Biotechnology, National Cheng Kung University, Taichung. He is a member of the research faculty fellow at the Center for Research, Diagnostics and Vaccine Development, Centers for Disease Control, Taichung.

    Pei-Jen Wang received the Ph.D. degree in 2010 from the Life Sciences Department, National Chung-Hsing University, Taichung. He is a postdoctoral fellow at the Center for Research, Diagnostics and Vaccine Development, Centers for Disease Control, Taichung. (photograph not available at the time of publication)

    Cheng-Yan Kao received the Ph.D. degree in 1981 from the Department of Computer Science, University of Wisconsin-Madison, Madison. He is now a professor with the Department of Computer Science and Information Engineering, National Taiwan University, Taipei. (photograph not available at the time of publication)

    Hsueh-Ting Chu received the Ph.D. degree in 2002 from the Department of Computer Science, National Tsing Hwa University, Hsinchu. He then joined the Department of Computer Science and Information Engineering, Asia University, Taichung.

    Pei-Jen Wang’s and Cheng-Yan Kao’s photographs are not available at the time of publication.

    Manuscript received December 15, 2013; revised March 15, 2014.

    C.-H. Su is with the Biodiversity Research Center, Academia Sinica, Taipei (e-mail: chienhao@gmail.com).

    C.-S. Chiou, J.-C. Kuo, and P.-J. Wang are with the Center for Research, Diagnostics and Vaccine Development, Centers for Disease Control, Taichung (e-mail: nipmcsc@cdc.gov.tw).

    C.-Y. Kao is with the Department of Computer Science and Information Engineering, National Taiwan University, Taipei (e-mail: cykao@csie.ntu.edu.tw).

    H.-T. Chu is with the Department of Computer Science and Information Engineering, Asia University, Taichung (Corresponding author: e-mail: htchu@asia.edu.tw).

    Digital Object Identifier: 10.3969/j.issn.1674-862X.2014.04.012

    欧美激情国产日韩精品一区| 青春草亚洲视频在线观看| 高清毛片免费观看视频网站| 国产精品久久电影中文字幕| 国产激情偷乱视频一区二区| 国产成人freesex在线| 精品一区二区三区人妻视频| 亚洲精品久久久久久婷婷小说 | 日韩欧美三级三区| 一级毛片我不卡| 欧美高清性xxxxhd video| 赤兔流量卡办理| av在线蜜桃| 国产蜜桃级精品一区二区三区| av在线播放精品| 啦啦啦啦在线视频资源| 亚洲成av人片在线播放无| 国产精品一区二区性色av| www.色视频.com| 久久6这里有精品| 免费看日本二区| 中文资源天堂在线| 神马国产精品三级电影在线观看| 听说在线观看完整版免费高清| 在线免费十八禁| 亚洲av成人精品一区久久| 伦理电影大哥的女人| 成人三级黄色视频| 搡老妇女老女人老熟妇| 成人亚洲精品av一区二区| 两性午夜刺激爽爽歪歪视频在线观看| 26uuu在线亚洲综合色| 日本av手机在线免费观看| 日本撒尿小便嘘嘘汇集6| a级一级毛片免费在线观看| 1000部很黄的大片| 99在线人妻在线中文字幕| 午夜精品在线福利| a级一级毛片免费在线观看| 91久久精品电影网| 亚洲最大成人av| 少妇人妻精品综合一区二区 | 好男人视频免费观看在线| 亚洲精品456在线播放app| 尾随美女入室| 五月伊人婷婷丁香| 美女内射精品一级片tv| 成人美女网站在线观看视频| 欧美一区二区精品小视频在线| 亚洲熟妇中文字幕五十中出| 在线免费观看不下载黄p国产| 免费一级毛片在线播放高清视频| av天堂在线播放| 综合色av麻豆| 久久精品国产亚洲网站| 人妻制服诱惑在线中文字幕| 免费av毛片视频| 国模一区二区三区四区视频| 极品教师在线视频| 一个人看视频在线观看www免费| 91aial.com中文字幕在线观看| 欧美性感艳星| 久久久国产成人精品二区| 欧美激情国产日韩精品一区| 日韩制服骚丝袜av| 欧美xxxx黑人xx丫x性爽| 欧洲精品卡2卡3卡4卡5卡区| 免费观看在线日韩| 欧美一区二区国产精品久久精品| 亚洲一区高清亚洲精品| 久久久久久久久久久免费av| 深夜精品福利| 秋霞在线观看毛片| 国产伦理片在线播放av一区 | 亚洲人与动物交配视频| 亚洲在久久综合| 97人妻精品一区二区三区麻豆| 久久综合国产亚洲精品| 亚洲国产精品久久男人天堂| 免费观看在线日韩| 淫秽高清视频在线观看| 欧美3d第一页| 国语自产精品视频在线第100页| 男女做爰动态图高潮gif福利片| 午夜福利在线观看吧| 99久久成人亚洲精品观看| av天堂中文字幕网| 九色成人免费人妻av| 乱系列少妇在线播放| 国产成人午夜福利电影在线观看| 人人妻人人澡欧美一区二区| а√天堂www在线а√下载| 中文字幕制服av| 亚洲经典国产精华液单| 国产成人精品婷婷| 啦啦啦啦在线视频资源| 网址你懂的国产日韩在线| 日韩制服骚丝袜av| 成人av在线播放网站| 午夜视频国产福利| 在线观看一区二区三区| 午夜福利在线观看吧| 亚洲av成人精品一区久久| 欧美精品一区二区大全| 超碰av人人做人人爽久久| 如何舔出高潮| 婷婷精品国产亚洲av| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 99久久九九国产精品国产免费| 久久久成人免费电影| 国产亚洲精品久久久com| 国产探花在线观看一区二区| 美女大奶头视频| 欧美成人a在线观看| 久久久a久久爽久久v久久| 亚洲成人久久性| 97在线视频观看| 麻豆精品久久久久久蜜桃| 日本熟妇午夜| 亚洲av成人av| 男人狂女人下面高潮的视频| 午夜福利在线观看免费完整高清在 | 狂野欧美白嫩少妇大欣赏| 久久亚洲国产成人精品v| 哪个播放器可以免费观看大片| 亚洲国产精品成人综合色| 精品人妻一区二区三区麻豆| 中文亚洲av片在线观看爽| 国产午夜精品久久久久久一区二区三区| 一级二级三级毛片免费看| 春色校园在线视频观看| 可以在线观看毛片的网站| 亚洲真实伦在线观看| av视频在线观看入口| 精品人妻一区二区三区麻豆| 亚洲精品自拍成人| 18禁在线无遮挡免费观看视频| 久久人妻av系列| 国内少妇人妻偷人精品xxx网站| 欧美性感艳星| 国产 一区 欧美 日韩| ponron亚洲| 欧美一区二区亚洲| 国产大屁股一区二区在线视频| 两个人的视频大全免费| 青青草视频在线视频观看| 亚洲美女搞黄在线观看| 亚洲一区二区三区色噜噜| 欧美性猛交黑人性爽| 国产一级毛片在线| 12—13女人毛片做爰片一| 久久久精品欧美日韩精品| 99久国产av精品| 变态另类成人亚洲欧美熟女| 色综合站精品国产| 免费黄网站久久成人精品| 夜夜看夜夜爽夜夜摸| 久久久久久国产a免费观看| 美女高潮的动态| 久久久久久久久久久免费av| 亚洲精品国产成人久久av| 成人亚洲精品av一区二区| 日本-黄色视频高清免费观看| 综合色av麻豆| 久久久a久久爽久久v久久| 久久欧美精品欧美久久欧美| 97热精品久久久久久| 联通29元200g的流量卡| 搡女人真爽免费视频火全软件| 午夜免费激情av| 中文字幕av在线有码专区| 少妇被粗大猛烈的视频| 久99久视频精品免费| 亚洲在久久综合| 我的女老师完整版在线观看| 干丝袜人妻中文字幕| 免费av不卡在线播放| 色哟哟·www| 男人狂女人下面高潮的视频| 国产爱豆传媒在线观看| 久久6这里有精品| 精品久久久噜噜| 国产亚洲5aaaaa淫片| 99九九线精品视频在线观看视频| 日本三级黄在线观看| 我的老师免费观看完整版| 一级二级三级毛片免费看| 尤物成人国产欧美一区二区三区| 久久99精品国语久久久| 日本欧美国产在线视频| 欧美不卡视频在线免费观看| 成人特级av手机在线观看| 九九爱精品视频在线观看| 国内少妇人妻偷人精品xxx网站| 91在线精品国自产拍蜜月| 久久久a久久爽久久v久久| 久久热精品热| 国产精品久久久久久av不卡| 尾随美女入室| 国产亚洲91精品色在线| 中文字幕免费在线视频6| 精品一区二区三区人妻视频| 18禁在线无遮挡免费观看视频| 亚洲av中文字字幕乱码综合| 久久精品国产清高在天天线| 国产一级毛片在线| 亚洲av中文av极速乱| 亚洲五月天丁香| 成人欧美大片| 我的女老师完整版在线观看| 如何舔出高潮| 欧美精品一区二区大全| 一本久久中文字幕| 看十八女毛片水多多多| 一级毛片久久久久久久久女| 精品久久久久久久人妻蜜臀av| 日韩精品有码人妻一区| 国产成人aa在线观看| 老熟妇乱子伦视频在线观看| 舔av片在线| 日韩欧美国产在线观看| 在线观看一区二区三区| 欧美3d第一页| 我的老师免费观看完整版| 岛国在线免费视频观看| 99精品在免费线老司机午夜| 久久中文看片网| 色视频www国产| 你懂的网址亚洲精品在线观看 | 国产精品久久久久久久久免| 男人舔奶头视频| 久久午夜福利片| 欧美高清成人免费视频www| 精品一区二区免费观看| 午夜福利成人在线免费观看| 久久99蜜桃精品久久| 日本一二三区视频观看| 老熟妇乱子伦视频在线观看| 观看美女的网站| 99热这里只有是精品50| 国产精品久久久久久精品电影| 日本撒尿小便嘘嘘汇集6| 久久精品91蜜桃| 午夜亚洲福利在线播放| 国产av麻豆久久久久久久| 亚洲成人中文字幕在线播放| 一级黄片播放器| 夜夜看夜夜爽夜夜摸| 日本爱情动作片www.在线观看| 国产色婷婷99| 久久久久久久久久黄片| 晚上一个人看的免费电影| 边亲边吃奶的免费视频| 男人的好看免费观看在线视频| 亚洲在久久综合| 国产成人福利小说| 天堂网av新在线| 久久精品国产自在天天线| 国产成人aa在线观看| 九九在线视频观看精品| 卡戴珊不雅视频在线播放| 中文字幕av在线有码专区| 亚洲一级一片aⅴ在线观看| 晚上一个人看的免费电影| 亚洲精品自拍成人| 精品人妻熟女av久视频| 悠悠久久av| 欧美成人一区二区免费高清观看| 成人高潮视频无遮挡免费网站| 国国产精品蜜臀av免费| 久久人妻av系列| 色噜噜av男人的天堂激情| 99热全是精品| 男女啪啪激烈高潮av片| 美女cb高潮喷水在线观看| 日本熟妇午夜| 校园人妻丝袜中文字幕| 日韩成人伦理影院| 成人特级av手机在线观看| 十八禁国产超污无遮挡网站| 久久久久久伊人网av| 亚洲欧美精品综合久久99| 中文字幕av成人在线电影| 国产亚洲精品久久久com| 免费无遮挡裸体视频| 青春草亚洲视频在线观看| 99精品在免费线老司机午夜| 黑人高潮一二区| 99热这里只有精品一区| 欧美日韩精品成人综合77777| 国产麻豆成人av免费视频| 欧美三级亚洲精品| 男人的好看免费观看在线视频| 少妇高潮的动态图| 舔av片在线| 国产av麻豆久久久久久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 午夜福利在线在线| 国产成人aa在线观看| 午夜福利在线观看免费完整高清在 | 欧美日本视频| 久久久久久大精品| 亚洲三级黄色毛片| 国产av不卡久久| 国产在视频线在精品| 黄片wwwwww| 麻豆精品久久久久久蜜桃| 国内少妇人妻偷人精品xxx网站| 男人的好看免费观看在线视频| 伦理电影大哥的女人| 日本免费a在线| 国产午夜精品一二区理论片| 九九热线精品视视频播放| 啦啦啦观看免费观看视频高清| 久久久久久久久大av| 蜜桃久久精品国产亚洲av| 亚洲自拍偷在线| 精品无人区乱码1区二区| 两个人的视频大全免费| 国产片特级美女逼逼视频| 一级黄色大片毛片| 成人无遮挡网站| 网址你懂的国产日韩在线| 69人妻影院| 亚洲无线观看免费| 少妇裸体淫交视频免费看高清| 欧美变态另类bdsm刘玥| a级毛片免费高清观看在线播放| 精品国内亚洲2022精品成人| 国产成人福利小说| 国产激情偷乱视频一区二区| 一边亲一边摸免费视频| 99精品在免费线老司机午夜| АⅤ资源中文在线天堂| 一级毛片aaaaaa免费看小| 日韩欧美三级三区| 亚洲在线观看片| 99久久中文字幕三级久久日本| 高清毛片免费看| 欧美日韩精品成人综合77777| 性欧美人与动物交配| 国产亚洲5aaaaa淫片| 少妇人妻精品综合一区二区 | 国产亚洲精品久久久com| 人体艺术视频欧美日本| 免费观看的影片在线观看| av天堂中文字幕网| 最近手机中文字幕大全| 国产午夜福利久久久久久| 性色avwww在线观看| 成人亚洲欧美一区二区av| 精品久久久久久久末码| 欧美最新免费一区二区三区| 18禁裸乳无遮挡免费网站照片| 国产精品一区二区在线观看99 | 国产精品久久久久久精品电影| 色播亚洲综合网| 色综合色国产| 天天躁日日操中文字幕| 人体艺术视频欧美日本| 日本欧美国产在线视频| 欧美一区二区精品小视频在线| 老司机影院成人| 不卡一级毛片| 国产美女午夜福利| 此物有八面人人有两片| 成人鲁丝片一二三区免费| 国产av在哪里看| 青春草国产在线视频 | 国产真实乱freesex| 12—13女人毛片做爰片一| 国产淫片久久久久久久久| 悠悠久久av| av女优亚洲男人天堂| 欧美精品一区二区大全| 人妻少妇偷人精品九色| 亚洲av中文av极速乱| 久久精品国产亚洲网站| 成人三级黄色视频| 高清毛片免费看| 精品一区二区免费观看| 久久久久久久亚洲中文字幕| 国产成人福利小说| 在线播放无遮挡| 免费看美女性在线毛片视频| www.av在线官网国产| 搡老妇女老女人老熟妇| 黄色日韩在线| 亚洲欧美清纯卡通| 成人毛片60女人毛片免费| 亚洲国产精品成人久久小说 | 午夜福利成人在线免费观看| 国产蜜桃级精品一区二区三区| 精品人妻一区二区三区麻豆| 波多野结衣高清作品| 成人美女网站在线观看视频| 国国产精品蜜臀av免费| 欧美日韩国产亚洲二区| 国产黄片视频在线免费观看| 国语自产精品视频在线第100页| 一区二区三区免费毛片| 身体一侧抽搐| 少妇熟女欧美另类| 91av网一区二区| 欧美极品一区二区三区四区| av免费在线看不卡| 成人一区二区视频在线观看| 亚洲精品国产成人久久av| 日日摸夜夜添夜夜添av毛片| 最近中文字幕高清免费大全6| 岛国毛片在线播放| 91在线精品国自产拍蜜月| 97超碰精品成人国产| 国产精品一及| 成人亚洲精品av一区二区| 亚洲一区二区三区色噜噜| 国产精品爽爽va在线观看网站| 国产精品蜜桃在线观看 | 在线免费观看的www视频| 国产精品蜜桃在线观看 | 国产精品精品国产色婷婷| 99热这里只有精品一区| 午夜精品一区二区三区免费看| 亚洲精品日韩在线中文字幕 | 91狼人影院| 中文字幕熟女人妻在线| 波多野结衣巨乳人妻| 国产成年人精品一区二区| 国产乱人偷精品视频| 久久精品夜夜夜夜夜久久蜜豆| 欧美成人免费av一区二区三区| 亚洲乱码一区二区免费版| 青春草国产在线视频 | 日本av手机在线免费观看| 麻豆一二三区av精品| 国产黄a三级三级三级人| 国产在视频线在精品| 男女下面进入的视频免费午夜| 男人狂女人下面高潮的视频| 亚洲高清免费不卡视频| 亚洲人成网站高清观看| 男女做爰动态图高潮gif福利片| 女人被狂操c到高潮| 国产三级中文精品| 久久九九热精品免费| .国产精品久久| 两个人视频免费观看高清| 亚洲性久久影院| 国产一区二区亚洲精品在线观看| 老师上课跳d突然被开到最大视频| 男人舔女人下体高潮全视频| 日本撒尿小便嘘嘘汇集6| 久久热精品热| 一本一本综合久久| 女同久久另类99精品国产91| 日日摸夜夜添夜夜爱| 日韩成人伦理影院| 九九热线精品视视频播放| 成人欧美大片| 国产一区亚洲一区在线观看| 直男gayav资源| 欧洲精品卡2卡3卡4卡5卡区| 日日啪夜夜撸| 麻豆国产av国片精品| av福利片在线观看| 国产黄片视频在线免费观看| 成人午夜精彩视频在线观看| 精华霜和精华液先用哪个| 国产成人a∨麻豆精品| 三级经典国产精品| 老司机影院成人| av在线亚洲专区| 国产精品,欧美在线| 午夜精品在线福利| 日本三级黄在线观看| www.色视频.com| 亚洲图色成人| 91av网一区二区| 欧美丝袜亚洲另类| 欧美日韩综合久久久久久| 亚洲五月天丁香| 亚洲色图av天堂| 综合色丁香网| kizo精华| 欧美性猛交黑人性爽| 精品国内亚洲2022精品成人| 国产成年人精品一区二区| 国内精品久久久久精免费| 草草在线视频免费看| 亚洲精品乱码久久久v下载方式| 国产成人91sexporn| 亚洲在线自拍视频| 亚洲av免费在线观看| 女人被狂操c到高潮| 久久99精品国语久久久| 国产精品一二三区在线看| 久久人人精品亚洲av| 国产精品蜜桃在线观看 | 嫩草影院新地址| 老熟妇乱子伦视频在线观看| 久久6这里有精品| 成人午夜精彩视频在线观看| 国产精品精品国产色婷婷| 欧美日本视频| 亚洲av第一区精品v没综合| 成人高潮视频无遮挡免费网站| 深爱激情五月婷婷| 97超碰精品成人国产| 偷拍熟女少妇极品色| 亚洲国产精品合色在线| 卡戴珊不雅视频在线播放| 国产熟女欧美一区二区| 国产片特级美女逼逼视频| 大型黄色视频在线免费观看| 毛片女人毛片| 精品人妻偷拍中文字幕| 久久精品夜色国产| 又粗又爽又猛毛片免费看| 国产精品一二三区在线看| 中文欧美无线码| www.色视频.com| 国产综合懂色| 国产国拍精品亚洲av在线观看| 在线国产一区二区在线| 免费大片18禁| 99久久九九国产精品国产免费| 亚洲精品久久国产高清桃花| 熟女电影av网| 亚洲va在线va天堂va国产| 男的添女的下面高潮视频| 日韩 亚洲 欧美在线| 成人毛片a级毛片在线播放| 给我免费播放毛片高清在线观看| 日本-黄色视频高清免费观看| 熟女人妻精品中文字幕| 亚洲自拍偷在线| 九九爱精品视频在线观看| 深夜精品福利| 午夜免费男女啪啪视频观看| 哪里可以看免费的av片| 18+在线观看网站| 久久6这里有精品| 久久久久久久久久久免费av| 春色校园在线视频观看| 国产精品综合久久久久久久免费| 人妻少妇偷人精品九色| 亚洲精品自拍成人| 极品教师在线视频| 91麻豆精品激情在线观看国产| 天堂影院成人在线观看| 五月玫瑰六月丁香| 国产伦精品一区二区三区四那| 观看美女的网站| 欧美区成人在线视频| 给我免费播放毛片高清在线观看| 看免费成人av毛片| av卡一久久| 国产熟女欧美一区二区| 亚洲欧美中文字幕日韩二区| 亚洲精品日韩在线中文字幕 | 色哟哟哟哟哟哟| 熟女人妻精品中文字幕| 国产 一区精品| 欧美另类亚洲清纯唯美| 国产高清视频在线观看网站| 国产伦理片在线播放av一区 | av专区在线播放| 日韩成人av中文字幕在线观看| 亚洲av二区三区四区| 性插视频无遮挡在线免费观看| 全区人妻精品视频| 非洲黑人性xxxx精品又粗又长| 精华霜和精华液先用哪个| 亚洲人成网站在线播| 成人国产麻豆网| 亚洲第一电影网av| 亚洲精品色激情综合| 精品久久久久久久人妻蜜臀av| 亚洲av一区综合| 人人妻人人澡人人爽人人夜夜 | 国产高清不卡午夜福利| 精品欧美国产一区二区三| 亚洲精品乱码久久久久久按摩| 一级av片app| 国产精品久久久久久精品电影| 成人综合一区亚洲| 我要看日韩黄色一级片| 大香蕉久久网| 给我免费播放毛片高清在线观看| 91午夜精品亚洲一区二区三区| 国产单亲对白刺激| 国产精品久久久久久精品电影| 联通29元200g的流量卡| 久久草成人影院| 精品久久国产蜜桃| 亚洲人成网站在线播放欧美日韩| 国产精品久久久久久久久免| 欧美一区二区国产精品久久精品| 熟女电影av网| 亚洲av电影不卡..在线观看| 嫩草影院精品99| 日本-黄色视频高清免费观看| 中文字幕免费在线视频6| 我要看日韩黄色一级片| 三级国产精品欧美在线观看| 亚洲精品乱码久久久v下载方式| 深爱激情五月婷婷| 欧美精品一区二区大全| 级片在线观看| 日日干狠狠操夜夜爽| 男女啪啪激烈高潮av片| 久久久久久久亚洲中文字幕| 国产成人a∨麻豆精品| 黄片无遮挡物在线观看| a级一级毛片免费在线观看|