• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Monitoring of PON System Using Compound Surveillance Technique

    2015-11-18 10:11:49SunChienKoHsiuJungChuangSiChongChenChihYihWangandShengFwuLin

    Sun-Chien Ko, Hsiu-Jung Chuang, Si-Chong Chen, Chih-Yih Wang, and, Sheng-Fwu Lin

    Monitoring of PON System Using Compound Surveillance Technique

    Sun-Chien Ko, Hsiu-Jung Chuang, Si-Chong Chen, Chih-Yih Wang, and, Sheng-Fwu Lin

    —A passive optical network (PON)monitoring system combined light pulse and frequency sweep techniques is proposed and verified in a field test. The light pulse surveys over the all whole network and the frequency sweep are used to investigate any fault in the link. The field test is performed with 4 PONs. Each PON is monitored at 4 ports, one is the splitter port and the other three are arbitrary chosen multiple optical units (ONUs). All the tested PONs are monitored in turns once per hour. Faults at the feeder and branch fiber have been observed in this field test and have been analyzed with the monitoring system.

    Index Terms—Frequency sweep, light pulse, passive optical network monitoring system.

    1. Introduction

    Passive optical networks (PONs) are the main architecture that plays an essential role in broadband optical access networks. The PON is a type of tree structure, which connects an optical line terminal (OLT) at the central office (CO) and multiple optical units (ONUs)at different residential customer locations by using a passive branch device. This device located in the remote node (RN) makes a single point PON to be shared by many subscribers. To operate the PON requires a cost effective monitoring means for troubleshooting faults in the networks[1]-[3].

    The most common method currently used in PON monitoring is to apply a light pulse technique. It is designed by exploiting backscattered and back-reflected light returning from the fiber when probing it with a laser pulse, and is regarded as a power tool to monitor an optical fiber link. However, there are some limitations of this technique in PON measurement. The tree-structured PON contains power splitter components with high insertion loss which lead to a serious drop in measurement resolution. A simple way to improve the dynamic range of the light pulse technique is to introduce a high reflective device (HRD) at the end of each branch[4],[5]. The HRD is designed to highly reflected monitor light and is transparent in transmission light. It can assist to detect effectively the presence and height variation of reflection peaks at the central office (CO). The location of optical reflector is also be used as an auxiliary reference to identify each branch fiber. The spatial resolution of the light pulse technique is dependent on narrowing the light pulse width. The narrow pulse width requires a wide receiver bandwidth, which leads to increase receiver noise and to cause a reduction in receiver sensitivity[4],[6]. The dead zone is another limit detective factor during measurement using the light pulse technique, the reflective event of power splitter in a PON structure often causes a long dead zone where a subsequent event cannot be detected. Though decreasing the pulse width is beneficial to decrease the dead zone distance and improve measurement resolution, it will cause the difficulty to see through the power splitter by using such small pulse lights.

    Monitoring solutions based on frequency sweep rather than the light pulse technique is well known in the literature[7]-[10]. It is an alternative approach to detect faults in PON, In PON monitoring using the frequency sweep technique, a monitoring light source whose frequency is changed linearly and periodically with respect to time is used. The modulated light is launched into the network as monitoring light. It travels around the test fiber and is reflected back to the receiver located at the transmission end. The receiver detects the reflective monitoring light and converts it into an electrical signal. The original frequency modulating signal and reflective monitoring electrical signal are contrasted each other by means of an electrical spectrum analyzer. The reflective events in PON return a portion of monitoring light back to the receiver with a finite time delay which is proportional to the location of the reflective event. Therefore, the location of the reflective event can be identified by frequency difference. The frequency sweep technique has the particular advantages in fiber measurement[11]. First, no dead zone is observed in fiber measurement due to no receiver saturation. Second, the receiver bandwidth is lower compared to the light pulse technique that results inreducing the noise level and increasing the dynamic range. Finally, the current detected by receiver is proportional to the square of reflected optical power which permits to measure signals with large amplitude difference. It is considered that this technique is appropriate for detection of discrete reflections, but not for the backscatters[12].

    In this study, we take advantages of both techniques and combine them to propose a PON monitoring method. The monitoring light source is designed to operate under light pulse and frequency sweep two modes. The light pulse mode is used to over all survey the whole network and to find any reflective event in the link. Then the event to draw attention will be investigated in more detail with the frequency sweep mode for cause analysis such as bends,cracks, fiber misalignment, mismatch, dirty connections,etc. In Section 2, we depict the architectures of the PON monitoring system using these techniques. The developed system is installed in the PON network for the field tested experiment. The latest monitoring results are presented in Section 3. Section 4 concludes the study with final remark.

    Fig.1. Architecture of the PON monitoring system based on light pulse and frequency sweep techniques.

    2. PON Monitoring Architecture

    The architecture of the PON monitoring system based on light pulse and frequency sweep techniques is shown in Fig. 1. The main system is located and monitored in CO. In this architecture, a router selector connects many PON networks with wavelength division multiplexing (WDM)components and can change the monitoring PON route through switching under the control unit. The service signal from OLT and the monitoring signal are combined in WDM components, these signals are fed in a feeder fiber through a power splitter to ONUs. The monitored ONU has a high reflective device (HRD) installed at the end of branch fiber. The optical reflector is designed to highly reflect the monitor signal and be transparent in the service signal. It can assist to detect effectively the presence and height variation of reflection monitoring peak in the CO. The monitoring signal is produced from the light source,which can be operated alternatively under light pulse and frequency sweep modes. The monitoring signal is transmitted through an optical circulator to survey the whole PON network, and will be reflected it by HRD. The reflected monitoring signal is along the original route back to the optical circulator. The photo-detector receives the reflected signal from the end of optical circulator and takes the responsibility for the transformation of the electro-optical signal and the test of signal power examination. The converted electrical signals are transmitted to the signal processing unit for further processing. For the light plus signal, the intensity of the reflected pulses is integrated as a function of time and is plotted as a function of fiber length. These data are used for detecting events and estimating attenuations in overall fibers. For the frequency sweep signal, it is transmitted to a band pass filter and is used to filter the monitoring-required signal. The mixer makes the reflected and transmitted signals produce the beat respond due to the different distances, as shown in Fig. 2. Then the low-pass filter filters out the high frequency noise, the signal processing unit analyzes the frequency spectrum to obtain the steady beat note and the optical power value.

    Fig. 2. Beat respond due to the distance difference between transmitted and reflected monitoring signals.

    A control unit calculates the beat note and the corresponding reflected optical power value. Since each distance between the HRD and OLT is different, therefore the beat produced due to interfering from the abovementioned distance difference is also different. By analyzing the different beat note signals and comparing the provisioning data of the optical fiber network, the latest status of the whole optical fiber router is obtained. When there is a fault on PON, the optical power test value is declined and the beat is changed, which provides a basis for the following alert and handling.

    3. Field Trial Results

    To assess the performance of the presented PON monitoring system, the monitoring architecture described as in Section 2 was installed and four realistic PONs were used for this field test from September, 2013 to now. The OLT of tested PONs were placed at the CO of Taoyuan, the remote node (RN) was put in an outside cabinet with a 2:32 splitter, and the multiple OUNs were located at the customer sides. One splitter port and three arbitrary chose ONUs connected HRD for this monitoring test at each PON.

    All the tested PONs are measured in turns once per hour. The monitoring results are recorded in database for data processing and analyzing. The latest network status is displayed in the monitoring windows of the control unit, as shown in Fig. 3; it helps the network operator to view any occurrence of fault in PON. When problems are detected,the measured trace can be observed by clicking the related PON in the monitoring windows for further diagnose. The useful information provides that technicians can rapidly restore failed services, hence increasing the PON reliability and improving the efficiency of network maintenance.

    Fig. 3. Network status shown in monitoring windows.

    Fig. 4 shows the typical measured trace that obtained from the field test PON. Curve A is the trace of the reflected light pulse under performing at 1625 nm using a 100 ns optical pulse. From the PON trace, one can observe the large insertion loss characteristic of the splitter and HRD reflection peaks at the branch. Curve B is the trace of interference of frequency sweep that focus on HRD reflection peaks. It displays clearly the positions of HRD and the link loss. When the HRD is installed, a faultless trace is measured and is recorded in the database of the control unit as a reference. A fault would be judged whenever a difference appears in the link loss and goes beyond the detection line (marked as the heavy line in red),compared with the reference.

    Fig. 4. Measured trace of field tested PON.

    The variation of the HRD reflection peak exhibits the information about the kind of fiber fault: a peak disappearance indicates a fiber break, and a height variation can be caused by a loss in fibers. The time trace of height variation in the long observation can provide the prediction of network quality. Precautions will be taken early to reduce the service restoration times of offline troubleshooting and improve the quality of service.

    Fig. 5 and Fig. 6 show the fiber fault cases that were ever detected by the PON monitoring system in this field experiment. The variations of HRD reflection intensities versus time are shown in Fig. 5 (a). From the observed time trace, the light intensity decreases in the PON of 4 monitoring ports at the same time. Fig. 5 (b) is the measured monitoring trace of the PON. it can be seen that the intensity of HRD reflection peaks are all below the detection line. It can be deduced that the fault occurs at one point in the feeder fiber from those evidences, according as all functions of network are affected behind the fault point. In order to confirm this deduction, the location of loss fault in the feeder fiber can be found by discriminating the difference of light pulse trace between the fault one and the reference one. Comparatively, the fault occurs at one point in the branch fiber, only this branch of the PON will be affected and the provided services are disrupted. Fig. 6 (a)and Fig. 6 (b) show an HRD reflection peak disappeared in the monitoring trace and the time trace.

    It is an obvious break fault at the branch fiber case, and the time of fault can be gotten from the time trace curve. The break fault location at the branch fiber is impossible to detect accurately, since all reflective lights from the branch fiber are added together at the RN by the power splitter,thereby making the monitoring system difficult to differentiate among them. Only if there is just one fault after the splitter, it will likely to determine this branch fiber fault location by analyzing the fault traces.

    Fig. 5. Fault at feeder fiber: (a) time trace of refection intensity from HRD and (b) measured monitoring trace of PON for a fault at feeder fiber.

    Fig. 6. Fault at distributed fiber: (a) time trace of refection intensity from HRD and (b) measured monitoring trace of PON.

    4. Conclusions

    A PON monitoring system based on light pulse and frequency sweep techniques has been demonstrated in a field test. One light source of this system is designed to operate both surveillance techniques. The design is very attractive because of its low cost and simplicity. It provided the capabilities of overall fiber route survey and particular events investigation. Two fiber fault cases observed during the field test verified the monitoring performance of system. The useful information from the monitoring measurement is potential for improving the service reliability and reducing the troubleshooting time and maintenance cost.

    [1] M. A. Esmail and H. Fathallah, “Physical layer monitoring techniques for TDM-passive optical networks: A survey,”IEEE Commun. Surveys & Tutorials, vol. 15, vol. 2, pp. 943-958, 2013.

    [2] M. M. Rad, K. Fouli, H. A. Fathallah, et al., “Passive optical network monitoring: challenges and requirements,” IEEE Commun. Magazine, vol. 49, no. 2, pp. s45-s52, 2011.

    [3] M. S. Ab-Rahman, N. B. Chuan, M. H. G. Safnal, et al.,“The overview of fiber fault localization technology in TDM-PON network,” in Proc. of Int. Conf. on Electronic Design, 2008, pp. 1-8.

    [4] Y. Enomto, H. Izumita, and M. Nakamura, “Over 31.5 dB dynamic range optical fiber testing system with optical fiber fault isolation function for 32-branched PON,” in Proc. of Optical Fiber Commun. Conf., 2003, pp. 608-610.

    [5] F. Caviglia and V. C. Di Biase, “Optical maintenance in PONs,” in Proc. of European Conf. on Optical Commun.,1998, pp. 621-625.

    [6] C. F. Lm, Passive Optical Networks Principles and Practice,Amsterdam: Elsevier, 2007, ch. 7.

    [7] K. Yuksel, M. Wuilpart, V. Moeyaert, and P. Mégret “Optical frequency domain reflectometry: A review,” in Proc. of Int. Conf. on Transparent Optical Networks, 2009, pp. 1-5.

    [8] J. Nakayama, K. Iizuka, and J. Nielsen “Optical fiber locator by the step frequency method,” Applied Optics, vol. 26, no. 3, pp. 440-443, 1987.

    [9] D. Dolfi, M. Nazarathy and S. A. Newton, “5-mmresolution optical-frequency-domain reflectometry using a coded phase-reversal modulator,” Optics Letters, vol. 13, no. 8, pp. 678-680, 1988.

    [10] H. G. Shiraz and T. Okoshi, “Fault Location in Optical Fibers using Optical Frequency Domain Reflectometry,”Journal of Lightwave Technology, vol. 4, no. 3, pp. 316-322,1986.

    [11] D. Derickson, Fiber Optic Test and Measurement, New York: Prentice Hall PRT, 1998.

    [12] J. W. Verhoof, “New method of in-service fault location in passive optical subscriber loops,” Electronics Letters, vol. 28, no. 11, pp. 1059-1061, 1992.

    Sun-Chien Ko was born in 1962. He received the Ph.D. degree in material science and engineering from Tsing Hua University,Hsinchu in 2003. He joined Telecommunication Laboratories, Chunghwa Telecom Co., Ltd., in 1993, and since then,he has been engaged in broadband network monitoring research and development.

    Hsiu-Jung Chuang was born in 1958. He received the M.E. degree in chemical engineering from Cheng Kung University,Tainan in 1983. He joined Telecommunication Laboratories, Chunghwa Telecom Co., Ltd., in 1983. Since then, he has been engaged in broadband network monitoring research and development.

    Si-Chong Chen was born in 1956. He received the M.E. degree in chemical engineering from Tsing Hua University,Hsinchu in 1991. He joined Telecommunication Laboratories, Chunghwa Telecom Co., Ltd., in 1984. Since then, he has been engaged in broadband network monitoring research and development.

    Chih-Yih Wang was born in 1966. He received the M.E. degree in optical and photonics engineering from Central University,Taoyuan in 1992. He joined Telecommunication Laboratories, Chunghwa Telecom Co., Ltd., in 1992. Since then, he has been engaged in broadband network monitoring research and development. He is currently an assistant project manager.

    Sheng-Fwu Lin was born in 1958. He received the M.E. degree in hydraulic and ocean engineering from Cheng Kung University, Tainan in 1983. He joined Telecommunication Laboratories, Chunghwa Telecom Co., Ltd., in 1985. Since then, he has been engaged in broadband network monitoring research and development. He is currently a project manager.

    Manuscript received November 11, 2014; revised January 24, 2015.

    S.-C. Ko is with the Telecommunication Laboratories, Chunghwa Telecom Co., Ltd., Taoyuan 32601 (Corresponding author e-mail: ko3838@cht.com.tw).

    H.-J. Chuang, S.-C. Chen, C.-Y. Wang, and S.-F. Lin are with the Telecommunication Laboratories, Chunghwa Telecom Co., Ltd., Taoyuan 32601 (e-mail: ch466@cht.com.tw; sea@cht.com.tw; halolo@cht.com.tw;sflin@cht.com.tw).

    Digital Object Identifier: 10.3969/j.issn.1674-862X.2015.02.015

    www.999成人在线观看| 欧美日韩综合久久久久久| 免费在线观看完整版高清| 亚洲精品一卡2卡三卡4卡5卡 | 80岁老熟妇乱子伦牲交| 中文乱码字字幕精品一区二区三区| 国产亚洲午夜精品一区二区久久| 亚洲黑人精品在线| 1024视频免费在线观看| 中文字幕人妻丝袜制服| 女人久久www免费人成看片| 悠悠久久av| 精品高清国产在线一区| 久久久精品94久久精品| www.熟女人妻精品国产| 七月丁香在线播放| 日韩中文字幕视频在线看片| 一本色道久久久久久精品综合| 亚洲精品乱久久久久久| 成人国语在线视频| 18禁裸乳无遮挡动漫免费视频| 成人国产av品久久久| av电影中文网址| 人人妻人人澡人人看| 免费观看a级毛片全部| 欧美日韩一级在线毛片| 观看av在线不卡| 99精品久久久久人妻精品| 国产国语露脸激情在线看| 亚洲欧美成人综合另类久久久| 最黄视频免费看| 一区在线观看完整版| 国产精品成人在线| 欧美亚洲 丝袜 人妻 在线| 婷婷色麻豆天堂久久| 丝袜人妻中文字幕| 十八禁人妻一区二区| 后天国语完整版免费观看| 中文欧美无线码| 久久精品成人免费网站| 天天操日日干夜夜撸| 一级片免费观看大全| 日韩av在线免费看完整版不卡| 欧美在线一区亚洲| 欧美在线一区亚洲| 一级片免费观看大全| 日韩人妻精品一区2区三区| 亚洲成人国产一区在线观看 | 又大又黄又爽视频免费| 中文欧美无线码| 99香蕉大伊视频| 别揉我奶头~嗯~啊~动态视频 | 最新在线观看一区二区三区 | 女人精品久久久久毛片| 久久性视频一级片| 这个男人来自地球电影免费观看| 亚洲精品自拍成人| 久久天躁狠狠躁夜夜2o2o | 女人爽到高潮嗷嗷叫在线视频| 国语对白做爰xxxⅹ性视频网站| 午夜91福利影院| 色播在线永久视频| 精品卡一卡二卡四卡免费| 国产免费一区二区三区四区乱码| 99久久99久久久精品蜜桃| 国产成人精品久久二区二区免费| 丝袜美足系列| 国产成人a∨麻豆精品| 99久久99久久久精品蜜桃| 又黄又粗又硬又大视频| a级毛片黄视频| 老司机深夜福利视频在线观看 | 一区二区三区乱码不卡18| 国产视频首页在线观看| 一级毛片电影观看| 国产高清国产精品国产三级| 两个人看的免费小视频| 熟女少妇亚洲综合色aaa.| 一本色道久久久久久精品综合| 亚洲伊人久久精品综合| 亚洲av男天堂| 国产精品人妻久久久影院| 成人国语在线视频| 最新在线观看一区二区三区 | 亚洲欧美一区二区三区久久| 丰满少妇做爰视频| 亚洲成人手机| 一本综合久久免费| 一本综合久久免费| 女性被躁到高潮视频| 成年人午夜在线观看视频| 国产精品一二三区在线看| 美女视频免费永久观看网站| 亚洲国产成人一精品久久久| 韩国精品一区二区三区| 久久精品国产a三级三级三级| 巨乳人妻的诱惑在线观看| 两个人免费观看高清视频| 午夜福利乱码中文字幕| 久久亚洲精品不卡| 久久久欧美国产精品| 日韩 欧美 亚洲 中文字幕| 亚洲第一av免费看| 80岁老熟妇乱子伦牲交| 免费在线观看完整版高清| 国产欧美亚洲国产| 国产在线免费精品| 51午夜福利影视在线观看| 女人久久www免费人成看片| 国产一区二区三区综合在线观看| 国产在线免费精品| 肉色欧美久久久久久久蜜桃| 精品福利永久在线观看| 欧美日韩成人在线一区二区| 嫁个100分男人电影在线观看 | 欧美日韩精品网址| 天堂俺去俺来也www色官网| av线在线观看网站| 亚洲第一av免费看| 久久亚洲国产成人精品v| 国产精品九九99| 免费观看人在逋| 久久久亚洲精品成人影院| 麻豆av在线久日| 亚洲天堂av无毛| 又大又黄又爽视频免费| 免费不卡黄色视频| 高清av免费在线| 男女国产视频网站| 久久热在线av| 50天的宝宝边吃奶边哭怎么回事| 91精品国产国语对白视频| 亚洲精品日本国产第一区| 黄网站色视频无遮挡免费观看| 中文字幕亚洲精品专区| 亚洲精品一区蜜桃| 天天影视国产精品| 赤兔流量卡办理| 精品人妻熟女毛片av久久网站| 亚洲第一青青草原| a级片在线免费高清观看视频| 久久亚洲精品不卡| 亚洲,欧美,日韩| 久久鲁丝午夜福利片| 欧美日本中文国产一区发布| 在线精品无人区一区二区三| 老汉色av国产亚洲站长工具| 亚洲久久久国产精品| av视频免费观看在线观看| 在线观看免费视频网站a站| 亚洲精品一二三| 女性生殖器流出的白浆| 国产伦人伦偷精品视频| 大香蕉久久网| 少妇裸体淫交视频免费看高清 | 一级黄色大片毛片| 侵犯人妻中文字幕一二三四区| 亚洲精品在线美女| 国产精品久久久久久精品古装| 成年av动漫网址| 97在线人人人人妻| 国产又爽黄色视频| 另类亚洲欧美激情| 久久久欧美国产精品| 成年人免费黄色播放视频| 久久女婷五月综合色啪小说| 久久中文字幕一级| 天堂中文最新版在线下载| 纵有疾风起免费观看全集完整版| 丝袜人妻中文字幕| 麻豆国产av国片精品| 国产麻豆69| 一本—道久久a久久精品蜜桃钙片| 成人三级做爰电影| xxxhd国产人妻xxx| 老司机深夜福利视频在线观看 | 亚洲av片天天在线观看| 国语对白做爰xxxⅹ性视频网站| 热99国产精品久久久久久7| 一级黄色大片毛片| 欧美 日韩 精品 国产| 国产在线观看jvid| 午夜福利,免费看| 国产av精品麻豆| a级毛片在线看网站| 99精品久久久久人妻精品| 国产男女内射视频| 久久综合国产亚洲精品| 日日爽夜夜爽网站| 国产成人精品久久二区二区免费| 一二三四在线观看免费中文在| 韩国高清视频一区二区三区| 亚洲图色成人| 精品国产一区二区三区四区第35| 中文字幕人妻丝袜一区二区| 最近中文字幕2019免费版| a级毛片在线看网站| 两性夫妻黄色片| 国产国语露脸激情在线看| 首页视频小说图片口味搜索 | 久久精品国产a三级三级三级| 久久国产精品男人的天堂亚洲| 蜜桃在线观看..| 免费观看av网站的网址| 成人手机av| 精品国产一区二区久久| 国产精品亚洲av一区麻豆| 日韩免费高清中文字幕av| 日日爽夜夜爽网站| 2021少妇久久久久久久久久久| 99热全是精品| 丝瓜视频免费看黄片| av视频免费观看在线观看| 日本黄色日本黄色录像| 亚洲七黄色美女视频| 久久精品亚洲av国产电影网| 国产精品秋霞免费鲁丝片| 中文精品一卡2卡3卡4更新| 国产视频首页在线观看| 久久99热这里只频精品6学生| 热99国产精品久久久久久7| 妹子高潮喷水视频| 美女中出高潮动态图| 黄色一级大片看看| 久久免费观看电影| 国产欧美日韩综合在线一区二区| 久久精品久久久久久噜噜老黄| 欧美中文综合在线视频| 免费在线观看日本一区| 色婷婷久久久亚洲欧美| 中文字幕亚洲精品专区| 国产日韩欧美在线精品| 1024香蕉在线观看| 国产亚洲精品久久久久5区| 69精品国产乱码久久久| √禁漫天堂资源中文www| 亚洲中文日韩欧美视频| 麻豆乱淫一区二区| 极品少妇高潮喷水抽搐| 赤兔流量卡办理| 国产有黄有色有爽视频| 麻豆国产av国片精品| 久久久久视频综合| 久久综合国产亚洲精品| 无限看片的www在线观看| 国产亚洲一区二区精品| 精品亚洲成国产av| www.av在线官网国产| 亚洲精品久久久久久婷婷小说| 又粗又硬又长又爽又黄的视频| 国产1区2区3区精品| 老司机在亚洲福利影院| 精品亚洲成a人片在线观看| 99re6热这里在线精品视频| 电影成人av| 老司机午夜十八禁免费视频| 国产99久久九九免费精品| 亚洲欧美日韩另类电影网站| 新久久久久国产一级毛片| 国产欧美日韩精品亚洲av| 精品福利永久在线观看| 日本wwww免费看| 久久精品久久精品一区二区三区| 曰老女人黄片| 男人舔女人的私密视频| 久久久欧美国产精品| 最近中文字幕2019免费版| 国产色视频综合| 精品欧美一区二区三区在线| 精品少妇内射三级| 亚洲欧美激情在线| 涩涩av久久男人的天堂| 亚洲,欧美,日韩| 国产黄色免费在线视频| 日本vs欧美在线观看视频| 精品高清国产在线一区| 飞空精品影院首页| 久久久欧美国产精品| 成在线人永久免费视频| 日本午夜av视频| 9色porny在线观看| 亚洲欧美日韩另类电影网站| 日韩 欧美 亚洲 中文字幕| 午夜福利在线免费观看网站| 中文欧美无线码| 国产成人啪精品午夜网站| 国产精品久久久久成人av| 久久精品国产a三级三级三级| 美女高潮到喷水免费观看| 男人操女人黄网站| 亚洲欧洲精品一区二区精品久久久| 2021少妇久久久久久久久久久| 欧美+亚洲+日韩+国产| 黄色视频不卡| 成人黄色视频免费在线看| 中文字幕最新亚洲高清| 婷婷色综合www| 久久精品国产a三级三级三级| 高清视频免费观看一区二区| 男女边摸边吃奶| www.精华液| 夜夜骑夜夜射夜夜干| 乱人伦中国视频| 国产精品一区二区在线观看99| 中文字幕人妻熟女乱码| 精品一区在线观看国产| 欧美日韩精品网址| 国产淫语在线视频| 纵有疾风起免费观看全集完整版| 国产亚洲午夜精品一区二区久久| 亚洲午夜精品一区,二区,三区| 成年动漫av网址| 久久人妻熟女aⅴ| 777米奇影视久久| 欧美日韩av久久| 美女中出高潮动态图| 最近最新中文字幕大全免费视频 | 黄网站色视频无遮挡免费观看| 国产xxxxx性猛交| 99精国产麻豆久久婷婷| 亚洲国产av新网站| xxxhd国产人妻xxx| 久久久久久免费高清国产稀缺| 少妇被粗大的猛进出69影院| av网站免费在线观看视频| 国产激情久久老熟女| 免费日韩欧美在线观看| 新久久久久国产一级毛片| 国产精品一国产av| av网站在线播放免费| 精品高清国产在线一区| 成人国产一区最新在线观看 | 国产人伦9x9x在线观看| 97人妻天天添夜夜摸| 国产免费又黄又爽又色| 国产欧美亚洲国产| 国产一区二区三区av在线| 搡老乐熟女国产| 97人妻天天添夜夜摸| 国产av一区二区精品久久| 亚洲七黄色美女视频| 各种免费的搞黄视频| 女人爽到高潮嗷嗷叫在线视频| 人人妻,人人澡人人爽秒播 | 99国产精品一区二区蜜桃av | 亚洲熟女精品中文字幕| 搡老乐熟女国产| 久久久久国产精品人妻一区二区| 久久国产精品男人的天堂亚洲| 色网站视频免费| 性少妇av在线| 午夜福利影视在线免费观看| 悠悠久久av| 亚洲男人天堂网一区| 久久性视频一级片| 黄色a级毛片大全视频| 韩国高清视频一区二区三区| 亚洲,欧美,日韩| 汤姆久久久久久久影院中文字幕| 国产视频首页在线观看| 99热全是精品| 国产av一区二区精品久久| 男的添女的下面高潮视频| av又黄又爽大尺度在线免费看| 精品久久久精品久久久| 日韩制服丝袜自拍偷拍| 丝袜美腿诱惑在线| 在线av久久热| www日本在线高清视频| 亚洲专区中文字幕在线| 国产淫语在线视频| 少妇粗大呻吟视频| 亚洲成人国产一区在线观看 | 欧美成人午夜精品| 亚洲av电影在线进入| 国产成人av激情在线播放| 狂野欧美激情性bbbbbb| 99久久人妻综合| 亚洲av日韩精品久久久久久密 | videosex国产| 色婷婷久久久亚洲欧美| 欧美另类一区| 欧美成人午夜精品| 欧美日本中文国产一区发布| 色婷婷av一区二区三区视频| 色婷婷久久久亚洲欧美| 蜜桃在线观看..| 又大又黄又爽视频免费| 在现免费观看毛片| 日韩 欧美 亚洲 中文字幕| 免费高清在线观看视频在线观看| 国精品久久久久久国模美| 午夜福利视频在线观看免费| 国产精品 国内视频| 黄片播放在线免费| 亚洲精品一区蜜桃| 亚洲黑人精品在线| 亚洲色图综合在线观看| 女人高潮潮喷娇喘18禁视频| 国产女主播在线喷水免费视频网站| 亚洲欧洲精品一区二区精品久久久| 悠悠久久av| 免费观看av网站的网址| 亚洲av电影在线观看一区二区三区| 欧美+亚洲+日韩+国产| 天堂中文最新版在线下载| 久久影院123| 精品人妻1区二区| 久久免费观看电影| 久久久久精品国产欧美久久久 | 桃花免费在线播放| 青青草视频在线视频观看| 另类精品久久| 国产av精品麻豆| 亚洲国产av影院在线观看| 99久久99久久久精品蜜桃| 欧美亚洲日本最大视频资源| a级片在线免费高清观看视频| av网站免费在线观看视频| 少妇的丰满在线观看| 国产日韩一区二区三区精品不卡| 手机成人av网站| 青春草视频在线免费观看| 国产高清不卡午夜福利| 精品国产乱码久久久久久小说| 国产免费视频播放在线视频| 亚洲国产成人一精品久久久| 欧美黑人欧美精品刺激| 一区在线观看完整版| 成人影院久久| 国产精品国产三级国产专区5o| 欧美黑人精品巨大| 久久精品国产亚洲av高清一级| 久久久精品94久久精品| 国产精品久久久久久精品电影小说| 午夜福利一区二区在线看| 黑丝袜美女国产一区| 日本一区二区免费在线视频| 欧美日韩视频高清一区二区三区二| 欧美精品亚洲一区二区| 精品一区二区三卡| cao死你这个sao货| 午夜激情久久久久久久| 亚洲精品国产av成人精品| 下体分泌物呈黄色| 中文字幕制服av| 精品视频人人做人人爽| 成人午夜精彩视频在线观看| xxx大片免费视频| 69精品国产乱码久久久| 在线观看国产h片| 激情视频va一区二区三区| 欧美激情 高清一区二区三区| 日韩av不卡免费在线播放| 国产日韩一区二区三区精品不卡| 一级黄片播放器| 午夜免费男女啪啪视频观看| 亚洲一区二区三区欧美精品| 国产日韩一区二区三区精品不卡| 少妇 在线观看| 久久av网站| 菩萨蛮人人尽说江南好唐韦庄| 久久ye,这里只有精品| 久久久久国产精品人妻一区二区| 少妇精品久久久久久久| 亚洲欧美精品自产自拍| 夫妻午夜视频| 中文字幕制服av| 大香蕉久久网| 国产精品亚洲av一区麻豆| 欧美精品啪啪一区二区三区 | a级片在线免费高清观看视频| 日韩av不卡免费在线播放| 久久影院123| 婷婷成人精品国产| 亚洲av日韩在线播放| 亚洲欧洲日产国产| 久久久精品区二区三区| 欧美日韩亚洲综合一区二区三区_| 大片电影免费在线观看免费| 亚洲av综合色区一区| 久久精品国产亚洲av涩爱| 精品久久久久久电影网| 免费一级毛片在线播放高清视频 | 欧美在线一区亚洲| 精品欧美一区二区三区在线| 99九九在线精品视频| 日韩 欧美 亚洲 中文字幕| 亚洲一卡2卡3卡4卡5卡精品中文| 国产成人免费无遮挡视频| a级片在线免费高清观看视频| 成人手机av| 色播在线永久视频| 亚洲成人国产一区在线观看 | 国产99久久九九免费精品| 久久久久久久大尺度免费视频| 色精品久久人妻99蜜桃| 午夜免费鲁丝| 久久精品国产a三级三级三级| 十八禁人妻一区二区| 啦啦啦视频在线资源免费观看| 国产不卡av网站在线观看| 99精品久久久久人妻精品| 精品久久久精品久久久| 黄色一级大片看看| 制服人妻中文乱码| 丰满饥渴人妻一区二区三| cao死你这个sao货| 亚洲欧美日韩高清在线视频 | 大话2 男鬼变身卡| 国产一区二区三区av在线| 热re99久久国产66热| 亚洲人成网站在线观看播放| 欧美日韩视频精品一区| 午夜91福利影院| 欧美激情极品国产一区二区三区| 色综合欧美亚洲国产小说| 97精品久久久久久久久久精品| 99re6热这里在线精品视频| 可以免费在线观看a视频的电影网站| 九色亚洲精品在线播放| 日韩视频在线欧美| 香蕉国产在线看| 人妻人人澡人人爽人人| 精品国产一区二区三区四区第35| 丝袜人妻中文字幕| 国产av国产精品国产| 伊人久久大香线蕉亚洲五| 国产精品成人在线| 国产免费一区二区三区四区乱码| 美女中出高潮动态图| 免费观看a级毛片全部| 国产在视频线精品| 少妇被粗大的猛进出69影院| 99久久精品国产亚洲精品| 国产视频一区二区在线看| 色网站视频免费| 国产精品三级大全| 999久久久国产精品视频| 91国产中文字幕| 国产成人a∨麻豆精品| 一区福利在线观看| 99精品久久久久人妻精品| 精品久久久精品久久久| 国产淫语在线视频| 99国产精品一区二区蜜桃av | 国产亚洲精品第一综合不卡| 纵有疾风起免费观看全集完整版| 欧美大码av| 男女午夜视频在线观看| 国产黄色免费在线视频| 午夜福利视频精品| h视频一区二区三区| 一本色道久久久久久精品综合| 婷婷色av中文字幕| 狠狠婷婷综合久久久久久88av| 国产一区二区 视频在线| 久久久国产欧美日韩av| 一区二区av电影网| 一级黄片播放器| 成人亚洲欧美一区二区av| www.熟女人妻精品国产| av天堂在线播放| 精品国产乱码久久久久久男人| 亚洲av片天天在线观看| 人人妻人人爽人人添夜夜欢视频| 最新在线观看一区二区三区 | 老司机亚洲免费影院| 99国产精品免费福利视频| 一边亲一边摸免费视频| 在线观看人妻少妇| 欧美成狂野欧美在线观看| 国语对白做爰xxxⅹ性视频网站| 亚洲精品美女久久久久99蜜臀 | 女人爽到高潮嗷嗷叫在线视频| 久久av网站| 国产成人一区二区三区免费视频网站 | 日本91视频免费播放| 国产精品偷伦视频观看了| 热99国产精品久久久久久7| 国产一区二区激情短视频 | 亚洲精品美女久久av网站| 搡老乐熟女国产| 精品一区二区三卡| 久久精品久久久久久噜噜老黄| 亚洲中文字幕日韩| 欧美精品一区二区免费开放| 国产精品久久久久久精品古装| 国产一区二区激情短视频 | 亚洲精品日本国产第一区| 国产三级黄色录像| 国产一区亚洲一区在线观看| 女人被躁到高潮嗷嗷叫费观| 国产成人精品久久二区二区91| 免费在线观看日本一区| 另类亚洲欧美激情| 国产亚洲午夜精品一区二区久久| av天堂在线播放| 亚洲熟女精品中文字幕| 亚洲欧美中文字幕日韩二区| 香蕉丝袜av| 老司机影院成人| 午夜福利免费观看在线| 欧美大码av| avwww免费| 自拍欧美九色日韩亚洲蝌蚪91| 老司机靠b影院| av网站免费在线观看视频| 欧美性长视频在线观看| 丝瓜视频免费看黄片| 成人国产av品久久久| 老司机在亚洲福利影院| 亚洲av电影在线进入| 日韩电影二区| 精品一区二区三区四区五区乱码 |