• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Retinal Vessel Extraction Framework Using Modified Adaboost Extreme Learning Machine

    2019-11-25 10:22:00SanthoshKrishnaandTGnanasekaran
    Computers Materials&Continua 2019年9期

    B.V.SanthoshKrishnaandT.Gnanasekaran

    Abstract:An explicit extraction of the retinal vessel is a standout amongst the most significant errands in the field of medical imaging to analyze both the ophthalmological infections,for example,Glaucoma,Diabetic Retinopathy (DR),Retinopathy of Prematurity (ROP),Age-Related Macular Degeneration (AMD) as well as non retinal sickness such as stroke,hypertension and cardiovascular diseases.The state of the retinal vasculature is a significant indicative element in the field of ophthalmology.Retinal vessel extraction in fundus imaging is a difficult task because of varying size vessels,moderately low distinction,and presence of pathologies such as hemorrhages,microaneurysms etc.Manual vessel extraction is a challenging task due to the complicated nature of the retinal vessel structure,which also needs strong skill set and training.In this paper,a supervised technique for blood vessel extraction in retinal images using Modified Adaboost Extreme Learning Machine (MAD-ELM) is proposed.Firstly,the fundus image preprocessing is done for contrast enhancement and inhomogeneity correction.Then,a set of core features is extracted,and the best features are selected using “minimal Redundancy-maximum Relevance (mRmR).” Later,using MAD-ELM method vessels and non vessels are classified.DRIVE and DR-HAGIS datasets are used for the evaluation of the proposed method.The algorithm’s performance is assessed based on accuracy,sensitivity and specificity.The proposed technique attains accuracy of 0.9619 on the DRIVE database and 0.9519 on DR-HAGIS database,which contains pathological images.Our results show that,in addition to healthy retinal images,the proposed method performs well in extracting blood vessels from pathological images and is therefore comparable with state of the art methods.

    Keywords:Extreme learning machine,ophthalmology,segmentation,adaboost,feature extraction,supervised,contrast enhancement.

    1 Introduction

    Typically,retinal vessels are an exclusive part of an individual’s blood circulation system that can be seen instantly without invasion [Resnik of f,Pascolini and Etyaale (2004)].The retinal vasculature examination can diagnose numerous primary pathologies,such as diabetes,hypertension,AMD,and cardiovascular disease.Furthermore,the characteristics of the retinal vessel,such as width,tortuosity,branching pattern,and angles,play a significant role in earlier disease identification.Also,multiple obsessive retinal vessel abnormalities are instant impressions of eye diseases.For example,consider diabetic retinopathy disease,India is set to evolve as the World’s diabetic capital.According to World Health Organization (WHO),in the year 2000,31.7 million people in India were affected by diabetes mellitus (DM).This number is expected to increase to 79.4 million by 2030,the most significant figure in the world in any Nation.About two-thirds of all type-2 diabetes and almost all type-1 diabetes are forced to develop diabetic retinopathy over a period [Gadkari,Maskati and Nayak (2016)].Automatic extraction of retinal vessels with high accuracy and reliability is highly essential to spare medical resources and decrease physicians’ workload [Winder,Morrow,Mcritchie et al.(2009)].2D color fundus image and 3D optical coherence tomography (OCT) images are widely accepted for clinical markers of retinopathy and are usually used for ophthalmic observations.In most clinical analyzes and larger-scale screening,fundus images are used more frequently due to computational simplicity and low-cost attributes.Furthermore,lesions can be evidently noticed in fundus images [Abram of f,Garvin and Sonka (2010)].Color fundus healthy and pathological image with lesions is shown in Fig.1.This article,therefore,focuses on automated segmentation of retinal vessels in 2D fundus image based on feature selection and modified extreme learning machine with Adaboost classifier.

    Figure1:Fundus image a.Healthy,b.Glaucoma,c.Diabetic Retinopathy

    2 Prior works

    During the past decade,the problem of computerized retinal vessel segmentation has brought an enormous amount of interest.Researchers have proposed many algorithms[Fraz,Remagnino,Hoppe et al.(2012)].Comprehensively retinal vasculature segmentation methods might be categorized into two,supervised and unsupervised.In the case of unsupervised methods,the structural attributes of vessels are manually hardcoded,and also learning is bound or sometimes absent.Regarding supervised methods,algorithms are generally trained by learning from patches of images annotated by gold standard images.Some of the predominant categories in unsupervised approaches are matched filtering,morphological transformations,and vessel tracking.In Hoover et al.[Hoover,Kouznetsova and Goldbaum (2000)],a matched filter-based method is projected in which a matched filter is applied by convolving a retinal fundus image with twelve kernels.A 2D linear structuring component is used for vessel enhancement by extracting with their derivatives and Gaussian intensity pr of ile of retinal blood vessels.In Rangayyan et al.[Rangayyan,Oloumi,Eshghzadeh-Zanjani et al.(2007)],Gabor filters are designed for the detection and extraction of blood vessels.But this technique struggles from over detection and extraction of blood vessel pixels due to the implementation of a large number of false edges.In Mendonca et al.[Mendonca and Campilho (2006)],morphological transformations with curvature data and matched centerline detection filtering are shown.In another method [Villalobos-Castadldi,Felipe-Riveron and Sanchez-Fernandez (2010)],a co-occurrence matrix is computed from just an image patch,and a decision has to be made by thresholding a feature estimated from that matrix.Vessels are obtained using a mixture of Gaussian filters with co-linear variations in Azzopardi et al.[Azzopardi,Strisciugli,Vento et al.(2015)].Sophisticated active contour model [Zhao,Rada,Chen et al.(2015)] is employed in which both pixel brightness and features are extracted from and image.In Zhu et al.[Zhu,Zou,Zhao et al.(2017)],39 D features are extracted and classified using an extreme learning machine.

    3 Proposed method

    Firstly,the fundus image is preprocessed for contrast enhancement and inhomogeneity correction.A set of 40 core features are extracted and the best features are selected using“minimal Redundancy maximal Relavance” algorithm and trained using modified ELM with adaboost classifier as vessel or non vessel.The output of the classifier is the binary retinal vasculature image.Using ground truth image as reference,accuracy,sensitivity and specificity are measured in the testing stage.The flow diagram of the proposed method is shown in Fig.2.

    Figure2:Flow diagram of proposed method

    3.1 Preprocessing

    Color fundus images tend to low contrast,central reflex light,noise,and therefore preprocessing is inevitable.Preprocessing comprises of the e following steps.(i) Central light reflex removal,(ii) background homogenization,and (iii) Boundary extension.

    3.1.1 Central light reflex removal

    Due to the property of low reflectance of blood vessels,they appear to be darker relative to the background and may contain a light streak (Acknowledged as a light reflex).To remove the light reflex,a green channel of the fundus image is used.A filtering procedure is implemented over the green channel image using a morphological opening as a structuring element with a three-pixel diameter disk to expel the reflex effect.The green channel indicates a gray background level that is higher than the gray vessel level.

    3.1.2 Background homogenization

    Retinal fundus images are connected with a background intensity variation due to nonuniform illumination.Sometimes the background images’ gray level is higher than the pixels of the e vessels.This variation in the background pixel may impair the segmentation quality of the vessel.Contrast limited adaptive histogram equalization (CLAHE)technique is applied across the central light reflex light removal image to prevent this issue.CLAHE avoids excessive noise amplification and evenly distributes the used gray level value,thus improving the visibility of the image’s concealed characteristics.

    3.1.3 Boundary extension

    The artifacts produced near the camera aperture boundary are removed using a boundary expansion method suggested in Azzopardi et al.[Azzopardi,Strisciguli,Vento et al.(2015)].Firstly,each black pixel lying only on the Field of View (FOV) mask’s external boundary is identified.The mean value of their neighbors’ pixels within the region of interest (ROI) replaces each of these pixels.Following the primary iteration,the ROI span is increased by 2.To keep away false discovery of lines around the FOV fringe,this procedure is repeated multiple times,so that the ROI radius is ultimately increased by 50.

    3.2 Extraction of features

    3.2.1 Local features (26)

    The first feature (1D) in the green channel image is considered to be the intensity of each pixel.Next,2D Gaussian filtering will provide four features (4D) using four scales.By emphasizing the edges of retinal vessels,eight features are obtained by using first-order derivatives of 2D Gaussian filtering.Similarly,second-order Gaussian filtering derivatives yield 12 features by addressing zero-crossings [Lindeberg (1998);Wang (2013)].

    3.2.2 Morphological transform features (6)

    Using the Tophat morphological operation,the smallest details in an image is extracted.This tophat function is used on dark background for lighter objects,whereas the bottom hat function is applied to the light background for dark objects.Tophat transform is applied by a closing operation as,

    whereTbt(f)is top hat function,(·) is the closing operation,b is the structuring element,f is the filtered image.In this paper tophat transform is used to extract features with a linear structuring element of multiscale and multi orientation.Using six scales,we get six features [Fraz,Remagnino,Hoppe et al.(2012)].

    3.2.3 Hessian features (2)

    The Hessian matrix can characterize a point on the local shape of the surfaces given by,

    whereSxx,Syx,SxyandSyyis the second order partial derivatives of the e imageI(x).By calculating the vesselness measure (V) and Forbenius norm (S),two features are obtained[Frangi,Niessen,Vincken et al.(1998)].

    3.2.4 HoG features (2)

    Histogram of Gradients (HoG) is a feature descriptor frequently used for retinal vessel segmentation.This method requires the occurance of portions of the e image into consideration.The image is fragmented into tiny connected cells and thus the pixels within each cell are plotted with a histogram of gradients.Here we have considered two features:Energy and Entropy,if X is any value,energy is E=X2and entropy,Ent=-sum(p*log(2)),where ‘p’ is the number of histogram [Zhu,Zou,Zhao et al.(2017)] is entropy.

    3.2.5 HLAC feature (1)

    The local high order autocorrelation (HLAC) feature is computed from the higher auto correlation of the following order using a reference pixel and its adjacent pixels as given by,

    D is the target image region for feature extraction,r is the reference pixel position,I(r) is the brightness value of the reference pixel r and anwhere (n=1,2,3..) is the space between the reference and adjacent pixel.All displacements are measured around a reference pixel in a 3*3 pixel area in our method.Here we can extract one HLAC feature [Thangaraj,Periyasamy and Balaji (2018)].

    3.3 Feature Selection using mRmR method

    We used the minimal Redundancy maximal Relevance (mRmR) method proposed by Peng et al.[Peng,Long and Ding (2005)] to select the most discriminatory features from the extracted features.Using the maximum relevance criterion based on mutual information,the mRmR technique selects the most informative features while minimizing redundancy between features and has gained significant prominence,particularly in biomedical data analysis.Features chosen according to max relevance are probable to have rich redundancy.If two features are extremely mutually dependent,the dependency between these features could be large.If one of them were removed,the respective class discriminative power would not change.

    3.4 Feature selection using mRmR method

    An Extreme Learning Machine (ELM) is a single hidden layer feed-forward neural network (SLFN) type containing later hidden node in which the minimum square regression addresses the hidden input weights.The algorithm tends to deliver the best performance in generalization at extremely fast learning speed.The main idea in basic ELMinvolves the weights of the e hidden layer.Besides,biases are the least square solution [Huang,Wang and Lan (2011)].With the impression of the multiclass method[Shen,Jiang and Liu (2014)],the proposed process takes the ELMas primary classifier[Jiuwen,Lin,Huang et al.(2012)] and uses Adaboost as a binary classification problem to resolve the retinal segmentation with the proposed Modified Adaboost Extreme Learning Machine (MAD-ELM).

    Given that N training samples,

    wherexiis the ithtraining sample,andyiis the corresponding class label,

    a.Initially,the weights of each training sample are to be set as per the class frequency

    b.For every iteration,q=1- Q,where Q is the total number of weak classifiers.Then,

    i.Fit a weighted ELM classifierWELMq(x)to the training samples with sample weightwi

    ii.Next the corresponding weighted error ofWELMq(x)is calculated.

    iii.Weight of qthclassifier is calculated as

    iv.Update the weight of sample data for all i=1,2,3…,N

    v.Renormalize the sample weight

    Note:The algorithm repeats steps (i) to (v) till for ‘T’ times

    c.Finally,the corresponding number of weak classifiers will be developed efficiently after T times,resulting in a powerful classifier being generated.Using the voting system,the weak classifiers are mixed linearly with their respective weight and a powerful classifier is acquired.

    4 Evaluation and experimental results

    After the above steps.The fundus image pixels are divided into two classifications:vessels and background.To determine whether a proposed algorithm is effective or not,known standard performance measurement is required.The results of the e segmentation of the fundus image vessel are compared with the gold standard image segmented by manually by an expert.Classification results of all the pixels in Tab.1 that belongs to one of the four results.The true positive (TP) is the number of pixels properly categorized as vessels.False Positive (FP) is the number of pixels wrongly classified as vessels.True Negative (TN) is the number of pixels properly categorized as backgrounds,with False Negative (FN) being the number of pixels wrongly classified as backgrounds.

    Accuracy (Acc),Sensitivity (Se),and Specificity (Sp) are used to evaluate vessel segmentation quality as shown in Tab.2.

    Table1:Pixel based classification

    Table2:Performance Measures for vessel segmentation evaluation

    We evaluated the proposed algorithm on two publicly available databases DRIVE and DR-HAGIS.All experiments are conducted on Matlab 2015 intel core i5 8 GB DDR4-2400 RAM 3.4 GHz.

    4.1 Database

    4.1.1 DRIVE

    To evaluate our proposed algorithm,we used a publicly available dataset DRIVE (Digital Retinal Images for Vessel Extraction) [Stall,Abram of f,Niemeijr et al.(2004)].DRIVE dataset contains 40 color fundus images.These images have been taken with a Field of View (FOV) and 768*584 pixels CCD camera.The dataset was separated into two sets,namely the training and testing with 20 images in each set.For the images in the test set,there are two manual segmentations of retinal vasculature,whereas for the images in the training set,there is a single manual segmentation result.

    4.1.2 DR-HAGIS

    DR-HAGIS database [Holm,Russell,Nourrit et al.(2017)] comprises of four subgroups of co-morbidity consisting of glaucoma (1-10),hypertension (11-20),diabetic retinopathy(21-30),age-related macular degeneration (31-40) pathology images.The fundus images are photographed using Topcon TRC-NW 6s,Topcon TRC-NW 8 or a canon CR DGI fundus camera.The images are 4752×1880 pixels.Besides,all images are provided with manually segmented images.

    4.2 Experiments using proposed method on DRIVE database

    Experiments are performed on DRIVE dataset.20 test images are used for the evaluation of the proposed algorithm.Classifier training took 230 in our experimentation.The DRIVE dataset experimental results are shown in Tab.3.Our method achieved sensitivity,specificity,and accuracy of 0.7432,0.9836,0.9616 respectively.

    Table3:Segmentation results of our method (DRIVE)

    Figure3:a.Fundus image,b.Mask image,c.Ground Truth,d.enhanced image,e.segmented output,f.segmented image overlapped on fundus image

    4.3 Experiments using proposed method on DR-HAGIS database

    Classifier took around 550 seconds for training on DR-HAGIS database.The DR-HAGIS dataset experimental results are shown in the Tab.4-Tab.8.Our method achieved sensitivity,specificity and accuracy of 0.7331,0.9586 and 0.9519 respectively.

    Table4:Segmentation results (HAGIS-Glaucoma group)

    Table5:Segmentation results (HAGIS-Hypertension group)

    Table6:Segmentation results (HAGIS- Diabetic Retinopathy group)

    Table7:Segmentation results (HAGIS-AMD group)

    Table8:Performance evaluation on DR-HAGIS

    4.4 Comparison with other supervised methods

    Tab.9 demonstrates the comparison results on the DRIVE database between the proposed technique and other states of the e art methods.Experimental results show that the proposed approach works better than many other supervised methods.To our know ledge,evaluation on DR-HAGIS database by supervised methods is not available in the literature.Hence,the comparison was not made on DR-HAGIS database,but we believe that the results obtained are better on a pathological database.

    5 Conclusion

    In this article,we proposed a supervised technique for retinal blood vessel segmentation based on the extraction of features,selection of features,and a modified AdaBoost ELM classification.The supervised method of learning performs better in retinal vessel segmentation than unsupervised methods.Although supervised methods are notoriously expensive in training,they provide better results.Experimental results from the proposed method have shown that they are best suited for automated retinal disease screening and diagnosis.

    久久6这里有精品| 日本黄大片高清| 看黄色毛片网站| 亚洲婷婷狠狠爱综合网| 欧美日韩综合久久久久久| 国产精品99久久久久久久久| 日韩,欧美,国产一区二区三区| 久久久a久久爽久久v久久| 亚洲三级黄色毛片| 看黄色毛片网站| 亚洲性久久影院| 欧美人与善性xxx| 久久久久国产网址| 美女脱内裤让男人舔精品视频| 精品人妻偷拍中文字幕| 亚洲精品乱码久久久久久按摩| 两个人的视频大全免费| 日韩av不卡免费在线播放| 黄片无遮挡物在线观看| 亚洲美女视频黄频| 一级a做视频免费观看| 久久综合国产亚洲精品| 欧美激情在线99| 男插女下体视频免费在线播放| 久久久久网色| 国产精品久久久久久精品古装| 中文字幕亚洲精品专区| tube8黄色片| 亚洲欧美成人精品一区二区| 亚洲无线观看免费| 欧美区成人在线视频| freevideosex欧美| 精品人妻视频免费看| 成人国产麻豆网| 亚洲精品色激情综合| 一级毛片久久久久久久久女| 丰满少妇做爰视频| 简卡轻食公司| 国产爽快片一区二区三区| 中文字幕久久专区| 99久久九九国产精品国产免费| 女人久久www免费人成看片| 午夜福利在线观看免费完整高清在| 国产高潮美女av| 亚洲真实伦在线观看| 成人国产麻豆网| 一边亲一边摸免费视频| 成人漫画全彩无遮挡| 亚洲精品日韩av片在线观看| 亚洲成人中文字幕在线播放| 国产精品一及| 观看美女的网站| 99久久精品国产国产毛片| 久久精品久久久久久久性| 新久久久久国产一级毛片| 午夜免费观看性视频| 日韩,欧美,国产一区二区三区| 波野结衣二区三区在线| 日韩av在线免费看完整版不卡| 黄片wwwwww| 国产男女内射视频| 精品少妇久久久久久888优播| 亚洲综合精品二区| 亚洲欧美日韩另类电影网站 | 亚洲国产高清在线一区二区三| 99视频精品全部免费 在线| 最近中文字幕2019免费版| 成人高潮视频无遮挡免费网站| 午夜免费男女啪啪视频观看| 亚洲欧美成人精品一区二区| 人体艺术视频欧美日本| 91aial.com中文字幕在线观看| 亚洲av免费在线观看| 亚洲av电影在线观看一区二区三区 | 99视频精品全部免费 在线| 亚洲av国产av综合av卡| 免费播放大片免费观看视频在线观看| 国产精品久久久久久精品电影| 夫妻午夜视频| 大片免费播放器 马上看| 成年人午夜在线观看视频| 欧美3d第一页| 联通29元200g的流量卡| 精品少妇黑人巨大在线播放| 波野结衣二区三区在线| 蜜臀久久99精品久久宅男| 美女国产视频在线观看| 少妇裸体淫交视频免费看高清| 国产亚洲av嫩草精品影院| 干丝袜人妻中文字幕| 国产成人精品一,二区| 免费看光身美女| 夜夜看夜夜爽夜夜摸| 国产黄频视频在线观看| 九色成人免费人妻av| 日本一二三区视频观看| 国产精品蜜桃在线观看| 欧美一级a爱片免费观看看| 亚洲,欧美,日韩| 亚洲在久久综合| 午夜福利高清视频| 看非洲黑人一级黄片| 国国产精品蜜臀av免费| 免费观看性生交大片5| 成年人午夜在线观看视频| 久久久久久久久久久丰满| 国产成人午夜福利电影在线观看| 黄色日韩在线| 街头女战士在线观看网站| 亚洲av福利一区| 好男人视频免费观看在线| 香蕉精品网在线| 日韩欧美一区视频在线观看 | 亚洲国产色片| 蜜桃久久精品国产亚洲av| 亚洲性久久影院| 国产女主播在线喷水免费视频网站| 91aial.com中文字幕在线观看| 国产亚洲91精品色在线| 国产免费视频播放在线视频| 秋霞在线观看毛片| 丝袜喷水一区| 精品酒店卫生间| 黄片无遮挡物在线观看| av一本久久久久| 热99国产精品久久久久久7| 女人被狂操c到高潮| 天堂网av新在线| 免费av不卡在线播放| 成人黄色视频免费在线看| 伊人久久国产一区二区| 晚上一个人看的免费电影| 亚洲,欧美,日韩| 亚洲精品视频女| 国产精品秋霞免费鲁丝片| 一级毛片久久久久久久久女| 国产 精品1| 免费人成在线观看视频色| 熟女电影av网| 国产 一区精品| 一级毛片电影观看| 在现免费观看毛片| 新久久久久国产一级毛片| 亚洲精华国产精华液的使用体验| av天堂中文字幕网| 免费观看a级毛片全部| av免费在线看不卡| 91精品伊人久久大香线蕉| 又爽又黄无遮挡网站| 亚洲人成网站在线观看播放| 寂寞人妻少妇视频99o| 免费不卡的大黄色大毛片视频在线观看| 国产高清有码在线观看视频| 成人二区视频| 小蜜桃在线观看免费完整版高清| 成年版毛片免费区| freevideosex欧美| 精品久久久久久久久av| 国产亚洲精品久久久com| 久久精品国产a三级三级三级| 在线播放无遮挡| 亚洲精品aⅴ在线观看| 99热网站在线观看| 国产高清有码在线观看视频| 女人被狂操c到高潮| 熟女av电影| freevideosex欧美| a级毛片免费高清观看在线播放| 免费观看的影片在线观看| 内地一区二区视频在线| 成人高潮视频无遮挡免费网站| 少妇人妻一区二区三区视频| 丰满乱子伦码专区| videossex国产| 九九爱精品视频在线观看| 特级一级黄色大片| 91久久精品电影网| av免费在线看不卡| 一区二区三区乱码不卡18| 久久久久久久国产电影| 欧美激情国产日韩精品一区| 国产极品天堂在线| 亚洲精品国产色婷婷电影| 亚洲四区av| 99久久人妻综合| 成人高潮视频无遮挡免费网站| 日本午夜av视频| 听说在线观看完整版免费高清| 色视频www国产| av在线亚洲专区| 久久精品夜色国产| 午夜免费观看性视频| 欧美精品人与动牲交sv欧美| 中文精品一卡2卡3卡4更新| 亚洲欧美日韩卡通动漫| 亚洲成人一二三区av| 97超碰精品成人国产| 91久久精品电影网| 男女国产视频网站| 在线 av 中文字幕| 尤物成人国产欧美一区二区三区| 亚洲国产日韩一区二区| 黄片无遮挡物在线观看| 国产视频首页在线观看| 亚洲成人久久爱视频| tube8黄色片| av.在线天堂| 精品久久久久久久久av| 久久久久久久午夜电影| 麻豆成人午夜福利视频| 国产精品麻豆人妻色哟哟久久| 久久久久国产网址| 久久精品国产自在天天线| 观看美女的网站| 成人二区视频| 亚洲最大成人中文| 国产伦精品一区二区三区视频9| 王馨瑶露胸无遮挡在线观看| 亚洲久久久久久中文字幕| 亚洲成人av在线免费| 亚洲自偷自拍三级| 在现免费观看毛片| 青春草视频在线免费观看| 免费观看av网站的网址| 成人国产av品久久久| 国产中年淑女户外野战色| 久久久久久久久久久丰满| 网址你懂的国产日韩在线| 免费播放大片免费观看视频在线观看| 久久99热这里只频精品6学生| 青春草国产在线视频| 成人高潮视频无遮挡免费网站| 中文欧美无线码| 午夜免费鲁丝| 欧美丝袜亚洲另类| 一个人看视频在线观看www免费| 日日啪夜夜撸| 日韩成人av中文字幕在线观看| 青春草国产在线视频| 九草在线视频观看| 国内揄拍国产精品人妻在线| 成人无遮挡网站| 女的被弄到高潮叫床怎么办| 国产高清不卡午夜福利| 亚洲伊人久久精品综合| 97热精品久久久久久| 国产亚洲av片在线观看秒播厂| 插逼视频在线观看| 日日撸夜夜添| 毛片女人毛片| 亚洲av中文字字幕乱码综合| 久久久午夜欧美精品| 久久久久久国产a免费观看| 黄色视频在线播放观看不卡| 欧美潮喷喷水| 亚洲精品乱码久久久久久按摩| 一级毛片电影观看| 久久久久性生活片| 亚洲欧美成人精品一区二区| 街头女战士在线观看网站| 一区二区三区四区激情视频| 国产精品伦人一区二区| 久久鲁丝午夜福利片| 中文字幕人妻熟人妻熟丝袜美| 国产一区二区三区综合在线观看 | 国产成人freesex在线| 亚洲精品成人久久久久久| 69av精品久久久久久| 欧美高清性xxxxhd video| 亚洲色图av天堂| 日韩不卡一区二区三区视频在线| 久久韩国三级中文字幕| 中文在线观看免费www的网站| 高清午夜精品一区二区三区| 高清日韩中文字幕在线| 免费观看的影片在线观看| 久久久久久久亚洲中文字幕| 午夜福利在线观看免费完整高清在| 一级片'在线观看视频| 人妻系列 视频| 女人久久www免费人成看片| 亚洲av福利一区| 色婷婷久久久亚洲欧美| 女的被弄到高潮叫床怎么办| 亚洲人成网站高清观看| 国内少妇人妻偷人精品xxx网站| 超碰av人人做人人爽久久| 久久久久久久久久久丰满| 精品熟女少妇av免费看| 97在线视频观看| 韩国高清视频一区二区三区| 涩涩av久久男人的天堂| 午夜日本视频在线| 国产成人免费观看mmmm| 免费观看无遮挡的男女| 中文在线观看免费www的网站| 交换朋友夫妻互换小说| 欧美国产精品一级二级三级 | 日韩免费高清中文字幕av| 在线观看av片永久免费下载| 男女国产视频网站| 又爽又黄无遮挡网站| 免费观看av网站的网址| 一级二级三级毛片免费看| 高清毛片免费看| 日日啪夜夜撸| 卡戴珊不雅视频在线播放| 高清在线视频一区二区三区| 男女边摸边吃奶| 亚洲色图综合在线观看| 新久久久久国产一级毛片| 欧美精品人与动牲交sv欧美| 欧美一区二区亚洲| 欧美3d第一页| 亚洲经典国产精华液单| 亚洲av.av天堂| 国产精品久久久久久精品电影小说 | 成人毛片a级毛片在线播放| 国产一区亚洲一区在线观看| 秋霞在线观看毛片| 夫妻性生交免费视频一级片| 97在线视频观看| 欧美高清性xxxxhd video| 五月开心婷婷网| 亚洲美女视频黄频| 成年人午夜在线观看视频| 亚洲无线观看免费| 少妇人妻 视频| 国产精品99久久99久久久不卡 | 成年女人在线观看亚洲视频 | 99热这里只有是精品在线观看| 国产成人精品福利久久| 午夜激情久久久久久久| 亚洲人成网站在线播| 男人舔奶头视频| 亚洲综合精品二区| 色5月婷婷丁香| 亚洲精品乱久久久久久| 免费在线观看成人毛片| 夫妻性生交免费视频一级片| 精品久久国产蜜桃| 极品教师在线视频| 亚洲第一区二区三区不卡| 一边亲一边摸免费视频| 特大巨黑吊av在线直播| 日本免费在线观看一区| 欧美日韩视频高清一区二区三区二| 新久久久久国产一级毛片| freevideosex欧美| 久久97久久精品| 久久精品熟女亚洲av麻豆精品| 国产午夜精品久久久久久一区二区三区| 卡戴珊不雅视频在线播放| 另类亚洲欧美激情| 国产精品av视频在线免费观看| 一本久久精品| 色5月婷婷丁香| 在线观看三级黄色| 国产视频内射| 在线a可以看的网站| 综合色av麻豆| 日日啪夜夜爽| 男女边摸边吃奶| 亚洲va在线va天堂va国产| 亚洲精品一二三| 国产成人91sexporn| 亚洲精品成人av观看孕妇| 女人久久www免费人成看片| 国产精品国产三级国产av玫瑰| 国产精品一区www在线观看| 尾随美女入室| 日韩制服骚丝袜av| 久久久久精品性色| 精品酒店卫生间| a级毛片免费高清观看在线播放| 成人亚洲精品av一区二区| 嫩草影院精品99| 真实男女啪啪啪动态图| 2021天堂中文幕一二区在线观| 国产免费视频播放在线视频| 久久精品熟女亚洲av麻豆精品| 婷婷色综合大香蕉| 好男人在线观看高清免费视频| 天天一区二区日本电影三级| 2018国产大陆天天弄谢| 女的被弄到高潮叫床怎么办| 在线观看免费高清a一片| 免费黄频网站在线观看国产| 婷婷色麻豆天堂久久| videossex国产| 亚洲无线观看免费| 国产一区亚洲一区在线观看| 亚洲久久久久久中文字幕| 亚洲精品自拍成人| 欧美成人一区二区免费高清观看| 午夜免费观看性视频| 七月丁香在线播放| 免费看日本二区| 午夜福利高清视频| 一级毛片我不卡| 中国美白少妇内射xxxbb| 亚洲av男天堂| 女的被弄到高潮叫床怎么办| 日韩av在线免费看完整版不卡| 日韩免费高清中文字幕av| 久久精品国产亚洲av涩爱| 国产男人的电影天堂91| 国产乱来视频区| 亚洲电影在线观看av| 黄色怎么调成土黄色| 成年女人在线观看亚洲视频 | 国产69精品久久久久777片| 亚洲欧美精品自产自拍| 最近中文字幕高清免费大全6| 久久精品熟女亚洲av麻豆精品| 男女下面进入的视频免费午夜| 国产精品一区www在线观看| 插逼视频在线观看| 啦啦啦中文免费视频观看日本| 成人午夜精彩视频在线观看| 久久久久久久久大av| 亚洲成人一二三区av| 男女啪啪激烈高潮av片| 免费观看的影片在线观看| 免费大片黄手机在线观看| 国产av不卡久久| 亚洲图色成人| 永久免费av网站大全| av卡一久久| 免费av观看视频| 国产成人精品婷婷| 欧美高清性xxxxhd video| 在线观看av片永久免费下载| 亚洲国产最新在线播放| 久久鲁丝午夜福利片| 夫妻午夜视频| 亚洲天堂国产精品一区在线| 亚洲天堂av无毛| 少妇人妻精品综合一区二区| 精品熟女少妇av免费看| 午夜福利视频精品| 麻豆成人av视频| 国国产精品蜜臀av免费| 又黄又爽又刺激的免费视频.| av播播在线观看一区| 乱系列少妇在线播放| 在线天堂最新版资源| 亚洲精品影视一区二区三区av| av在线亚洲专区| 欧美另类一区| 丝袜喷水一区| 视频区图区小说| 国产69精品久久久久777片| 久久久久久九九精品二区国产| 国模一区二区三区四区视频| 久久久久久久久久成人| 午夜激情久久久久久久| av在线app专区| 菩萨蛮人人尽说江南好唐韦庄| 亚洲美女搞黄在线观看| 神马国产精品三级电影在线观看| 亚洲,欧美,日韩| 日韩av在线免费看完整版不卡| 亚洲综合精品二区| 亚洲色图av天堂| 女人十人毛片免费观看3o分钟| 国产伦理片在线播放av一区| 狂野欧美激情性xxxx在线观看| 成人综合一区亚洲| 亚洲国产精品专区欧美| 丝瓜视频免费看黄片| 亚洲欧美成人综合另类久久久| 嘟嘟电影网在线观看| 午夜福利在线在线| 熟女人妻精品中文字幕| 91久久精品电影网| 老司机影院成人| 成人毛片60女人毛片免费| 97热精品久久久久久| 色网站视频免费| 国模一区二区三区四区视频| 岛国毛片在线播放| 国产高清有码在线观看视频| 国产毛片在线视频| 国产视频首页在线观看| 午夜免费观看性视频| 欧美精品国产亚洲| 成人综合一区亚洲| 亚洲精品色激情综合| 亚洲天堂国产精品一区在线| 久久久久久久久大av| 又爽又黄a免费视频| 国产伦精品一区二区三区视频9| 99热这里只有精品一区| 欧美日韩精品成人综合77777| 美女高潮的动态| 一区二区三区精品91| 国产69精品久久久久777片| 少妇人妻一区二区三区视频| 建设人人有责人人尽责人人享有的 | 小蜜桃在线观看免费完整版高清| 国产av码专区亚洲av| 久久精品久久久久久噜噜老黄| 免费观看性生交大片5| 国产美女午夜福利| 一级爰片在线观看| 国产精品久久久久久久电影| 亚洲av男天堂| 99久国产av精品国产电影| 久久久久久久久久人人人人人人| 18禁在线播放成人免费| 免费av观看视频| 美女xxoo啪啪120秒动态图| 久久久欧美国产精品| 午夜激情久久久久久久| 国产高清三级在线| 自拍欧美九色日韩亚洲蝌蚪91 | 18禁在线播放成人免费| 欧美人与善性xxx| 偷拍熟女少妇极品色| 久久久久久久久久成人| 国产精品女同一区二区软件| 高清视频免费观看一区二区| 偷拍熟女少妇极品色| 国产伦在线观看视频一区| 听说在线观看完整版免费高清| 精品久久久久久久久av| 男人添女人高潮全过程视频| 久久人人爽人人爽人人片va| 欧美97在线视频| 久久久久久久午夜电影| 亚洲欧美成人精品一区二区| 偷拍熟女少妇极品色| 成人高潮视频无遮挡免费网站| 亚洲欧美日韩卡通动漫| 亚洲av二区三区四区| 久久久久九九精品影院| 成人毛片60女人毛片免费| 午夜爱爱视频在线播放| 日韩人妻高清精品专区| 亚洲精品第二区| 国产午夜精品久久久久久一区二区三区| 亚洲精品中文字幕在线视频 | 免费看av在线观看网站| 亚洲欧美精品专区久久| 免费看日本二区| 精品国产乱码久久久久久小说| 成人亚洲精品av一区二区| 日本wwww免费看| 成人美女网站在线观看视频| 国产男人的电影天堂91| 久久久精品免费免费高清| 日韩强制内射视频| 国产毛片在线视频| av在线播放精品| 在线a可以看的网站| 99久国产av精品国产电影| 麻豆久久精品国产亚洲av| 男人和女人高潮做爰伦理| 国产免费一级a男人的天堂| 毛片女人毛片| 亚洲av中文av极速乱| 91精品国产九色| www.色视频.com| 亚洲在线观看片| av一本久久久久| 91精品一卡2卡3卡4卡| 亚洲色图综合在线观看| 亚洲av二区三区四区| 日本欧美国产在线视频| 亚洲精品视频女| 国产精品久久久久久久久免| 国内揄拍国产精品人妻在线| 丝袜喷水一区| 欧美国产精品一级二级三级 | 老司机影院成人| 日韩av在线免费看完整版不卡| 国产视频内射| 久久国产乱子免费精品| 丝瓜视频免费看黄片| 国产成年人精品一区二区| 日韩欧美一区视频在线观看 | 最近中文字幕2019免费版| 日韩亚洲欧美综合| 汤姆久久久久久久影院中文字幕| 国产v大片淫在线免费观看| 久久久久久久久大av| 中文字幕久久专区| 97在线视频观看| 日韩国内少妇激情av| 欧美成人一区二区免费高清观看| 日本-黄色视频高清免费观看| 亚洲精品日本国产第一区| 午夜日本视频在线| 国产爽快片一区二区三区| 97超视频在线观看视频| 国产精品国产av在线观看| 久久久久久久精品精品| 一个人看的www免费观看视频| 禁无遮挡网站| 亚洲精品亚洲一区二区| 欧美 日韩 精品 国产| 一级毛片 在线播放| 国产在线男女| 国产高清有码在线观看视频| 熟女电影av网| 免费在线观看成人毛片| 少妇人妻 视频| 日韩一区二区视频免费看| 午夜亚洲福利在线播放| 插逼视频在线观看| 狂野欧美激情性bbbbbb| 看非洲黑人一级黄片| 一级爰片在线观看| 听说在线观看完整版免费高清|