• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Block methods for linear Hamiltonian systems

    2014-03-20 03:18:12TIANHongjiongCHENBailin

    TIAN Hongjiong, CHEN Bailin

    (College of Mathematics and Sciences,Shanghai Normal University,Shanghai 200234,China)

    1 Introduction

    The time integration of ordinary differential equations (ODEs) is a classical topic of numerical mathematics.In the traditional approach,one-step methods like Runge-Kutta methods and multistep methods like Adams methods and BDF are constructed with a high order of convergence and favourable stability properties (see,e.g.,Butcher[1],Hairer,N?rsett and Wanner[2],Hairer and Wanner[3]and Lambert[4]).One- and multi-block methods,and boundary value methods can be regarded as a set of linear multistep methods simultaneously applied to ODEs and then combined to yield an approximation with high accuracy,better stability and efficiency in parallel computing (see,e.g.,Axelsson and Verwer[5],Bond and Cash[6],Brugnano and Trigiante[7-11],Chartier[12],Chu and Hamilton[13],Lu[14],Shampine and Watts[15],Sommeijer,Couzy and van der Houwen[16],Tian,Shan and Kuang[17],Tian,Yu and Jin[18],Watanabe[19],Watts and Shampine[20],and Zhou[21]).

    Many technical or physical models are described by Hamiltonian systems.The study of Hamiltonian systems has a very long history,while their numerical solution is a more recent field of investigation,which has led to the definition of symplectic or canonical integrators.The known symplectic integrators are essentially Runge-Kutta schemes,while there are no high order symplectic integrators in the class of linear multistep methods (see,e.g.,Eirola and Sanz-Serna[22],Feng and Qin[23],Hairer,Lubich and Wanner[24],Sanz-Serna and Calvo[25],Tang[26]).Recently,several classes of symplectic boundary value methods have been proposed for linear Hamiltonian systems (see,Brugnano[27],Brugnano and Trigiante[7]).For the conservation of energy of polynomial Hamiltonian systems of boundary value methods by means of discrete line integral,we refer to Brugnano,Iavernaro and Trigiante[28],Iavernaro and Pace[29].

    In this paper,we shall restrict our analysis to the following linear Hamiltonian problem

    y′(t)=Ly(t),t∈[t0,T],

    y(t0)=y0,

    (1)

    wherey(t)∈2m,Imdenotes the identity matrix of orderm,L=J2mS,S=ST∈2m,and

    ?Im.

    The main features of this linear Hamiltonian problem are

    (a)Q(hL)=ehJ2mSis a symplectic matrix forh>0,that is,Q(hL)TJ2mQ(hL)=J2m, and

    (b) for every matrixCsuch thatLTC+CL=0,the quadratic formV(t;C)=y(t)TCy(t) is a constant of motion.

    In particular,forC=S,one obtains the Hamiltonian function of the problem.One wishes to construct numerical methods such that the properties (a) and (b) are preserved.

    In Sections 2,we shall briefly recall the block methods for ordinay differential equations.In Section 3,we discuss the application of the block methods to linear Hamiltonian problems.In Section 4,we show that thek-dimensional block method which is convergent of order at leastk+1 is symplectic and preserves the quadratic form at the last point of the block fork=1,2,…,8. Finally,in Section 5,we present some numerical results to illustrate the performance of the block methods.

    2 Block Methods

    We first briefly recall the block method for the initial value problem

    y′(t)=f(t,y(t)),t∈[t0,T],

    y(t0)=y0,

    wherey0,yandfares-vectors.Leth>0 be a constant step size,kbe a given positive integer,l=nkandn=0,1,2,…,andtl=t0+lh.Thek-dimensional implicit block method is in the form

    A?IsYn=a?Isyl+hB?IsF(Yn)+hb?Isfl,

    (2)

    whereYn=[ynk+1T,…,ynk+kT]T∈sk,F(Yn)=[fnk+1T,…,fnk+kT]T∈sk,fl+i=f(tl+i,yl+i),yl+iapproximatesy(tl+i),i=0,1,…,k,A∈k×kis assumed to be invertible,B∈k×kanda,b∈k.When the coefficient matricesA,Band the vectorsa,bare determined,one obtains a discrete set ofknew solution values fromyl.SinceAis assumed to be invertible,the block method (2) is equivalent to

    (3)

    We now give the first result on zero-stability of the block method.

    ProofIt follows from (2) that

    Yn+1=[0,0,…,A-1a]?IsYn+h(A-1B)?IsF(Yn+1)+h[0,0,…,A-1b]?IsF(Yn).

    (4)

    Note that the eigenvalues of the matrix [0,0,…,A-1a] consists of zeros with multiplicityk-1 and the last component ofA-1a. This completes the proof.

    In order to study the consistency and convergence of the block method,we define the local truncation error of (3) as

    (5)

    where

    Zn=[y(tnk+1),y(tnk+2),…,y(tnk+k)]T∈sk.

    LetK1i=[1i,2i,…,ki]T∈k,i=0,1,2,…,ande=[1,1,…,1]T∈k.Using Taylor expansion ofy(t) attl,we can obtain the expression of the local truncation error

    L[Zn,h]=d0?Isy(tl)+hd1?Isy(1)(tl)+…+hpdp?Isy(p)(tl)+…,

    where

    (6)

    The block method is consistent of at leastpth-order if

    dj=0,j=0,1,…,p.

    Theorem2.2For any integerk,there exists a uniquek-dimensional block method (3) which is convergent of order at leastk+1.

    The following result has been proven by Watts and Shampine[20].

    Theorem2.3[20]Consider thek-dimensional block method obtained in Theorem 2.2.Fork=1,2,…,8,the corresponding block method isA-stable and convergent of orderk+1 forkodd and of orderr+2 forkeven.Forr=9,10,the method is not A-stable.

    3 Application of Block Methods to Linear Hamiltonian Systems

    Introducing

    Yn=(ynkT,ynk+1T,…,ynk+kT)T,F(Yn)=(fnkT,fnk+1T,…,fnk+kT)T,

    we may rewrite the block method (2) in a compact form

    A ?I2mYn=hB ?I2mF(Yn),

    (7)

    where

    (8)

    and

    (9)

    Application of the block method (7) to problem (1) yields

    A?I2mYn=hB ?J2mSYn.

    (10)

    In other words,the vector Ynsatisfies the equation

    MY:=(A ?I2m-hB ?J2mS)Y=0.

    (11)

    The discrete solution is obtained by solving the linear system

    (12)

    In order to obtain the most appropriate block methods for problem (1),we shall follow the way proposed by Brugnano and Trigiante[7].By changing the independent variableτ=T-t,we observe that

    (13)

    which is still Hamiltonian.This implies that the same numerical method should provide the same discrete solution in the reverse order.Define

    Zn=(Pk+1?I2m)Yn≡(ynk+k,…,yn+1,yn)T,

    wherePk+1=[ek+1,ek,…,e1] is a permutation matrix,eiis theith vector of the canonical base ink+1.Suppose that

    PkAPk+1=-A,PkBPk+1=B.

    (14)

    Then,multiplication of the left side of (11) byPk?I2mgives

    (15)

    Therefore,Zncan be obtained by direct application of the block method to (13).

    The symmetry conditions in (14) will play an important role in the derivation of conservation laws for the discrete system.

    We first give some preliminary results and symbols.LetQ0andQ1be the permutation matrices of dimensions (k+1)2andk2such that

    (16)

    Furthermore,we take the following partitioning

    A=(A1,a2), B=(B1,b2),a2,b2∈k,

    (17)

    and define

    (18)

    For any givenφ∈(k+1)2satisfying

    (Pk+1?Pk+1)φ=-φ,Q0φ=φ,

    (19)

    we consider the following linear system

    (AT?BT+BT?AT)η=φ,

    (20)

    where the unknown vectorη∈k2.

    Lemma3.1Suppose that (14) is satisfied and R defined in (18) is nonsingular.Then,for anyφsatisfying (19),there exists a unique solutionηof (20),which also satisfies the relations

    (Pk?Pk)η=η,Q1η=η.

    (21)

    ProofThe proof of this lemma is similar to that given by Brugnano and Trigiante[7].According to the partitioning in (17),we have

    (22)

    It follows from the hypothesis,R is nonsingular,that the coefficient matrix of Equation (20) has full column rank.We shall prove later that the remaining equations are redundant,so that there exists a unique solution vectorηof (20).We first show (21) holds whenηis a solution of (20).In fact,from (14),one has that

    (23)

    Thusηis a solution of (20) iff (Pk?Pk)ηis also a solution.The first equality in (21) then follows from the fact that the coefficient matrix (22) has full column rank.Similarly,the second equality follows by the relation

    φ=Q0φ=Q0(AT?BT+BT?AT)Q1Q1η=(BT?AT+AT?BT)Q1η.

    (24)

    (25)

    where the last equality follows from (19).From (14),it follows that

    Thus

    (26)

    which shows that the first and the last equations in (20) are equivalent.This completes the proof.

    We have the following main result.

    Theorem3.2Suppose that the hypotheses of Lemma 3.1 are satisfied,andCis a matrix such thatCL+LTC=0.Then,the solution of system (11) satisfies

    (27)

    for alli,j=0,1,…,k.

    ProofThe proof is similar to that given by Brugnano and Trigiante[7]and is omitted.

    The discrete conservation corresponding to the property (b) in Section 1 can now be easily shown.

    Corollary3.3Suppose that the hypotheses of Lemma 3.1 are satisfied.Then the constants of motion of problem (1) are exactly preserved in the last point of each block.

    ProofLetCbe any matrix such thatCL+LTC=0.Takingi=j=0 in (27),we obtain

    This completes the proof.

    RemarkWhenC=S, the conservation for the Hamiltonian function holds.Moreover,from (27) andj=i,one obtains that

    that is,the approximations of the constants of motion are symmetric in each block.

    In Section 1,it was remarked that for eachh,the mapQ(hL) is symplectic for the continuous flow,which is the property (a).A similar result holds for the discrete map associated with the method described by Equation (12).Introducing the block vector

    (28)

    we see that itsith block entry defines the mapynk+i=φiynk.Moreover,the block vectorΦsatisfies Equation (11).It follows from Theorem 3.2 withC=J2mthat

    (29)

    As a consequence,we obtain the discrete analog of the property (a).

    Corollary3.4Suppose that the hypotheses of Lemma 3.1 are satisfied.Then the mapynk+k=φkynkis symplectic.

    ProofNote thatφ0=I2m.Fori=j=0,(29) gives

    This completes the proof.

    4 Some Examples

    We now present somek-dimensional block methods of order at leastk+1 such that the conditions in Theorem 3.2 hold.

    Example1Fork=1,the symplectic block method is

    (30)

    and is equivalent to the trapezoidal rule

    Example2Fork=2,we propose the block method with

    whereα≠±1 is a parameter.It can be verified that it is zero-stable,di=0,i=0,1,2,3,P2AP3=-A,P2BP3=B,and R is invertible.It is also equivalent to

    (31)

    Example 3 Fork=3,we propose the block method with

    and

    whereα,β,γ,ζare parameters such thatα≠ -1 andγ+ζ-αζ-2βγ≠ 0.It can be verified that it is zero-stable,di=0,i=0,1,2,3,4,P3AP4=-A,P3BP4=B,and R is nonsingular.This block method is also equivalent to

    (32)

    Example 4 Fork=4,5,6,7,8,we propose the block methods with

    and B as follows (table 1).

    Table 1 Coefficients of block methods for 4≤k≤8

    Table 1(continued)

    It can be verified that each block method is zero-stable,di=0,i=0,1,…,k+1,PkAPk+1=-A,PkBPk+1=B,and R is nonsingular.These methods are equivalent to

    Yn=eyl+hBF(Yn)+hbfl,

    (33)

    wheree=(1,1,…,1)T,Bandbare as follows (table 2).

    Table 2 Coefficients of block methots 4≤k≤8

    Table 2(continued)

    According to the equivalence,we have the following main result.

    Theorem 4.1 Consider thek-dimensional block method obtained in Theorem 2.2.Fork=1,2,…,8,the properties in Theorem 3.2 and Corollaries 3.3 and 3.4 hold for the corresponding block method.

    5 Numerical Experiment

    We illustrate the performance of the 4- and 8-dimensional block methods given in the previous section by integrating the system of harmonic oscillator

    (34)

    The Hamiltonian function of (34) isV(t)=9y1(t)2+y2(t)2.

    Figure 1 Discrete values yr (left) and Vr (right) with

    Figure 2 Discrete values yr (left) and Vr (right) with

    Figure 3 Discrete values yr (left) and Vr (right) with

    Figure 4 Discrete values yr (left) and Vr (right) with

    :

    [1] BUTCHER J C.Numerical Methods for Ordinary Differential Equations[M].New York:Wiley Chichester,2008.

    [2] HAIRER E,N?RSETT S P,WANNER G.Solving Ordinary Differential Equations I:Nonstiff Problems[M].2nd Edition,Berlin:Springer-Verlag,1993.

    [3] HAIRER E,WANNER G.Solving Ordinary Differential Equations II:Stiff and Differential-Algebraic Problems[M].2nd Edition,Berlin:Springer Verlag,1996.

    [4] LAMBERT J D.Numerical Methods for Ordinary Differential Systems[M].NJ:John Wiley & Sons,Inc.,1991.

    [5] AXELSSON A O H,Verwer J G.Boundary value techniques for initial value problem in ordinary differential equations[J].Math Comp,1985,45:153-171.

    [6] BOND J,CASH J R.A block method for the numerical integration of stiff systems of ordinary differential equations[J].BIT,1979,19:429-447.

    [7] BRUGNANO L,TRIGIANTE D.Block boundary value methods for linear Hamiltonian systems[J].Appl Math Comp ,1997,81:49-68.

    [8] BRUGNANO L,TRIGIANTE D.High order multistep methods for boundary value problems[J].Appl Num Math,1995,18:79-96.

    [9] BRUGNANO L,TRIGIANTE D.Convergence and stability of boundary value methods for ordinary differential equations[J].J Comp Appl Math,1996,66:97-109.

    [10] BRUGNANO L,TRIGIANTE D.Boundary value metheds:the third way between linear multistep and Runge-Kutta methods[J].Comp Math Appl,1998,36:269-284.

    [11] BRUGNANO L,TRIGIANTE D.Solving ODEs By Multistep Initial and Boundary Value Methods[M].Amsterdam:Gordon & Breach,1998.

    [12] CHARTIER P.L-stable parallel one-block methods for ordinary differential equations[J].SIAM J Numer Anal,1994,31:552-571.

    [13] CHU M,HAMILTON H.Parallel solution of ODEs by multi-block methods[J].SIAM J Sci Stat Comput,1987,8:342-353.

    [14] LU L.The stability of the blockθ-methods[J].IMA J Numer Anal,1993,13:101-114.

    [15] SHAMPINE L F,WATTS H A.Block implicit one-step methods[J].Math Comp,1969,23:731-740.

    [16] SOMMEIJER B P,COUZY W,van der HOUSEN P J.A-stable parallel block methods for ordinary and integro-differential equations[J].Appl Numer Math,1999,81:451-459.

    [17] TIAN H,SHAN K,KUANG J.Continuous blockθ-methods for ordinary and delay differential equations[J].SIAM J Sci Comp,2009,31:4266-4280.

    [18] TIAN H,YU Q,JIN C.Continuous block implicit hybrid one-step methods for ordinary and delay differential equations[J].Appl Numer Math,2011,61:1289-1300.

    [19] WATANABE D S.Block implicit one-step methods[J].Math Comput,1978,32:405-414.

    [20] WATTS H A,SHAMPINE L F.A-stable implicit block one-step methods[J].BIT,1972,12:252-266.

    [21] ZHOU B.A-stable andL-stable block implicit one-step methods[J].J Comp Math,1985,3:328-341.

    [22] EIROLA T,SANZ-SERNA J M.Conservation of integrals and symplectic structure of differential equations by multistep methods[J].Numer Math,1992,61:281-290.

    [23] FENG K,QIN M Z.Sympletic Geometric Algorithms for Hamiltonian Systems[M].Hangzhou:Zhejiang Science and Technology Press,2003.

    [24] HAIRER E,LUBICH C,WANNER G.Geometric Numerical Integration:Structure-Preserving Algorithms for Ordinary Differential Equations[M],2nd Edition∥Springer Series in Computational Mathematics.Berlin:Springer-Verlag,2006.

    [25] SANZ-SERNA J M,CALVO M P.Numerial Hamiltonian Problems[M].London:Chapman & Hall,1994.

    [26] TANG Y F.The symplecticity of multi-step methods[J].Comput Math Appl,1993,25:83-90.

    [27] BRUGNANO L.Essentially symplectic boundary value methods for linear Hamiltonian systems[J].J Comp Math,1997,15:233-252.

    [28] BRUGNANO L,IAVENARO F,TRIGIANTE D.Hamiltonian Boundary Value Methods (Energy Preserving Discrete Line Integral Methods)[J].J Numer Anal Indu Appl Math,2010,5:17-37.

    [29] IAVERNARO F,PACE B.Conservative block-boundary value methods for the solution of polynomial Hamiltonian systems[J].AIP Conf Proc,2008,1048:888-891.

    不卡一级毛片| 三级毛片av免费| 中亚洲国语对白在线视频| 母亲3免费完整高清在线观看| 久久久久久久久久久久大奶| 中文字幕色久视频| 久久 成人 亚洲| 一级黄色大片毛片| 精品人妻一区二区三区麻豆| 久热这里只有精品99| a级片在线免费高清观看视频| 久热这里只有精品99| 在线观看一区二区三区激情| av在线app专区| 精品亚洲成a人片在线观看| 亚洲成人免费av在线播放| videos熟女内射| 女人高潮潮喷娇喘18禁视频| 国产亚洲精品第一综合不卡| av欧美777| 在线天堂中文资源库| 亚洲av国产av综合av卡| 日韩制服骚丝袜av| 一级毛片精品| 亚洲国产欧美日韩在线播放| 亚洲久久久国产精品| 国产精品偷伦视频观看了| 精品一区二区三区四区五区乱码| 亚洲国产日韩一区二区| 国产亚洲av高清不卡| 午夜精品国产一区二区电影| 国产不卡av网站在线观看| 亚洲国产日韩一区二区| 精品免费久久久久久久清纯 | 搡老乐熟女国产| 亚洲色图综合在线观看| 久久久久网色| av线在线观看网站| 亚洲精品国产av蜜桃| 天天躁狠狠躁夜夜躁狠狠躁| 日韩视频在线欧美| 日韩欧美免费精品| 亚洲av男天堂| 丰满少妇做爰视频| 91成人精品电影| 免费高清在线观看日韩| 欧美黄色淫秽网站| 国产精品久久久久成人av| 女人高潮潮喷娇喘18禁视频| 肉色欧美久久久久久久蜜桃| 久久久久久亚洲精品国产蜜桃av| 国产在视频线精品| 新久久久久国产一级毛片| 免费高清在线观看日韩| 国产区一区二久久| 亚洲自偷自拍图片 自拍| 无遮挡黄片免费观看| 国内毛片毛片毛片毛片毛片| 免费不卡黄色视频| 亚洲自偷自拍图片 自拍| 天天躁狠狠躁夜夜躁狠狠躁| 大型av网站在线播放| 人妻久久中文字幕网| 女性被躁到高潮视频| 日本欧美视频一区| 纵有疾风起免费观看全集完整版| 亚洲国产欧美在线一区| 下体分泌物呈黄色| 国产欧美日韩一区二区三 | 人妻人人澡人人爽人人| 国产亚洲精品第一综合不卡| 久久人妻福利社区极品人妻图片| 成年女人毛片免费观看观看9 | 中亚洲国语对白在线视频| 国产亚洲午夜精品一区二区久久| 久久久久国产精品人妻一区二区| 菩萨蛮人人尽说江南好唐韦庄| 久久午夜综合久久蜜桃| 秋霞在线观看毛片| 在线精品无人区一区二区三| 国产极品粉嫩免费观看在线| 中文字幕av电影在线播放| 老熟妇仑乱视频hdxx| 老汉色av国产亚洲站长工具| 黄色片一级片一级黄色片| 国产99久久九九免费精品| 国产亚洲一区二区精品| 老汉色av国产亚洲站长工具| 久久久精品国产亚洲av高清涩受| 丰满少妇做爰视频| 日韩 欧美 亚洲 中文字幕| 天天操日日干夜夜撸| 亚洲精品国产一区二区精华液| 日韩 亚洲 欧美在线| 热99久久久久精品小说推荐| tocl精华| 日日夜夜操网爽| 亚洲专区中文字幕在线| 国内毛片毛片毛片毛片毛片| 老司机福利观看| 亚洲国产精品成人久久小说| av视频免费观看在线观看| 亚洲精品久久久久久婷婷小说| 欧美大码av| 亚洲精品在线美女| 日韩熟女老妇一区二区性免费视频| 日韩制服骚丝袜av| 欧美精品啪啪一区二区三区 | 极品人妻少妇av视频| 99九九在线精品视频| 丝袜喷水一区| 最近最新免费中文字幕在线| 精品一区二区三区av网在线观看 | 丝瓜视频免费看黄片| 天天添夜夜摸| 成人三级做爰电影| 国产日韩欧美视频二区| 99精品欧美一区二区三区四区| 丝袜人妻中文字幕| 一区二区av电影网| 免费在线观看黄色视频的| 国产国语露脸激情在线看| 成年女人毛片免费观看观看9 | 香蕉丝袜av| 国产97色在线日韩免费| 人人妻人人添人人爽欧美一区卜| 欧美日韩亚洲高清精品| 亚洲九九香蕉| 欧美中文综合在线视频| 99热全是精品| 黄色视频不卡| 狂野欧美激情性xxxx| 美女国产高潮福利片在线看| 人妻一区二区av| 在线观看免费午夜福利视频| 99久久99久久久精品蜜桃| 91成人精品电影| 久久久久久久久久久久大奶| av在线播放精品| 乱人伦中国视频| 国产免费福利视频在线观看| 18禁黄网站禁片午夜丰满| 色综合欧美亚洲国产小说| √禁漫天堂资源中文www| 99国产精品99久久久久| 黄网站色视频无遮挡免费观看| 日本欧美视频一区| 国产有黄有色有爽视频| 精品熟女少妇八av免费久了| 各种免费的搞黄视频| 亚洲第一欧美日韩一区二区三区 | 国产成人免费观看mmmm| 黄色毛片三级朝国网站| 啦啦啦啦在线视频资源| 黄色视频不卡| 亚洲一卡2卡3卡4卡5卡精品中文| 精品国产一区二区久久| 国产视频一区二区在线看| av免费在线观看网站| 午夜两性在线视频| 久久精品aⅴ一区二区三区四区| 日韩视频一区二区在线观看| 纵有疾风起免费观看全集完整版| 国产欧美日韩综合在线一区二区| 亚洲天堂av无毛| 高清av免费在线| 91精品国产国语对白视频| 9热在线视频观看99| 国产精品影院久久| 性高湖久久久久久久久免费观看| 青草久久国产| 欧美少妇被猛烈插入视频| 9热在线视频观看99| av在线老鸭窝| 91国产中文字幕| 丁香六月欧美| av欧美777| 69精品国产乱码久久久| 欧美国产精品va在线观看不卡| 国产主播在线观看一区二区| 日本一区二区免费在线视频| 欧美激情久久久久久爽电影 | av视频免费观看在线观看| 亚洲激情五月婷婷啪啪| www.精华液| √禁漫天堂资源中文www| 午夜福利,免费看| 欧美成狂野欧美在线观看| 久久ye,这里只有精品| 不卡av一区二区三区| 午夜福利乱码中文字幕| 国产精品 国内视频| 亚洲精品乱久久久久久| 亚洲专区字幕在线| 男人添女人高潮全过程视频| 天堂中文最新版在线下载| 欧美另类亚洲清纯唯美| 老司机亚洲免费影院| 亚洲精品久久成人aⅴ小说| 侵犯人妻中文字幕一二三四区| 嫩草影视91久久| 久久精品aⅴ一区二区三区四区| 精品免费久久久久久久清纯 | 国产又色又爽无遮挡免| 99久久精品国产亚洲精品| 一本大道久久a久久精品| 99国产极品粉嫩在线观看| 国产伦理片在线播放av一区| 亚洲av日韩在线播放| 美女扒开内裤让男人捅视频| 777久久人妻少妇嫩草av网站| 美女中出高潮动态图| 欧美日韩亚洲综合一区二区三区_| 日韩大片免费观看网站| 欧美 亚洲 国产 日韩一| 丁香六月天网| 天天操日日干夜夜撸| 久久影院123| 超碰97精品在线观看| 一二三四社区在线视频社区8| 亚洲精华国产精华精| 91老司机精品| 美女国产高潮福利片在线看| av天堂在线播放| 视频区欧美日本亚洲| 国产精品免费大片| 自线自在国产av| 中亚洲国语对白在线视频| 亚洲国产欧美网| 91麻豆精品激情在线观看国产 | 亚洲av成人不卡在线观看播放网 | 欧美 日韩 精品 国产| 亚洲欧美一区二区三区黑人| 国产1区2区3区精品| 日韩精品免费视频一区二区三区| 精品一区二区三区四区五区乱码| 国产av国产精品国产| 丰满饥渴人妻一区二区三| 天天躁狠狠躁夜夜躁狠狠躁| 久久人妻福利社区极品人妻图片| 国产成人免费观看mmmm| 亚洲专区字幕在线| 精品国产一区二区三区四区第35| 超色免费av| 一本大道久久a久久精品| 精品人妻熟女毛片av久久网站| 人妻久久中文字幕网| 男人舔女人的私密视频| 久久精品亚洲av国产电影网| 精品福利观看| 中文字幕人妻丝袜制服| 窝窝影院91人妻| 一区二区日韩欧美中文字幕| 国产97色在线日韩免费| 成年av动漫网址| 最新的欧美精品一区二区| 人妻人人澡人人爽人人| 国产亚洲欧美在线一区二区| 久久热在线av| 男女无遮挡免费网站观看| 国产成人一区二区三区免费视频网站| 超碰97精品在线观看| 交换朋友夫妻互换小说| 美国免费a级毛片| 亚洲精品美女久久av网站| 免费av中文字幕在线| 亚洲成人免费av在线播放| 久久久国产成人免费| 一二三四在线观看免费中文在| 精品国产一区二区三区久久久樱花| 天堂8中文在线网| 美女中出高潮动态图| 老司机午夜十八禁免费视频| 老熟妇仑乱视频hdxx| 又大又爽又粗| 老熟妇乱子伦视频在线观看 | 国产一级毛片在线| 亚洲黑人精品在线| 一本综合久久免费| 成人免费观看视频高清| 黄色怎么调成土黄色| 亚洲精品久久成人aⅴ小说| 桃花免费在线播放| 韩国精品一区二区三区| 亚洲色图 男人天堂 中文字幕| 国产精品99久久99久久久不卡| 国产男女超爽视频在线观看| 91精品国产国语对白视频| 国产伦理片在线播放av一区| 精品一区在线观看国产| 自线自在国产av| 黄色视频不卡| 欧美黑人精品巨大| av网站免费在线观看视频| 久久热在线av| 一级a爱视频在线免费观看| 久久毛片免费看一区二区三区| 日韩人妻精品一区2区三区| 亚洲avbb在线观看| www日本在线高清视频| 精品国产一区二区三区四区第35| 亚洲人成电影观看| 丝袜脚勾引网站| 少妇裸体淫交视频免费看高清 | 一边摸一边做爽爽视频免费| 人成视频在线观看免费观看| 超碰成人久久| 亚洲性夜色夜夜综合| 亚洲色图综合在线观看| 日本黄色日本黄色录像| 亚洲欧美日韩高清在线视频 | 亚洲精品自拍成人| a级毛片黄视频| 美女脱内裤让男人舔精品视频| 丁香六月欧美| 国产一区二区激情短视频 | 亚洲性夜色夜夜综合| 国精品久久久久久国模美| 久久av网站| 精品一区在线观看国产| 另类亚洲欧美激情| 国产亚洲午夜精品一区二区久久| 亚洲国产看品久久| 人妻久久中文字幕网| 久久久国产欧美日韩av| 免费不卡黄色视频| 精品亚洲成a人片在线观看| 三级毛片av免费| 每晚都被弄得嗷嗷叫到高潮| 欧美日韩成人在线一区二区| 国产精品一二三区在线看| 啪啪无遮挡十八禁网站| 日韩 亚洲 欧美在线| 大型av网站在线播放| 欧美人与性动交α欧美软件| 日本a在线网址| 亚洲欧美清纯卡通| 天堂中文最新版在线下载| av电影中文网址| 久久国产精品大桥未久av| 黑人操中国人逼视频| 99re6热这里在线精品视频| 成人18禁高潮啪啪吃奶动态图| 午夜福利乱码中文字幕| 国产男女内射视频| 欧美黑人精品巨大| www.熟女人妻精品国产| 久久亚洲精品不卡| 欧美少妇被猛烈插入视频| 午夜福利乱码中文字幕| 法律面前人人平等表现在哪些方面 | 成人免费观看视频高清| 我的亚洲天堂| 黄色视频不卡| 精品少妇内射三级| 国产精品av久久久久免费| 精品少妇内射三级| 丝袜美腿诱惑在线| 亚洲va日本ⅴa欧美va伊人久久 | 真人做人爱边吃奶动态| 午夜福利在线免费观看网站| 欧美乱码精品一区二区三区| 久久人妻熟女aⅴ| 中文字幕精品免费在线观看视频| 亚洲性夜色夜夜综合| 在线观看舔阴道视频| 日韩视频一区二区在线观看| 夜夜骑夜夜射夜夜干| 俄罗斯特黄特色一大片| 不卡av一区二区三区| 日本a在线网址| 久久精品亚洲熟妇少妇任你| 永久免费av网站大全| 久久久久网色| 中国美女看黄片| 又紧又爽又黄一区二区| 欧美精品人与动牲交sv欧美| 侵犯人妻中文字幕一二三四区| 1024视频免费在线观看| 国产精品一二三区在线看| 免费人妻精品一区二区三区视频| 美女视频免费永久观看网站| bbb黄色大片| 久久人人97超碰香蕉20202| 99精品久久久久人妻精品| 亚洲国产成人一精品久久久| 国产成人一区二区三区免费视频网站| 精品亚洲成a人片在线观看| 成人国产av品久久久| a级片在线免费高清观看视频| av天堂久久9| 国产伦理片在线播放av一区| av在线播放精品| 国产三级黄色录像| 午夜91福利影院| 天天添夜夜摸| www日本在线高清视频| 男女下面插进去视频免费观看| 老熟妇乱子伦视频在线观看 | 国产成+人综合+亚洲专区| 国产有黄有色有爽视频| 美女国产高潮福利片在线看| 最新的欧美精品一区二区| 丰满饥渴人妻一区二区三| 亚洲天堂av无毛| 亚洲专区中文字幕在线| 成人国产av品久久久| 久久久水蜜桃国产精品网| 黄片播放在线免费| 美女高潮到喷水免费观看| 午夜日韩欧美国产| 狠狠狠狠99中文字幕| 人妻人人澡人人爽人人| 五月开心婷婷网| 91大片在线观看| 黄片小视频在线播放| 亚洲欧洲日产国产| 免费黄频网站在线观看国产| 在线av久久热| 人妻 亚洲 视频| 搡老乐熟女国产| 亚洲精品美女久久久久99蜜臀| 一级毛片精品| 欧美激情高清一区二区三区| 精品福利观看| 日本av免费视频播放| 国产欧美日韩一区二区三区在线| 女人精品久久久久毛片| 午夜福利乱码中文字幕| 精品一区二区三区av网在线观看 | 香蕉丝袜av| 国产老妇伦熟女老妇高清| 亚洲精华国产精华精| 国产精品一二三区在线看| 99精品久久久久人妻精品| 人人妻,人人澡人人爽秒播| 中文字幕色久视频| 欧美午夜高清在线| av在线播放精品| 成在线人永久免费视频| 老熟妇乱子伦视频在线观看 | 国产老妇伦熟女老妇高清| 中国美女看黄片| 韩国高清视频一区二区三区| 日韩人妻精品一区2区三区| www日本在线高清视频| 他把我摸到了高潮在线观看 | 巨乳人妻的诱惑在线观看| 精品国产超薄肉色丝袜足j| 国产精品一区二区免费欧美 | 精品国产乱码久久久久久男人| 国产一区二区 视频在线| 日韩精品免费视频一区二区三区| 免费不卡黄色视频| 国产欧美日韩一区二区三区在线| 久久久久国内视频| 女性被躁到高潮视频| 欧美xxⅹ黑人| 大片免费播放器 马上看| 国产精品九九99| 午夜福利影视在线免费观看| 亚洲黑人精品在线| 蜜桃国产av成人99| 性少妇av在线| 久久精品国产亚洲av香蕉五月 | 成年女人毛片免费观看观看9 | 777久久人妻少妇嫩草av网站| 嫁个100分男人电影在线观看| 中文字幕制服av| 18禁裸乳无遮挡动漫免费视频| 精品人妻在线不人妻| 高潮久久久久久久久久久不卡| 在线天堂中文资源库| av电影中文网址| 狠狠婷婷综合久久久久久88av| 精品少妇内射三级| 91九色精品人成在线观看| 国产一区有黄有色的免费视频| 国产麻豆69| 12—13女人毛片做爰片一| 一级,二级,三级黄色视频| 又黄又粗又硬又大视频| 久久女婷五月综合色啪小说| 欧美大码av| 亚洲成人免费av在线播放| 一进一出抽搐动态| 黄网站色视频无遮挡免费观看| 亚洲精品久久久久久婷婷小说| 亚洲精品国产av蜜桃| 久久久久国产一级毛片高清牌| 18禁国产床啪视频网站| 王馨瑶露胸无遮挡在线观看| 天天操日日干夜夜撸| 亚洲精品国产区一区二| 国产精品亚洲av一区麻豆| 午夜免费观看性视频| 免费在线观看日本一区| 欧美激情高清一区二区三区| 亚洲三区欧美一区| 操美女的视频在线观看| 国产欧美日韩一区二区三 | www.自偷自拍.com| 欧美中文综合在线视频| 岛国毛片在线播放| 国产精品熟女久久久久浪| 嫁个100分男人电影在线观看| 日韩制服丝袜自拍偷拍| 两性夫妻黄色片| 18禁观看日本| 日本猛色少妇xxxxx猛交久久| 十八禁网站网址无遮挡| 超碰成人久久| 国产一区二区三区av在线| 在线观看人妻少妇| 久久国产精品人妻蜜桃| 99精国产麻豆久久婷婷| 久久久久国产精品人妻一区二区| 人人妻人人澡人人看| 一区福利在线观看| 免费一级毛片在线播放高清视频 | 两人在一起打扑克的视频| 在线永久观看黄色视频| 色播在线永久视频| 久久精品成人免费网站| 久久精品国产a三级三级三级| 国产精品欧美亚洲77777| 成年人免费黄色播放视频| www日本在线高清视频| 日本av免费视频播放| 亚洲成人免费av在线播放| 亚洲av电影在线观看一区二区三区| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲avbb在线观看| www.av在线官网国产| 亚洲一区中文字幕在线| 久9热在线精品视频| av天堂在线播放| 国产人伦9x9x在线观看| 黄色视频,在线免费观看| 国产视频一区二区在线看| 老司机午夜十八禁免费视频| 久久天堂一区二区三区四区| 国产99久久九九免费精品| 最近最新中文字幕大全免费视频| 婷婷色av中文字幕| 自拍欧美九色日韩亚洲蝌蚪91| 捣出白浆h1v1| 久久久久网色| 一进一出抽搐动态| 在线永久观看黄色视频| 欧美乱码精品一区二区三区| 91国产中文字幕| 欧美av亚洲av综合av国产av| 精品少妇久久久久久888优播| 亚洲国产精品一区二区三区在线| 欧美 日韩 精品 国产| 欧美另类亚洲清纯唯美| 女人久久www免费人成看片| 老熟妇乱子伦视频在线观看 | 天堂俺去俺来也www色官网| 女人精品久久久久毛片| 欧美黑人欧美精品刺激| 国产精品熟女久久久久浪| 久9热在线精品视频| 久久精品熟女亚洲av麻豆精品| 久久国产亚洲av麻豆专区| 一级,二级,三级黄色视频| 精品人妻1区二区| 两个人看的免费小视频| 久久人妻福利社区极品人妻图片| 999久久久精品免费观看国产| 777米奇影视久久| 大香蕉久久网| 97精品久久久久久久久久精品| av片东京热男人的天堂| 日本精品一区二区三区蜜桃| 国产精品熟女久久久久浪| 欧美日韩福利视频一区二区| 欧美变态另类bdsm刘玥| 在线观看舔阴道视频| 香蕉国产在线看| 欧美97在线视频| 国产成人a∨麻豆精品| 汤姆久久久久久久影院中文字幕| 少妇精品久久久久久久| 国产av国产精品国产| 亚洲激情五月婷婷啪啪| 在线观看人妻少妇| 久久青草综合色| 欧美精品一区二区大全| 好男人电影高清在线观看| 欧美大码av| 精品免费久久久久久久清纯 | 少妇 在线观看| 日韩大片免费观看网站| 亚洲精品美女久久av网站| av免费在线观看网站| 十分钟在线观看高清视频www| 国产欧美日韩精品亚洲av| 色播在线永久视频| 满18在线观看网站| 国产日韩欧美视频二区| 日本av免费视频播放| 乱人伦中国视频| 日本猛色少妇xxxxx猛交久久| 日韩欧美一区视频在线观看| 男女高潮啪啪啪动态图| 蜜桃在线观看..| 色视频在线一区二区三区| 十八禁网站网址无遮挡| 亚洲av片天天在线观看| 男女之事视频高清在线观看| 飞空精品影院首页| 国产高清videossex| 成年美女黄网站色视频大全免费|