• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Practicing environmental biotechnology

    2014-03-20 03:18:10BruceRittmann

    Bruce E.Rittmann

    (Swette Center for Environmental Biotechnology,Biodesign Institute,Arizona State University,Tempe AZ 85287-5701, U.S.A.)

    1 Introduction

    I define Environmental Biotechnology as ″managing microbial communities to provide services to society″[1].The services usually target improving environmental sustainability:cleaning up contaminated water or soils or producing renewable resources.Long-standing applications for environmental biotechnology include treating wastewater to remove BOD using the activated sludge process,removing nitrogen from wastewater by nitrification and denitrification,and stabilizing wastewater-treatment sludge by anaerobic digestion to produce methane gas[2].In the past 20 years or so,many exciting new applications have arisen in environmental biotechnology.Examples include detoxifying a range of hazardous chemicals,making wastewater treatment much more energy efficient,and producing a wide range of high-value,renewable products from organic matter in wastewaters.

    1.1 Small and Simple

    Environmental biotechnology is able to take on such a wide and expanding arrayof services because it takes advantage of the metabolic activity of prokaryotic microorganisms,i.e.,Bacteria and Archaea.Prokaryotes are small and simple compared to eukaryotic organisms,which range from algae to plants to animals.Being small and simple,prokaryoteshave low ″metabolic overhead″.Thus,prokaryotes are able to exploit almost any ecological niche that can provide them some energy to grow and sustain themselves.In contrast,mammals can gain energy only by oxidizing highly energetic organic molecules (e.g.,carbohydrates) and respiring the electrons to the most favorable electron acceptor (O2).While plants oxidize H2O and fix CO2,they require the input of copious energy from the sun.

    1.2 Needs pull,science push

    Environmental biotechnologyhas blossomed as a field in the past 20 years or so.Why has this happened?The answer is the convergence of a strong ″needs pull″ with a robust ″science push″.

    Over the past few decades,human society has discovered many new environmental challenges that demand technological advancements to reduce risks and improve sustainability.This is the needs pull.Fortunately,many of the emerging challenges can be addressed effectively by technologies founded on environmental biotechnology.Examples that have become commercial successes include reductive dehalogenation of solvents such as trichloroethene (TCE)[4-5],anammox bacteria to remove nitrogen at lower energy cost[6],and direct delivery of H2to bacteria reduce a range of oxidized contaminants[7-8].Many other exciting applications are at various stages of research and development.The benefits of these environmental biotechnologies include relatively low cost and simple operation,using no hazardous inputs,and producing no hazardous outputs.

    In parallel,environmental biotechnology has benefited from a strong science push that began in the 1980s and really ″took off″ in the past two decades.The core of the science push is from the amazing advancements in molecular microbial ecology[1,9].Environmental biotechnologists were able to adapt the rapidly advancing tools of molecular biology to address pressing questions that had been unanswerable.These are the core questions of microbial ecology:What microorganisms are present?What metabolisms can they do?What metabolisms are they doing?How do they interact with each other and their environment?Today,researchers and practitioners of environmental biotechnology can look inside the ″black box″ of microbial communities,understand who are the crucial microorganisms,and begin to figure out what each type is doing and why it is important.I call this being able to ″think like the microorganisms″, the first step towards being able to manage them to provide desired services.

    The environmental biotechnologist needs more than clever tools of molecular biology to think like the microorganisms.Advancing alongside molecular microbial ecology has been analytical chemistry able to provide deeper and more precise tracking of what the microorganisms are consuming and producing.Traditional measures remain as valuable as ever and should never be ignored:e.g.,chemical oxygen demand,dissolve organic carbon,nitrogen species,alkalinity,and pH.At the same time,advanced methods of gas and liquid chromatography,mass spectrometry,X-ray analysis,and more make it possible to dissect the details of metabolic pathways and materials produced by the microorganisms.

    The vast amount of information from old and new methods has to be integrated if the environmental biotechnologist isto have an accurate picture of how the microbial community works.The ultimate tool for integrating the microbiological,chemical,and transport processes in a microbiological system is mathematical modeling.More powerful computers and more convenient modeling software have promoted more sophisticated models of environmental biotechnologies[10-12].They can provide 1-,2-,or 3-dimensional representations of complex microbiological systems,such as biofilms and granules with multiple species.Linking model outputs to visualization tools makes it possible to be ″inside″ microbial communities as they evolve in time and space.These powerful models,developed in the past ten years or so,open up a window on how microorganisms ″think″.However,good modeling does not require a high-powered 3-dimensional simulation with Disney-like animation.Often the most valuable modeling is a simple mass-balance model that makes an accurate accounting of what is produced and consumed by a microorganism or a community.Basic stoichiometry is the most valuable tool in the toolkit of the environmental biotechnologist,and it can be carried out with a simple spreadsheet.

    1.3 Working for the microorganisms

    Finally,a successful environmental biotechnology-one that actually provides the service to society - must go well beyond ″thinking″.The understanding achieved with the powerful research tools must be brought to practice.This means creating an engineered process that ″works for the microorganisms so that they work for us″.The process must be technically reliable,safe to operate,and cost effective.Achieving this for the challenging new applications means designing novel process configurations and using advanced materials.It is fortunate that materials science is generating new materials that can work well with microorganisms.It is up to the environmental biotechnologist to develop novel processes that take advantage of new materials,allowing the microorganisms to provide the service we want and that they want to do,too.

    2 The Swette Center for Environmental Biotechnology

    Research and development in environmental biotechnology demands a special working environment.I was fortunate to have the opportunity to create such an environment when I joined the Biodesign Institute at Arizona State University in January 2005.The Biodesign Institute (www.biodesign.asu.edu) had just been established as a location to foster biology-based,use-inspired research,and I was asked to build a research center that was inter-disciplinary and able to link fundamental research with its practical application.Over its ~ 9-year lifetime,the Swette Center for Environmental Biotechnology has become a living organism dedicated to ″thinking like the microorganisms″ (the fundamental research) so that it can create processes that ″work for the microorganisms so that they work for us″ (the practical applications).

    Today,the Swette Center (www.biodesign.asu.edu/research/research-centers/swette-center-for-environmental-biotechnology/) has 5 professors and about 60 researchers.Besides me,the other professors are Drs.Rosa Krajmalnik-Brown,César Torres,Hinsby Cadillo-Quiroz,and Andrew Marcus.The researchers include PhD students in seven academic programs,post-doctoral associates,research scientists,visiting scientists,and under-graduate and high-school interns.The Center has over 800 m2of high-quality laboratory and office space,extensive instrumentation for chemical and microbiological analyses,and specialized research space and equipment.The Center is ″named″ after Mr.Brian Swette,an alumnus of Arizona State University who provided a substantial gift to support the university′s mission to promote sustainability.

    The key to the Center′s success is its culture,which features being inter-disciplinary and making partnerships.Almost every project in the Center marries molecular microbial ecology,chemistry,and modeling.The Center has inter-disciplinary teams in which multiple researchers work together so that the productivity of each project and each person is multiplied.And,the partnering extends far beyond the research staff.The Center has collaborations with many universities and private companies around the world.The partnerships with private companies are especially important,because these partners allow us to get our technologies into practice much faster.Of course,we also have all of our microbial partners:the ideal ″win-win″ situation where ″we work for them so that they work for us″.

    3 Examples of environmental biotechnologies

    I provide three examples of environmental biotechnologies in the Center.Each of them illustrates the ways that needs pull,science push,and novel reactor designs come together to create the process that works for the microorganisms who happily work for us.

    3.1 Membrane biofilm reactor

    The technological breakthrough of the MBfR is that it is a simple and efficient means to deliver H2gas as the electron donor[7-8].H2is the ideal electron donor because it is relatively inexpensive,is non-toxic,and works for all of the oxidized contaminants.Before the MBfR,using H2as the donor was technically intractable,because H2has very low water solubility (only about 1.6 mg/L in equilibrium with 101.325 kPa of H2).The MBfR overcomes this limitation by delivering H2directly to a biofilm that adheres to the outer wall of hollow-fiber gas-transfer membranes.H2is supplied to the interior of the non-porous membranes,diffuses through the wall,and is then consumed by the biofilm.The oxidized contaminants diffuse into the biofilm from the water side of the biofilm.Thus,the biofilm is the meeting place for the bacteria′s electron donor and electron acceptor.This creates an ideal habitat for H2-oxidizing bacteria - a perfect example of ″working for the microorganisms″.

    The MBfR has been extensively studied at the bench and pilot scales,and Center researchers have published more than 50 peer-review papers on its performance and the mechanisms underlying the performance.One of the Center′s partners for the MBfR is APTwater (Long Beach,CA),which has commercialized the MBfR undertheir brand name ARoXXXX.ARo stands for Autotrophic Reduction of,since the H2-oxidizing bacteria are autotrophs,or use CO2(not organic compounds) as their carbon source.XXXX stands for the particular application,such as NITE to reduce nitrate and PERC to reduce perchlorate.A strategic partner is Teijin,Ltd (Tokyo),which produces custom hollow fibers that are tailored to meet H2-delivery,durability,and cost targets.The Center also has partnered with leading environmental consulting firms to pilot-test the MBfR:e.g.,Montgomery-Watson-Harza,CH2M-HILL,and CDM-Smith.

    3.2 Microbial electrochemical cells

    Microbial electrochemical cells (denoted MXC,which is explained below) address the pressing need to generate renewable energy and chemical feedstock.High-strength organic wastes embody a large amount of renewable energy,but it is in a non-usable form.Examples are animal manures,wastewater from the food and beverage industries,and sewage-treatment sludge.Today,it is possible to convert some of the energy value of these waste streams to methane gas (CH4),but this approach has serious limitations.Perhaps the biggest limitation is that the output - CH4gas - does not have high economic value.

    The MXC is platform technology that takes advantage of the recent discovery that certain bacteria are able to oxidize certain organic compounds and then respire the electrons to an anode using extracellular electron transport[13].The bacteria are called anode-respiring bacteria (ARB),and they naturally form electrically conductive biofilms on the outside of anodes made of conductive materials,such as graphite.Controlling the anode potential makes it possible to select for very efficient ARB that transmit the electrons to the anode with no loss of electrical potential[14].The electrons that enter the anode are conducted to a cathode,where they can be used to reduce a range of different electron acceptors.

    Selecting the reduction reaction at the cathode determines how the energy value of electrons in the organic substrate is captured as a renewable product.If O2is reduced to H2O,then the energy in the electrons is captured as electrical power through the current going from low potential at the anode to high potential at the cathode.This is called a microbial fuel cell,or MFC.If H2O is reduced to H2gas at the cathode,the energy value is captured in the H2.This option is a microbial electrolysis cell,or MEC.Valuable chemicals also can be produced at the cathode.A well-documented example is partial reduction of H2O to hydrogen peroxide (H2O2),which is the main product,although a small amount of electrical power is possible[15-16].It also is possible,at least in principle,to produce organic products that can be used for fuel or the chemical industry[17].And,services,such as desalination of seawater and reduction of oxidized contaminants also are possible[18]; this is a microbial desalination cell,or MDC.The meaning of the MXC acronym should now be clear:All are electrochemical cells (the C) catalyzed by microbes (the M),but can perform different functions indicated by the middle letter (the variable X).

    In the Swette Center,our MXC team works on fundamentals:e.g.,the physiology of ARB[19-20],the ecology of biofilm anodes[21-23],kinetics and modeling of the biofilm anode[12,24-26],and cathode kinetics[27].We also are active in scaling up MXCs towards pilot studies and then commercialization.To accelerate this activity,the Center ″spun out″ a start up company,Arbsource (www.arbsource.us).Arbsource and the Center also partner with CDM-Smith,Honeywell,Dow,and Aquatech on various aspects of MXC materials and design.

    3.3 Intimately coupled PhoBioCatalysis

    One of the large,unsolved challenges of environmental technology is treatment of the hazardous and poorly biodegradable organic contaminants from many industries.Industry examples include paints and dyes,pesticides,pharmaceuticals,petrochemicals,pulp and paper,and munitions.Most of the recalcitrant organics are comprised of complex chemical structures that contain rings andsubstitutions that make attack by bacterial enzymes difficult and slow,if not impossible.One means to make these complex,recalcitrant organics biodegradable is to treat them with advanced oxidation,which uses free radicals to attack the chemical structures by breaking rings and adding hydroxyl (-OH) groups.Both features make the molecules biodegradable.Advanced oxidation works well in this situation because the free radicals act powerfully and indiscriminately[28].

    The most obvious way to use advanced oxidation is as a pre-treatment before biodegradation.While this method has shown some success,it has serious drawbacks that have prevented it from being widely adopted.The drawbacks stem from its advantages:powerful and indiscriminate attack.When used as a pre-treatment,advanced oxidation produces a range of products that may be oxidized more than necessary (wasting expensive oxidant and energy),toxic to the microorganisms,and even less bioavailable.A better approach would be to have advanced oxidation do as little attack as possible - just enough to make the compounds bioavailable and no more.

    Intimately Coupled PhotoBioCatalysis (ICPBC) is an approach that achieves the desired goal.It does this by having advanced oxidation and biodegradation occur in the same reactor[29].At first glance,this seems to be an impossible goal,because the components involved in advanced oxidation are used to kill microorganisms:e.g.,free radicals and UV light.ICPBC works,however,by protecting the microorganisms from the radicals and UV light using specially designed reactors that allow the advanced oxidation and biodegradation to occur simultaneously in the same reactor:i.e.,intimately coupled.

    We demonstrated the concept of ICPBC in the photocatalytic circulating bed biofilm reactor,or PCBBR[29].In the PCBBR,the bacteria that biodegrade the products of advanced oxidation grow as a biofilm on the interior of macroporous carriers that circulate in an air-lift reactor.The advanced oxidation reactions,photocatalyzed by TiO2and UV light,occur at the outer surface of the carriers or in the bulk liquid.The biodegradable products then diffuse into the carriers and are biodegraded by bacteria that are not exposed to UV light or free radicals,which cannot penetrate inside the carriers.The PCBBR is patented[30]and has been demonstrated for chlorinated phenolics,reactive dyes,and dinitrophenol[29,31-33].We have partnered with Samsung,who supplied special macroporous carriers that work well in the PCBBR.

    Another important partnership for ICPBC is with Professor Zhang Yongming of Shanghai Normal University.After spending a year working on ICPBC as a visiting scientist in the Center,Prof.Zhang initiated research on two other variations of ICPBC.They are theintegrated photocatalytic-biological reactor (IPCBR) and the internal loop photocatalytic biofilm reactor (ILPBR).In both cases,water is rapidly circulated between an advanced-oxidation zone that can be illuminated with UV light (with or without a TiO2photocatalyst) and a biofilm biodegradation zone.Professor Zhang′s team has documented intimate coupling for sulfamethoxazole,phenol,chlorinated phenolics,quinoline,and N-containing natural organic matter[34-38].

    4 Conclusions

    Environmental biotechnology is a rapidly advancing field that has almost unlimited promise for addressing many of society′s emerging environmental challenges.The most important key is partnering with microorganisms,whose wide-ranging metabolic capabilities can be harnessed to destroy pollutants and to generate renewable materials.Partnering with microorganisms requires that we understand them well,and important advances in molecular microbial ecology,analytical chemistry,and mathematical modeling are making it possible to look inside the black box of microbial communities.The next key is translating the understanding to biotechnological processes that ″work for the microorganisms so that they work for us″.Successful translation demands novel reactor designs,application of advanced materials,and partnering with practitioners and users.The Swette Center for Environmental Biotechnology was founded in 2005 to bring together the science and engineering tools,as well as the partnerships with microorganisms and many scientific and practice collaborators.The value MBfR,MXCs,and ICPBC exemplify the success of this approach.

    :

    [1] RITTMANN B E,HAUSNER M,L?FFLER F,et al.A vista for microbial ecology and environmental biotechnology[J].Environ Sci Technol,2006,40:1096-1103.

    [2] RITTMANN B E,MCCARTY P L.Environmental Biotechnology:Principles and Applications[M].New York:McGraw-Hill Book Co,2001.

    [3] RITTMANN B E.The role of biotechnology in water and wastewater treatment[J].J Environ Engr (ASCE),2010,136:348-353.

    [4] MAJOR D W,MCMASTER M L,COX E E,et al.Field demonstration of successful bioaugmentation to achieve dechlorination of tetrachloroethene to ethene[J].Environ Sci Technol,2002,36:5106-5116.

    [5] KRAJMALNIK-BROWN R,H?LSCHER T,THOMSON I N,et al.Genetic identification of a putative vinyl chloride reductase in Dehalococcoides sp.strain BAV1[J].Appl Environ Microbiol,2004,70:6347-6351.

    [6] KARTAL B,KUENEN J,VAN LOOSDRECHT M C M.Sewage treatment with Anammox[J].Science,2010,328:702-703.

    [7] RITTMANN B E.The membrane biofilm reactor is a versatile platform for water and wastewater treatment[J].Environ Engr Res,2007,12(4):157-175.

    [8] MARTIN K J,NERENBERG R.The membrane biofilm reactor (MBfR) for water and wastewater treatment:Principles,applications,and recent developments[J].Biores Technol,2011,122:83-94.

    [9] RITTMANN B E,KRAJMALNIK-BROWN R,HALDEN R U.Pre-genomic,genomic,and post-genomic study of microbial communities involved in bioenergy[J].Nature Rev Microb,2008,6:604-612.

    [10] PICIOREANU C,KREFT J-U,LOOSDRECHT M C M V.Particle-based multidimensional multispecies biofilm Model[J].Appl Environ Microb,2004,70:3024-3040.

    [11] WANNER O,EBERL H,MORGENROTH E,et al.Mathematical Modeling of Biofilms[M]∥Report of the IWA Biofilm Modeling Task Group,Scientific and Technical Report No.18.London:IWA Publishing,2006.

    [12] MARCUS A K,TORRES C I,RITTMANN B E.Analysis of a microbial electrochemical cell using the proton condition in biofilm (PCBIOFILM) model[J].Bioresources Technol,2011,102:253-262.

    [13] TORRES C I,MARCUS A K,LEE H-S,et al.A kinetic perspective on extracellular electron transfer by anode-respiring bacteria[J].FEMS Microb Rev,2010,34:3-17.

    [14] TORRES C I,KRAJMALNIK-BROWN R,PARAMESWARAN P,et al.Selecting anode-respiring bacteria based on anode potential:phylogenetic,electrochemical,and microscopic characterization[J].Environ Sci Technol,2009,43:9519-9524.

    [15] ROZENDAL R A,LEONE E,J KELLER,et al.Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system[J].Electrochem Comm,2009,11:1752-1755.

    [16] FU L,YOU S J L,YANG F L,et al.Synthesis of hydrogen peroxide in microbial fuel cells[J].J Chem Technol Biotechnol,2010,85:715-719.

    [17] LOGAN B E,RABAEY K.Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies[J].Science,2012,337:686-687.

    [18] CAO X X,HUANG P,LIANG K,et al.A new method for water desalination using microbial desalination cells[J].Environ Sci Technol,2009,34:7148-7152.

    [19] LEE H-S,TORRES C I,RITTMANN B E.Effects of substrate diffusion and anode potential on kinetic parameters for anode-respiring bacteria in a microbial electrochemical cell[J].Environ Sci Technol,2009,43:7571-7577.

    [20] PARAMESWARAN P,BRY T,POPAT S,et al.Kinetic,electrochemical,and microscopic characterization of the thermophilic,anode-respiring bacteriumThermincolaferriacetica[J].Environ Sci Technol,2013,47:4934-4940.

    [21] PARAMESWARAN P,ZHANG H,TORRES C I,et al.Microbial community structure in a biofilm anode fed with a fermentable substrate:the significance of hydrogen scavengers[J].Biotechnol Bioengr,2010,105:69-78.

    [22] PARAMESWARAN P,TORRES C I,LEE H-S,et al.Hydrogen consumption in microbial electrochemical systems (MXCs):the role of homo-acetogenic bacteria[J].Bioresource Technology,2011,102:263-271.

    [23] PARAMESWARAN P,TORRES C I,KANG D,et al.The role of homo-acetogenic bacteria as efficient hydrogen scavengers in microbial electrochemical cells (MXCs)[J].Water Sci Technol,2012,65 (1):1-6.

    [24] TORRES C I,MARCUS A K,RITTMANN B E.Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria[J].Biotechnol Bioengr,2008,100:872-881.

    [25] TORRES C I,MARCUS A K,PARAMESWARAN P,et al.Kinetic experiments for evaluating the Nernst-Monod model for anode-respiring bacteria (ARB) in a biofilm anode[J].Environ Sci Technol,2008,42(17):6593-6597.

    [26] MARCUS A K,TORRES C I,RITTMANN B E.Conduction-based modeling of the biofilm anode of a microbial fuel cell[J].Biotech Bioengr,2007,98:1117-1182.

    [27] POPAT S C,KI D,RITTMANN B E,et al.Importance of OH-transport from cathodes in microbial fuel cells[J].ChemSusChem,2012,15:1071-1079.

    [28] SCOTT JP,OLLIS D F.Integration of chemical and biological oxidation processes for water treatment:Review and recommendations[J].Environ Prog,1995,14(2):88-103.

    [29] MARSOLEK M D,TORRES C I,HAUSNER M,et al.Intimate coupling of photocatalysis and biodegradation in a photocatalytic circulating-bed biofilm reactor[J].Biotechnol Bioengr,2008,101:83-92.

    [30] RITTMANN B E,MARSOLEK M D.Intimate coupling of photocatalysis and biodegradation in a photocatalytic circulating bed biofilm reactor:US,20110089107[P].2011-04-21.

    [31] LI G,PARK S,RITTMANN B E.2,4,5-trichlorophenol degradation using a novel TiO2-coated biofilm carrier:roles of adsorption,photocatalysis,and biodegradation[J].Environ Sci Technol,2011,45:8359-8367.

    [32] LI G,PARK S,RITTMANN B E.Degradation of reactive dyes in a photocatalytic circulating-bed biofilm reactor[J].Biotechnol Bioengr,2012,109:884-843.

    [33] WEN D,LI G,XIN R,et al.2,4-DNT degradation in intimately coupled photocatalysis:the roles of adsorption,photolysis,and biotransformation[J].Appl Microb Biotechnol,2012,95:263-272.

    [34] ZHANG Y,WANG L,RITTMANN B E.Integrated photocatalytic-biological reactor for accelerated phenol mineralization[J].Appl Microb Biotechnol,2010,86:1977-1985.

    [35] ZHANG Y,SUN X,CHEN L,et al.Integrated photocatalytic-biological reactor for accelerated 2,4,6-trichlorophenol degradation and mineralization[J].Biodegradation,2012,23:189-198.

    [36] ZHANG Y,YAN R,ZOU Z,et al.Improved nitrogen removal in dual-contaminated surface water by means of photocatalysis[J].Front Environ Sci Engr,2012,6:428-436.

    [37] YAN N,XIA S,XU L,et al.Internal loop photobiodegradation reactor (ILPBR) for accelerated degradation of sulfamethoxazole (SMX)[J].Appl Microb Biotech,2012,94:527-535.

    [38] YAN N,CHANG L,GAN L,et al.UV photolysis for accelerated quinoline biodegradation and mineralization[J].Appl Microb Biotechnol,2013,97 (24):10555-10561.

    这个男人来自地球电影免费观看| 久久人妻av系列| 午夜福利影视在线免费观看| 亚洲三区欧美一区| 丰满的人妻完整版| 国产精品 国内视频| 成人国语在线视频| 香蕉久久夜色| 国产男靠女视频免费网站| 久久精品国产清高在天天线| 日韩av在线大香蕉| 精品欧美一区二区三区在线| 久久精品亚洲精品国产色婷小说| 久久国产乱子伦精品免费另类| 欧美日韩中文字幕国产精品一区二区三区 | 久久天堂一区二区三区四区| 中国美女看黄片| 欧美黄色淫秽网站| 欧美绝顶高潮抽搐喷水| 一卡2卡三卡四卡精品乱码亚洲| 91大片在线观看| 一进一出抽搐动态| 亚洲五月色婷婷综合| 国内精品久久久久精免费| 日本在线视频免费播放| 女人爽到高潮嗷嗷叫在线视频| 在线十欧美十亚洲十日本专区| 国产精品永久免费网站| 国产精品,欧美在线| 国产男靠女视频免费网站| 久久久国产欧美日韩av| 欧美日本亚洲视频在线播放| 波多野结衣高清无吗| 亚洲国产毛片av蜜桃av| 精品人妻在线不人妻| 岛国视频午夜一区免费看| 国产亚洲欧美在线一区二区| 少妇裸体淫交视频免费看高清 | 国产精品永久免费网站| 免费在线观看日本一区| 91九色精品人成在线观看| 九色亚洲精品在线播放| 久久国产乱子伦精品免费另类| 俄罗斯特黄特色一大片| 99久久精品国产亚洲精品| 色综合婷婷激情| 嫩草影视91久久| 久久久久久久午夜电影| 国产麻豆成人av免费视频| 日日摸夜夜添夜夜添小说| 999精品在线视频| 99精品欧美一区二区三区四区| 青草久久国产| 丁香六月欧美| 色在线成人网| 欧美在线一区亚洲| 九色国产91popny在线| 一区二区三区激情视频| 亚洲av日韩精品久久久久久密| 日韩有码中文字幕| 国产亚洲精品av在线| 婷婷精品国产亚洲av在线| 色综合站精品国产| 欧美日韩福利视频一区二区| 在线观看舔阴道视频| 日本五十路高清| 91成年电影在线观看| x7x7x7水蜜桃| 欧美国产精品va在线观看不卡| 欧美av亚洲av综合av国产av| 亚洲国产欧美一区二区综合| 两个人看的免费小视频| 99久久久亚洲精品蜜臀av| 亚洲熟妇熟女久久| 精品熟女少妇八av免费久了| 精品久久久精品久久久| avwww免费| 一级,二级,三级黄色视频| 成人三级做爰电影| 天堂影院成人在线观看| 9191精品国产免费久久| 午夜精品国产一区二区电影| 久久精品国产亚洲av香蕉五月| 国产黄a三级三级三级人| 丝袜美腿诱惑在线| cao死你这个sao货| 久久九九热精品免费| 在线av久久热| 最新美女视频免费是黄的| 午夜福利影视在线免费观看| 丝袜在线中文字幕| 99re在线观看精品视频| 日韩三级视频一区二区三区| 免费搜索国产男女视频| 极品人妻少妇av视频| 久久久久久久久免费视频了| 久久精品亚洲精品国产色婷小说| 亚洲视频免费观看视频| 三级毛片av免费| 国产成人精品久久二区二区免费| 国产精品香港三级国产av潘金莲| 18禁裸乳无遮挡免费网站照片 | 久久青草综合色| 免费在线观看影片大全网站| 欧美日韩乱码在线| 久久人妻av系列| 免费在线观看影片大全网站| 日本a在线网址| 午夜成年电影在线免费观看| 女人被躁到高潮嗷嗷叫费观| 日本免费a在线| 精品欧美一区二区三区在线| 欧美亚洲日本最大视频资源| 日本免费a在线| 午夜久久久在线观看| 国产亚洲av高清不卡| 深夜精品福利| 在线av久久热| 久久久久久免费高清国产稀缺| 欧美日本中文国产一区发布| 狂野欧美激情性xxxx| 国产精品一区二区精品视频观看| 亚洲精品国产精品久久久不卡| 亚洲欧美激情综合另类| 国产精品1区2区在线观看.| 黄片小视频在线播放| 精品欧美国产一区二区三| 中文字幕av电影在线播放| av中文乱码字幕在线| а√天堂www在线а√下载| 亚洲国产中文字幕在线视频| 国产成人欧美| 欧美成人性av电影在线观看| 一级毛片女人18水好多| 午夜福利欧美成人| 在线观看午夜福利视频| 欧美乱码精品一区二区三区| 色综合亚洲欧美另类图片| 91国产中文字幕| 久久国产亚洲av麻豆专区| 最好的美女福利视频网| 一级片免费观看大全| 九色国产91popny在线| 一进一出抽搐gif免费好疼| 身体一侧抽搐| 国产精品免费一区二区三区在线| 亚洲国产精品成人综合色| 色播亚洲综合网| 亚洲国产精品sss在线观看| 丁香欧美五月| 午夜福利,免费看| 欧美激情高清一区二区三区| 久久香蕉激情| 欧洲精品卡2卡3卡4卡5卡区| 91九色精品人成在线观看| 成人特级黄色片久久久久久久| 久久狼人影院| 51午夜福利影视在线观看| 久久香蕉激情| 国产日韩一区二区三区精品不卡| 亚洲一区中文字幕在线| 男女午夜视频在线观看| 国产亚洲欧美在线一区二区| 精品欧美国产一区二区三| svipshipincom国产片| 久久精品91蜜桃| 亚洲无线在线观看| 国产人伦9x9x在线观看| 日韩成人在线观看一区二区三区| 午夜精品在线福利| 亚洲国产精品合色在线| 久久精品影院6| 两人在一起打扑克的视频| 岛国在线观看网站| 99国产精品免费福利视频| 免费不卡黄色视频| 亚洲一区二区三区色噜噜| 国产精品自产拍在线观看55亚洲| 淫妇啪啪啪对白视频| 免费看a级黄色片| 1024视频免费在线观看| 日日摸夜夜添夜夜添小说| 丁香欧美五月| 无人区码免费观看不卡| 亚洲成人免费电影在线观看| 18禁美女被吸乳视频| 黄片播放在线免费| 国产精品久久久av美女十八| 久99久视频精品免费| 不卡av一区二区三区| 亚洲,欧美精品.| 午夜老司机福利片| 一区二区三区激情视频| 69av精品久久久久久| 欧美一级a爱片免费观看看 | 黑人巨大精品欧美一区二区mp4| av有码第一页| 最新美女视频免费是黄的| 日本五十路高清| 这个男人来自地球电影免费观看| 国产精品乱码一区二三区的特点 | 亚洲国产欧美网| 精品人妻在线不人妻| 国产国语露脸激情在线看| 亚洲午夜精品一区,二区,三区| 亚洲精品美女久久久久99蜜臀| 最新在线观看一区二区三区| 女人被躁到高潮嗷嗷叫费观| 一边摸一边抽搐一进一小说| 精品久久久精品久久久| 精品乱码久久久久久99久播| 99久久精品国产亚洲精品| 又紧又爽又黄一区二区| 国产高清有码在线观看视频 | 欧美日韩福利视频一区二区| 亚洲三区欧美一区| 久久久久久久久久久久大奶| 韩国av一区二区三区四区| 在线永久观看黄色视频| 亚洲成a人片在线一区二区| 中文亚洲av片在线观看爽| 国产精品精品国产色婷婷| 国产av一区在线观看免费| 午夜免费成人在线视频| 国产av又大| 久久久久久久精品吃奶| 免费看a级黄色片| 午夜福利,免费看| 中国美女看黄片| 成人欧美大片| ponron亚洲| 国产精品免费一区二区三区在线| 一边摸一边抽搐一进一小说| 最新在线观看一区二区三区| 咕卡用的链子| 乱人伦中国视频| 久久久国产精品麻豆| 操出白浆在线播放| 国产成人免费无遮挡视频| 一进一出抽搐gif免费好疼| 亚洲精品美女久久久久99蜜臀| 欧美色视频一区免费| 精品一区二区三区av网在线观看| 精品国产超薄肉色丝袜足j| 亚洲av美国av| 麻豆国产av国片精品| 国产激情欧美一区二区| 久久欧美精品欧美久久欧美| 国产亚洲精品久久久久5区| 亚洲欧美精品综合久久99| 午夜视频精品福利| 两性夫妻黄色片| 一边摸一边抽搐一进一出视频| 久久久久久国产a免费观看| 日本在线视频免费播放| 91成人精品电影| 男人操女人黄网站| 亚洲成人免费电影在线观看| 中亚洲国语对白在线视频| 咕卡用的链子| 90打野战视频偷拍视频| 日日摸夜夜添夜夜添小说| 精品国产美女av久久久久小说| 久久久国产成人精品二区| 99久久久亚洲精品蜜臀av| 久久精品91无色码中文字幕| 美女国产高潮福利片在线看| 搡老妇女老女人老熟妇| netflix在线观看网站| 亚洲,欧美精品.| 欧美日韩亚洲国产一区二区在线观看| 人人妻,人人澡人人爽秒播| 午夜福利视频1000在线观看 | 亚洲人成77777在线视频| 黑人欧美特级aaaaaa片| 国产免费av片在线观看野外av| 日本vs欧美在线观看视频| 亚洲精品在线美女| 这个男人来自地球电影免费观看| 亚洲精品一卡2卡三卡4卡5卡| 亚洲九九香蕉| 丝袜美足系列| 国产精品日韩av在线免费观看 | 久久精品人人爽人人爽视色| 丁香六月欧美| 国产午夜精品久久久久久| 国产aⅴ精品一区二区三区波| 日韩 欧美 亚洲 中文字幕| 性少妇av在线| 色哟哟哟哟哟哟| 中文字幕另类日韩欧美亚洲嫩草| 搡老熟女国产l中国老女人| 十八禁网站免费在线| 伦理电影免费视频| 免费av毛片视频| 99久久综合精品五月天人人| 亚洲国产精品sss在线观看| 国产精品秋霞免费鲁丝片| 麻豆久久精品国产亚洲av| 母亲3免费完整高清在线观看| 久久国产亚洲av麻豆专区| 国产xxxxx性猛交| 亚洲熟妇熟女久久| 亚洲av成人不卡在线观看播放网| 国产精品二区激情视频| 亚洲人成电影观看| 午夜福利影视在线免费观看| 欧美老熟妇乱子伦牲交| 女人精品久久久久毛片| 亚洲电影在线观看av| 男女之事视频高清在线观看| 啦啦啦观看免费观看视频高清 | 亚洲成av人片免费观看| 精品久久久久久久人妻蜜臀av | 后天国语完整版免费观看| 91九色精品人成在线观看| 国产av一区二区精品久久| 别揉我奶头~嗯~啊~动态视频| 老司机深夜福利视频在线观看| 一二三四社区在线视频社区8| www国产在线视频色| 国产欧美日韩一区二区三区在线| 日本a在线网址| 成人精品一区二区免费| 国产av一区二区精品久久| 极品人妻少妇av视频| 动漫黄色视频在线观看| 性色av乱码一区二区三区2| 中文字幕av电影在线播放| 宅男免费午夜| 国产激情久久老熟女| 乱人伦中国视频| 99在线视频只有这里精品首页| 欧美乱色亚洲激情| 老汉色av国产亚洲站长工具| 大码成人一级视频| 天天躁夜夜躁狠狠躁躁| 亚洲一码二码三码区别大吗| 麻豆一二三区av精品| 村上凉子中文字幕在线| 69av精品久久久久久| 免费观看精品视频网站| 日韩成人在线观看一区二区三区| av超薄肉色丝袜交足视频| 9191精品国产免费久久| АⅤ资源中文在线天堂| 老司机福利观看| 动漫黄色视频在线观看| 精品久久久久久久毛片微露脸| 国产成人av激情在线播放| 日韩精品免费视频一区二区三区| 99久久国产精品久久久| 天天一区二区日本电影三级 | 国产亚洲欧美精品永久| 久久国产精品影院| 日本免费a在线| 成人欧美大片| 国产91精品成人一区二区三区| 最新在线观看一区二区三区| 国产一区二区三区视频了| 一夜夜www| 欧美丝袜亚洲另类 | 性色av乱码一区二区三区2| 亚洲天堂国产精品一区在线| av中文乱码字幕在线| 日韩av在线大香蕉| 日日爽夜夜爽网站| 欧美日韩瑟瑟在线播放| 老汉色av国产亚洲站长工具| 中文字幕色久视频| 精品国产亚洲在线| 中文字幕另类日韩欧美亚洲嫩草| av天堂久久9| 18禁观看日本| 亚洲九九香蕉| 亚洲第一电影网av| 99久久久亚洲精品蜜臀av| 免费高清在线观看日韩| 高清在线国产一区| 黑人巨大精品欧美一区二区蜜桃| 中亚洲国语对白在线视频| 看黄色毛片网站| 国产精品久久久人人做人人爽| 一进一出抽搐动态| 成年版毛片免费区| 岛国视频午夜一区免费看| 91麻豆av在线| 精品电影一区二区在线| 欧美成人一区二区免费高清观看 | 国产一区二区激情短视频| 国产精品电影一区二区三区| 免费高清在线观看日韩| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲精品中文字幕在线视频| 操出白浆在线播放| 男女午夜视频在线观看| 欧美日韩亚洲国产一区二区在线观看| 久久天堂一区二区三区四区| 啦啦啦观看免费观看视频高清 | 国产精品乱码一区二三区的特点 | 久久婷婷成人综合色麻豆| 后天国语完整版免费观看| 国产高清视频在线播放一区| 国产精品秋霞免费鲁丝片| 涩涩av久久男人的天堂| 成熟少妇高潮喷水视频| 国产免费av片在线观看野外av| 伦理电影免费视频| 久久精品影院6| 一级毛片高清免费大全| 俄罗斯特黄特色一大片| 曰老女人黄片| 嫁个100分男人电影在线观看| 久久精品91蜜桃| 久久香蕉激情| 国产男靠女视频免费网站| 少妇的丰满在线观看| 国产不卡一卡二| 亚洲第一电影网av| 免费高清视频大片| 热re99久久国产66热| 欧美日韩亚洲综合一区二区三区_| 欧美性长视频在线观看| 中亚洲国语对白在线视频| 成人特级黄色片久久久久久久| 欧美色视频一区免费| 自线自在国产av| 女人精品久久久久毛片| 午夜a级毛片| av天堂久久9| 国产欧美日韩精品亚洲av| 中文字幕av电影在线播放| 日韩视频一区二区在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 免费少妇av软件| 免费久久久久久久精品成人欧美视频| 在线免费观看的www视频| 怎么达到女性高潮| 国产精品精品国产色婷婷| 在线十欧美十亚洲十日本专区| 亚洲五月天丁香| 精品国产亚洲在线| 精品无人区乱码1区二区| 久久精品国产综合久久久| 淫妇啪啪啪对白视频| 亚洲少妇的诱惑av| 久9热在线精品视频| 久久香蕉精品热| 日本 欧美在线| 欧美激情久久久久久爽电影 | 国产成人啪精品午夜网站| 最好的美女福利视频网| 波多野结衣一区麻豆| 在线观看免费视频日本深夜| 亚洲av熟女| 咕卡用的链子| 亚洲av日韩精品久久久久久密| 国产在线精品亚洲第一网站| 国产不卡一卡二| 欧美中文日本在线观看视频| 波多野结衣高清无吗| 一区在线观看完整版| 亚洲国产高清在线一区二区三 | 啦啦啦 在线观看视频| 91老司机精品| 亚洲激情在线av| 日本三级黄在线观看| 美女午夜性视频免费| 成年人黄色毛片网站| aaaaa片日本免费| 黄网站色视频无遮挡免费观看| 免费高清在线观看日韩| 国产又爽黄色视频| 90打野战视频偷拍视频| 免费观看精品视频网站| 宅男免费午夜| 色av中文字幕| 午夜影院日韩av| 麻豆国产av国片精品| 成人特级黄色片久久久久久久| 一级,二级,三级黄色视频| 成人国产综合亚洲| 亚洲七黄色美女视频| 中文字幕精品免费在线观看视频| 亚洲av电影在线进入| 久久青草综合色| 天堂动漫精品| 国产精品一区二区免费欧美| 日韩欧美一区二区三区在线观看| 国产激情久久老熟女| 亚洲国产看品久久| 久久久国产成人精品二区| 女人高潮潮喷娇喘18禁视频| 三级毛片av免费| 一进一出抽搐gif免费好疼| 99精品久久久久人妻精品| 999久久久精品免费观看国产| 一区二区三区精品91| 18禁观看日本| 精品久久久久久成人av| 亚洲精品粉嫩美女一区| 色婷婷久久久亚洲欧美| 一区在线观看完整版| 欧美av亚洲av综合av国产av| 国产精品一区二区免费欧美| 欧美激情高清一区二区三区| 亚洲国产高清在线一区二区三 | 别揉我奶头~嗯~啊~动态视频| 波多野结衣av一区二区av| 国产aⅴ精品一区二区三区波| 一个人免费在线观看的高清视频| 国产乱人伦免费视频| 久久香蕉激情| 日韩 欧美 亚洲 中文字幕| 国内精品久久久久精免费| 免费观看人在逋| 亚洲电影在线观看av| 夜夜夜夜夜久久久久| 他把我摸到了高潮在线观看| 99久久99久久久精品蜜桃| 最近最新免费中文字幕在线| 伊人久久大香线蕉亚洲五| 亚洲avbb在线观看| 国产精品日韩av在线免费观看 | 精品熟女少妇八av免费久了| 国产又色又爽无遮挡免费看| 一级毛片精品| 日韩av在线大香蕉| 91字幕亚洲| 日本在线视频免费播放| 淫秽高清视频在线观看| 精品少妇一区二区三区视频日本电影| 午夜老司机福利片| 色综合亚洲欧美另类图片| 色播在线永久视频| 十八禁人妻一区二区| 男女午夜视频在线观看| 欧美久久黑人一区二区| 亚洲九九香蕉| 欧美日韩黄片免| 精品欧美一区二区三区在线| 99在线人妻在线中文字幕| 日韩精品中文字幕看吧| av福利片在线| 欧美黑人精品巨大| 99久久99久久久精品蜜桃| 99riav亚洲国产免费| 91成人精品电影| 人人澡人人妻人| 日本a在线网址| 少妇粗大呻吟视频| 多毛熟女@视频| 成人亚洲精品一区在线观看| 黑人巨大精品欧美一区二区mp4| 99久久精品国产亚洲精品| 亚洲第一青青草原| 99国产精品一区二区三区| 久久香蕉激情| 久热这里只有精品99| 亚洲av成人一区二区三| 一区二区三区精品91| 欧美av亚洲av综合av国产av| 国产99久久九九免费精品| 两个人视频免费观看高清| 纯流量卡能插随身wifi吗| 亚洲精品国产一区二区精华液| 亚洲中文av在线| 亚洲五月色婷婷综合| 首页视频小说图片口味搜索| 长腿黑丝高跟| 欧美精品亚洲一区二区| 亚洲欧美激情综合另类| 人人妻人人爽人人添夜夜欢视频| 亚洲最大成人中文| 黄色片一级片一级黄色片| 国产精品久久久久久精品电影 | 美女大奶头视频| 中文字幕久久专区| 老鸭窝网址在线观看| 99国产极品粉嫩在线观看| 黑人欧美特级aaaaaa片| 男女下面插进去视频免费观看| 欧美+亚洲+日韩+国产| 亚洲欧洲精品一区二区精品久久久| 国产精品精品国产色婷婷| 国产一区二区三区视频了| 免费久久久久久久精品成人欧美视频| or卡值多少钱| 亚洲精品国产区一区二| 法律面前人人平等表现在哪些方面| 淫秽高清视频在线观看| 动漫黄色视频在线观看| 欧美另类亚洲清纯唯美| 日韩视频一区二区在线观看| 亚洲中文字幕一区二区三区有码在线看 | 成人特级黄色片久久久久久久| 99久久综合精品五月天人人| videosex国产| 动漫黄色视频在线观看| 狂野欧美激情性xxxx| 国产一卡二卡三卡精品| 可以在线观看毛片的网站| 国内毛片毛片毛片毛片毛片| 91国产中文字幕| 日本黄色视频三级网站网址| 麻豆国产av国片精品| 精品人妻1区二区| 久久久久国内视频| 亚洲一区二区三区色噜噜| 极品人妻少妇av视频| 久久狼人影院| 国产日韩一区二区三区精品不卡| 黄色视频不卡| 成人永久免费在线观看视频| a级毛片在线看网站|